Tag Archives: Chuyên đề

Phương pháp chứng minh chia hết – P3

Tiếp theo là phương pháp sử dụng đồng dư để chứng minh các bài toán chia hết.

Một số tính chất về đồng dư các bạn có thể xem lại từ bài giảng đồng dư

Sau đây ta xét một vài ví dụ sau.

Ví dụ 1. Chứng minh rằng với mọi số tự nhiên $n$:
a) $A = 7 \cdot 5^{2n} + 12 \cdot 6^n$ chia hết cho 19.
b) $5^{2n+1}+2^{n+4} + 2^{n+1}$ chia hết cho 23.

Lời giải

a) $5^{2n} = 25^n \equiv 6^n (\mod 19) \Rightarrow 7 \cdot 5^{2n} = 7 \cdot 6^n (\mod 19)$

Suy ra $ 7 \cdot 5^{2n} + 12 \cdot 6^n \equiv 19 \cdot 6^n \equiv 0 (\mod 19)$.

Do đó $A = 7 \cdot 5^{2n} + 12 \cdot 6^n$ chia hết cho 19.

b) Ta có $5^{2n+1}= 5 \cdot 25^n \equiv 5 \cdot 2^n (\mod 23)$.

Khi đó $5^{2n+1}+2^{n+4} + 2^{n+1} \equiv 5 \cdot 2^n + 16 \cdot 2^n + 2 \cdot 2^n (\mod 23)$

$\equiv 23 \cdot 2^n (\mod 23) \equiv 0 (\mod 23)$.

Do đó $5^{2n+1}+2^{n+4} + 2^{n+1}$ chia hết cho 23.

Ví dụ 2. Tìm tất các số $n$ để
a) $2^{2n} + 2^n + 1$ chia hết cho 5.
b) $2^n+ 1$ chia hết cho 9.

Lời giải

a) Ta thấy $16\equiv 1 (\mod 5)$, suy ra $16^n \equiv 1 (\mod 5)$.

Suy ra $2^{4k+r} \equiv 2^r (\mod 5)$.

Do đó ta xét $n$ theo moldun 4.

  • Nếu $n= 4k$, ta có $2^{2n} + 2^n + 1 \equiv 3 (\mod 5)$.
  • Nếu $n = 4k+1$ ta có $2^{2n} + 2^n + 1 \equiv 7 (\mod 5)$.
  • Nếu $n=4k+2$ ta có $2^{2n} + 2^n + 1 \equiv 4 (\mod 5)$.
  • Nếu $n=4k+3$ ta có $2^{2n} + 2^n + 1 \equiv 1 (\mod 5)$.

Vậy không tồn tại số tự nhiên $n$ để $2^{2n} + 2^n + 1$ chia hết cho 5.

b) Ta có $2^6 \equiv 1 (\mod 9)$, suy ra $2^{6k+r} equiv 2^r (\mod 9)$.

Đặt $n= 6k+r (0 \leq r \leq 5)$. Khi đó $2^n+1 \equiv 2^{6k+r}+1 \equiv 2^r + 1 (\mod 9)$

Do đó $2^n + 1$ chia hết cho 9 khi và chỉ khi $2^r+1$ chia hết cho 9, tìm ra được $r = 3$.

Vậy $n=6k+3$ với $k$ là số tự nhiên.

Ví dụ 3. Cho $a_n = 2^{2n+1} + 2^{n+1} + 1$ và $b_n = 2^{2n+1} – 2^{n+1} + 1$. Chứng minh rằng với mỗi số tự nhiên $n$, có một và chỉ một trong hai số $a_n, b_n$ chia hết cho 5.

Lời giải

Ta cần chứng minh $a_nb_n$ chia hết cho 5 và $a_n+ b_n$ không chia hết cho 5 với mọi $n$.

  • $a_n\cdot b_n = 2^{4n+2} + 1 \equiv 0 (\mod 5)$.
  • $a_n + b_n = 2^{2n+2} + 2 \equiv 4(-1)^n + 2  (\mod 5) \equiv 1, -2 (\mod 5)$.

Do đó $a_nb_n$ chia hết cho 5 và $a_n+b_n$ không chia hết cho 5.

Do đó có một và chỉ một trong hai số $a_n$ hoặc $b_n$ chia hết cho 5.

Ví dụ 4. (PTNK 2019) Cho $ A_n = 2018^n + 2032^n – 1964^n – 1984^n $ với $ n $ là số tự nhiên.
a) Chứng minh với mọi số tự nhiên $ n $ thì $ A_n $ chia hết cho $ 51 $.
b) Tìm tất cả những số tự nhiên $ n $ sao cho $ A_n $ chia hết cho $ 45. $

Lời giải

a) Do $ 2018 \equiv 1964 \quad \text{(mod 3)} \Rightarrow 2018^n \equiv 1964^n \quad \text{(mod 3)} . $
$ 2032 \equiv 1984 \quad \text{(mod 3)} \Rightarrow 2032^n \equiv 1984^n \quad \text{(mod 3)} $.
$ \Rightarrow A_n \ \vdots \ 3. $
Ta lại có $ 2018 \equiv 1984 \quad \text{(mod 17)} \Rightarrow 2018^n \equiv 1984^n \quad \text{(mod 17)} $.
$ 2032 \equiv 1964 \quad \text{(mod 17)} \Rightarrow 2032^n \equiv 1964^n \quad \text{(mod 17)} $.
$ \Rightarrow A_n \ \vdots\ 17. $
Do $ (3; 17) = 1 $ nên $ A_n \ \vdots \ 51 \quad \forall n$
b) $ A_n = 2018^n + 2032^n – 1964^n – 1984^n. $

b)

  • Ta xét các trường hợp của $ n $ để $ A_n \ \vdots \ 5. $
    Ta có $ A_n \equiv (-2)^n + 2^n -2\cdot(-1)^n $ (mod 5).
    Do đó nếu $ n $ lẻ $ \Rightarrow A_n \equiv 2 \quad $(mod 5)$ \quad \text{(loại)}$.
    Nếu $ n = 4k \Rightarrow A_n \equiv 2\cdot 2^{4k} -2 \equiv 2-2 \equiv 0 \quad$ (mod 5) (nhận)
    Nếu $ n = 4k + 2 \Rightarrow A_n \equiv 2\cdot 2^{4k+2} -2 \equiv 8 – 2 \equiv 6$ (mod 5) (loại).
    Vậy $ A_n \ \vdots \ 5 \Leftrightarrow n \ \vdots \ 4. $
  • Ta xét các trường hợp của $ n $ để $ A_n \ \vdots \ 9. $
    Ta có
    $A_n \equiv 2^n + (-2)^n – 2^n – 4^n \quad  (\mod 9)$
    $\equiv 2^n -4^n \quad \text { (mod 9) \quad (Do $n$ chẵn).}$
    $ \equiv 2^n(1-2^n) \quad \mod 9) Vì $ (2;9 ) = 1 \Rightarrow 2^n – 1  \vdots \ 9$.
    Xét $ n= 3k $ với $ k \in \mathbb{N} $. Ta có $ A_n \equiv 2^{3k} – 1 \equiv (-1)^k – 1 \quad (\mod 9) \Rightarrow k$ chẵn.

    • Xét $ n= 3k + 1 $ với $ k \in \mathbb{N} $. Ta có $ A_n \equiv 2^{3k + 1} – 1 \equiv 2\cdot(-1)^k – 1 \quad \text { (mod 9) \quad (loại)}. $
    • Xét $ n= 3k + 2 $ với $ k \in \mathbb{N} $. Ta có $ A_n \equiv 2^{3k + 2} – 1 \equiv 4\cdot(-1)^k – 1 \quad \text { (mod 9) \quad (loại)}. $
  • Vậy $ A_n \ \vdots \ 45 \Leftrightarrow n \ \vdots \ 12. $

Bài tập rèn luyện

Bài 1. Cho $n$ là số tự nhiên. Chứng minh rằng:
a) $5^{2n+1}+2^{n+4}+2^{n+1}$ chia hết cho $23$;
b) $11^{n+2}+12^{2n+1}$ chia hết cho $133$;
c)  $5^{n+2}+26.5^n+8^{2n+1}$ chia hết cho $59$;
d)  $5^{2n+1}.2^{n+2}+3^{n+2}.2^{2n+1}$ chia hết cho $38$.

Bài 2. Tìm tất cả các số tự nhiên $n$ sao cho:
a) $2^{3n+4}+3^{2n+1}$ chia hết cho 19
b) $n.2^n+ 1$ chia hết cho 3
c) $2^2n+2^n+1$ chia hết cho 21
d)  $1^n+ 2^n+ 3^n+ 4^n$ chia hết cho 5

Bài 3. Cho $n$ là số tự nhiên. Chứng minh rằng:
a)  $2^{2^{2n}}+10$ chia hết cho $13$;
b) $3^{2^{4n+1}}+2^{3^{4n+1}}+5$ chia hết cho $22$.

Bài 4. (PTNK) Tìm các số nguyên dương $n$ sao cho:
a) $n.2^n+3^n$ chia hết cho $5$;
b) $n.2^n+3^n$ chia hết cho $25$.

Phương pháp chứng minh chia hết – P2

Phương pháp biến đổi thành tổng. 

Chú ý tính chất sau: $A, B$ chia hết cho $M$ thì $xA + yB$ chia hết cho $M$ với mọi $x, y$ nguyên.

Ví dụ 1. Chứng minh rằng nếu $4x-y$ chia hết cho 3 thì $A=4x^2 – 16xy-2y^2$ chia hết cho 9.

Lời giải
  • $x+2y = 4x-y -3(x-y)$ chia hết cho 3.
  • $4x^2-16xy-2y^2= (4x-y)(x+2y)+9xy$, mà $(4x-y)(x+2y)$ chia hết cho 9 nên $A$ chia hết cho 9.

Ví dụ 2. Cho hai số nguyên $a, b$ thỏa $(17a+5b)(5a+17b)$ chia hết cho 11.

Chứng minh rằng $(17a+5b)(5a+17b)$ chia hết cho 121.

Lời giải
  • $(17a+5b)(5a+17b)$ chia hết cho 11 thì $17a + 5b$ hoặc $5a+17b$ chia hết cho 11.
  • Nếu $17a+5b$ chia hết cho 11, khi đó $5a+17b = 22(a+b)  – (17a+5b)$ chia hết cho 11.
  • Khi đó $(17a+5b)(5a+17b)$ chia hết cho 121.
  • Tương tự cho trường hợp còn lại.

Ví dụ 3. Cho $n$ là số tự nhiên. Chứng minh rằng $3^nn^3+1$ chia hết cho 7 khi và chỉ khi $3^n + n^3$ chia hết cho 7.

Lời giải

Bổ đề. Nếu $n$ không chia hết cho 7 thì $n^6-1$ chia hết cho 7.

Chứng minh bổ đề: Xét số dư.

Chiều thuận. Nếu $3^nn^3+1$ chia hết cho 7 thì $3^n + n^3$ chia hết cho 7.

Ta có $3^nn^3 + 1$ chia hết cho 7, suy ra $n$ không chia hết cho 7.

Khi đó $n^33^n + 1 = n^3(3^n+n^3) + 1 – n^6$, mà $1-n^6$ chia hết cho 7 (Theo bổ đề), suy ra $n^3(3^n+n^3)$ chia hết cho 7.

Mà $(n^3,7)=1$, suy ra $3^n+n^3$ chia hết cho 7.

Chiều đảo. Nếu $3^n+n^3$ chia hết cho 7, chứng minh $3^nn^3+1$ chia hết cho 7.

$3^n+n^3$ chia hết cho 7, suy ra $n$ không chia hết cho 7 và $n^3(3^n+n^3)$ chia hết cho 7.

Mà $n^3(3^n+n^3) = n^33^n + 1 + n^6-1$, trong đó $n^6-1$ chia hết cho 7 ,suy ra $3^nn^3+1$ chia hết cho 7.

Bài tập rèn luyện

Bài 1. Tìm các số $x, y$ để $\overline{2x7y5}$ chia hết cho 25.

Bài 2. Tìm số tự nhiên $n$ để $n^2+3n+1$ chia hết cho $n+1$.

Bài 3. Tìm số tự nhiên $n$ để $\dfrac{3n^2 + n+1}{n+2}$ là số nguyên.

Bài 4. Tìm tất cả các số tự nhiên $n$ để $n^2 + 9n – 2$ chia hết cho 11.

Bài 5. Chứng minh rằng $n^2 + n+2$ không chia hết cho 15 với mọi $n$.

Bài 6. Chứng minh rằng $n^2 + 3n+5$ không chia hết cho 121 với mọi $n$.

Bài 7. Ba số nguyên $a,\,b,\,c$thoả mãn điều kiện $a + b + c$ chia hết cho 3. Chứng minh rằng ${a^2}\left( {b + c} \right) + {b^2}\left( {a + c} \right) + {c^2}\left( {a + b} \right)$ chia hết cho 6.

Bài 8. Chứng minh rằng nếu $4x-y$ chia hết cho 3 thì $4x^2 + 7xy-2y^2$ chia hết cho 9.

Bài 9. Cho các số nguyên $a, b, c$ với $b \neq c$. Chứng minh rằng nếu các phương trình $ax^2 + bx + c = 0$ và $(c-b)x^2 +(c-a)x+a+b = 0$ có nghiệm chung thì $a+b+2c$ chia hết cho 3.

Đồng dư

Định nghĩa. Cho hai số nguyên $a,b$ và số tự nhiên $n$. Nếu $a,b$ chia cho $n$ có cùng số dư, ta nói rằng $a$ và $b$ đồng dư khi chia cho $n$ và kí hiệu $ a \equiv b (mod n)$ (đọc là $a$ đồng dư $b$ theo modul $n$).

Nhận xét. $ a \equiv b (mod n) \Leftrightarrow (a-b) \vdots n $

Ví dụ 1. $ 28 \equiv 3(mod5) $

Định lý. Cho $a, b, c$ là các số nguyên, $n$ là số nguyên dương.
1) Nếu $ a\equiv b(mod n), b \equiv c(mod n) $ thì $ a \equiv c(mod n) $
2) Nếu $ a\ \equiv b(mod n)$ thì $ a\pm c \equiv b\pm c(mod n) $ với mọi số nguyên c.
3) Nếu $ a\equiv b(mod n), c \equiv d(mod n) $ thì $a+c \equiv b+d(mod n)$
4) Nếu $ a\equiv b(mod n)$ thì $ c.a\equiv c.b(mod n) $ với mọi số nguyên c.
5) $ a\equiv b(mod n) $ thì $ a^k\equiv b^k(mod n) $ với mọi số nguyên dương k. Đặc biệt nếu $ a\equiv 1(mod n) $ thì $ a^k \equiv 1(mod n) $

Chứng minh
1) Ta có $ a-c=a-b+b-c $, mà $ a\equiv b(mod n), b\equiv c(mod n) $ nên $ a-b\vdots n, b-c\vdots n $, do đó $ a-c \vdots n $ hay $ a\equiv c(mod n) $.
2) $ a-b=(a\pm c)-(b\pm c) $, do đó $ a\equiv b(mod n) \Leftrightarrow a\pm c \equiv b\pm c(mod n) $
3) $ a+c-(b+d)=(a-b)+(c-d)\vdots n $, suy ra $ a+c\equiv b+d(mod n) $
4) Do $ a\equiv b(mod n) $ nên $ a-b\vdots n\Rightarrow ca-cb\vdots n$với mọi số nguyên c. Do đó $ ca\equiv cb(mod n) $.
5) Ta có $ (a^k-b^k)\vdots (a-b) $ với mọi số tự nhiên k. Do đó nếu $ a\equiv b (mod n) $ thì $ a^k\equiv b^k(mod n) $

Ví dụ 2. Chứng minh rằng với mọi số tự nhiên n thì $ 6^{2n}+2^{3n+2}+4 $ chia hết 7.

 

Ta có $ 6\equiv-1(mod 7) $, suy ra $ 6^{2n}\equiv (-1)^{2n}(mod n)\equiv 1(mod n) $
Và $ 2^{3n+1}=2.8^n\equiv 1(\mod 7) $ nên $ 2^{3n+1}\equiv 2(mod 7) $
Do đó $ 6^{2n}+2^{3n+1}+4\equiv2+1+4\equiv0(mod 7) $ hay $ 6^{2n}+2^{3n+1}+4\vdots7 $.

Định lý 27. Cho a, b là các số nguyên, $ m_1, m_2 $ là các số tự nhiên thỏa $ a\equiv b(mod m_1), a\equiv b\ (mod m_2) $ và $ (m_1, m_2)=1 $ thì $ a\equiv b(mod m_1\cdot m_2) $.

Chứng minh. Ta có $ m_1|(a-b) $ và ($ m_1, m_2 $)=1 thì $ m_1.m_2|(a-b) $. Từ đó suy ra điều cần chứng minh.\

Bài tập rèn luyện

Bài 1. Cho $n$ là số tự nhiên. Tìm chữ số tận cùng của các số $ 2^n, 3^n, 4^n $.

Bài 2. Chứng minh rằng $ 1941^{1963}+ 1963^{1941}-1 $ chia hết cho 7.

Bài 3. Chứng minh $ 3^{n+2}+4^{2n+1} $ chia hết cho 13.

Bài 4. Tìm phần dư của $ 1! + 2!+…+10! $ khi chia hết cho 15.

trong đó $ n!= 1.2…(n-1)n. $

Bài 5. Tìm số nguyên dương nhỏ nhất m biết $ m \equiv 2\ (mod\ 6),\ m \equiv 2\ (mod\ 8) $

Bài 6. Chứng minh $ 2^{2^n} +5 $ là hợp số.

Bài 7. Cho $ a^2+b^2 \equiv 0\ (mod\ 3) $, chứng minh $ a \equiv 0\ (mod\ 3),\ b \equiv 0\ (mod\ 3) $.

Bài 8. Tìm hai chữ số tận cùng của số $ 9^{9^9} $.

Bài 9. Một lớp học khi sắp thành 2 hàng, 3 hàng, 5 hàng đều dư ra 1 em. Hỏi lớp học đó có bao nhiêu học sinh biết rằng số học sinh không nhiều hơn 50.

Bài 10. Chứng minh rằng nếu $ a_i \equiv b_i (mod\ m) $ với i = 1, 2, …,n thì

a) $$  \qquad \sum_{i=1}^{n} a_{i}\equiv\sum_{i=1}^{n} b_{i} \quad \text{(mod m)}$$

b) $$ \qquad \prod_{i=1}^{n} a_{i}\equiv \prod_{i=1}^{n} b_{i} \quad \text{(mod m)}$$

Trong đó $$ \qquad \sum_{i=1}^{n} {x_i} = x_1+x_2+…+x_n,\qquad \prod_{i=1}^{n} x_{i}=x_1, x_2…x_n $$.

Số nguyên tố – Hợp số

Một lớp học có 42 học sinh, muốn chia lớp thành các nhóm thuyết trình sao cho số học sinh ở mỗi nhóm bằng nhau và số tổ lớn hơn 1 và nhỏ hơn 10. Có thể chia được không nếu số học sinh trong lớp là 43?

Định nghĩa 1. Một số nguyên dương được gọi là số nguyên tố nếu số đó lớn hơn 1 và chỉ có hai ước dương là 1 và chính nó. Số nguyên dương lớn hơn 1 không phải là số nguyên tố được gọi là hợp số.

Chú ý: Hai số 0 và 1 không phải là số nguyên tố, cũng không phải là hợp số.

Ví dụ 1. Các số 2, 3, 5, 7, 11 là các số nguyên tố đầu tiên.

Các số 4, 6, 8, 9 là các hợp số

Tính chất 1. Với mỗi số tự nhiên $n \geq 2$ thì hoặc $n$ là số nguyên tố, hoặc $n$ là tích của các số nguyên tố.

Chứng minh

Ta chứng minh bằng quy nạp.

Với $n =2, 3$ ta có $n$ là một số nguyên tố.

Gỉa sử bài toán đúng với mọi $k$ với $k \leq n$. Ta chứng minh bài toán đúng với $n +1$.

Nếu $n+1$ là số nguyên tố, ta có điều cần chứng minh. Nếu $n+1$ không phải là số nguyên tố, khi đó $n+1$ có thể phân tích thành tích hai số $p$ và $q$ $ (2\leq p, q<n) $, tức là $n=p \cdot q$. Theo giả thiết quy nạp thì $p, q$ hoặc là nguyên tố hoặc là có thể phân tích thành tích các số nguyên tố. Từ đó ta có điều cần chứng minh.

Tính chất 2.
1) Hai số nguyên tố bất kì phân biệt là số nguyên tố cùng nhau.
2) Cho số nguyên tố $p$, nếu $a$ là một số nguyên thì hoặc $ p|a $ hoặc $(a,p)=1$.
3) Nếu $p$ là số nguyên tố và $p|ab$, khi đó $p|a$ hoặc $p|b$.

Chứng minh
1) Hiển nhiên theo định nghĩa số nguyên tố.
2) Đặt $d=(p,a)$. Ta có $d|a, d|p$. Vì $p$ nguyên tố nên $d=1$ hoặc $d=p$. Từ đó suy ra điều cần chứng minh.

3) Nếu $a$ không chia hết cho $p$, suy ra $(p,a)=1$, mà $p|ab$ nên ta có $p|b$.

Phân tích một số thành thừa số nguyên tố.

Định lý 18 cho ta thấy rằng mọi số nguyên dương lớn hơn hoặc bằng 2 có thể là số nguyên tố hoặc có thể phân tích thành tích các thừa số nguyên tố. Nhưng sự phân tích đó có duy nhất không? Để biết được điều đó, sau đây chúng tôi nêu ra một định lý quan trọng của số học và không chứng minh định lý này. Bạn đọc có thể tham khảo trong [1].

Định lý 2. (Định lý cơ bản của số học) Mọi số nguyên dương lớn hơn 1 đều có thể phân tích một cách duy nhất thành tích các số nguyên tố (không tính thứ tự sắp xếp các số thừa số nguyên tố)

Ví dụ 2. $ 12=2^2.3 ; 245=5.7^2 $

Hệ quả 1. Cho hai số nguyên $a$ và $b$. Giả sử $a,b$ được phân tích thành các thừa số nguyên tố $ a=p_1^{x_1}p_2^{x_2}…p_m^{x_m}.a’, b=p_1^{y_1}p_2^{y_2}…p_m^{y_m}.b’ $. Trong đó $(a’,b’)=1$, các thừa số $ p_i $ là các thừa số nguyên tố chung.

Đặt $ z_i=\min{x_1,y_1}; t_i=\max{x_1,y_1} $, khi đó $(a, b)=p_1^{z_1}p_2^{z_2}…p_m^{z_m} $ và $ [a,b]=p_1^{t_1}p_2^{t_2}…p_m^{t_m}.a’.b’ $

Ví dụ 3. Tìm ước chung nhỏ nhất và bội chung nhỏ nhất của hai số 252 và 220.
Lời giải. Ta có $ 252=2^2.3^2.7,220=2.3^3.5 $

Do đó ước chung nhỏ nhất của 252 và 220 là $ 2.3^3=18 $ và bội chung nhỏ nhất của 252 và 220 là $ 2.3^3.5.7 $.

Hệ quả 2. Cho số nguyên $a$ và số tự nhiên $n$. Giả sử $n$ được phân tích thành các thừa số nguyên tố $ n=p_1^{a_1}p_2^{a_2}…p_k^{a_k} $. Khi đó nếu $ a \vdots p_1^{a_1} \forall i=1,…,k $ thì $ a \vdots n $

Hệ quả 3. Mỗi số tự nguyên dương $n$ tồn tại duy nhất số không âm $m$ và $q$ trong đó $q$ lẻ và $n = q.2^m$.

Ví dụ 4. $48 = 3.2^4$, $15 = 15.2^0$.

Bài tập có lời giải.

Bài 1. Tìm các số nguyên tố $p$ để: $p+2$, $p+6$, $p+8$; $p+14$ cũng là các số nguyên tố.

Lời giải: Dễ thấy $p = 2, 3$ không thỏa đề bài, $p=5$ thỏa đề bài.

Xét $p>5$.

  • Nếu $p = 5k+1$ thì $p+4$ chia hết cho $5$ và $p+4 > 5$ nên không là số nguyên tố.
  • Nếu $p = 5k+2$ thì $p+8 = 5k+10$ chia hết cho 5, không là số nguyên tố.
  • Nếu $p = 5k+3$ thì $p+2 = 5(k+1)$ chia hết cho 5, không là số nguyên tố.
  • Nếu $p= 5k+4$ thì $p+6 = 5(k+2)$ chia hết cho 5, không là số nguyên tố.

Kết luận: $p=5$.
Bài 2. Tìm các số nguyên dương $n$ để $n^5+n+1$ là số nguyên tố.

Lời giải: Ta có $A(n) = n^5 + n+ 1 = n^5 – n^2 + n^2 + n +1 = n^2(n-1)(n^2+n+1) + (n^2+n+1) = (n^2+n+1)(n^3-n^2+1)$

Vì $n^2+n+1 >1$, nên $A(n)$ là số nguyên tố thì $n^3-n^2+1  = 1$, suy ra $n=1$

Thử lại $n=1$ thỏa đề bài.

Bài 3. Cho số tự nhiên $n$, chứng minh rằng nếu $ 2^n-1 $ là số nguyên tố thì n cũng là số nguyên tố.

Lời giải. Giả sử $n$ không là số nguyên tố.

  • Với $n=0$ thì $2^0 – 1 = 0$ không là số nguyên tố.
  • Với $n=1$ thì $2^1 – 1 = 0$ không là số nguyên tố.
  • Với $n > 1$, $n = q \cdot q$ trong đó $1 < p, q < n$. Khi đó $2^n – 1 = (2^p)^q = 1$ chia hết cho $2^p-1$, mà $1 < 2^p-1 < 2^n-1$ nên $2^n-1$ không là số nguyên tố. (mâu thuẫn.

Vậy $n$ là số nguyên tố.

Bài 4. Cho các số nguyên dương $a, b, c, d$ thỏa $ac = bd$. Chứng minh rằng $a^2+b^2+c^2+d^2$ là hợp số.
Lời giải.

Đặt $d = UCLN(a,b)$, và $a = du, b = dv$, suy ra $(u,v) = 1$.

Khi đó ta có $uc = vd$, mà $u \mid vd, (u,v) = 1$, suy ra $u \mid d$, đặt $d = um$, suy ra $c = vm$.

Vậy $a + b+ c+ d = du + dv + vm + um = (u+v)(m+d)$, các số $d, m, u, v \geq 1$ nên $a+b+c+d$ là hợp số.

Bài tập rèn luyện.

Bài 1.

a) Chứng minh rằng mọi số nguyên tố lớn hơn 3 đều có dạng $ 3k+1 $ hoặc $ 3k-1(k\geq 2) $
b) Chứng minh rằng mọi số nguyên tố lớn hơn 5 đều có dạng $ 6k+1 $ hoặc $ 6k-1 (k\geq 2) $.

Bài 2. Chứng minh rằng $ n^4-1$ là hợp số với mọi số nguyên n>1.
Bài 3. Tìm số nguyên tố $p$ sao cho $p+2, p+4$ cũng là số nguyên tố.
Bài 4. Cho $n$ không phải là số nguyên tố. Chứng minh rằng nếu $p$ là ước nguyên tố lớn nhất của n thì $ p^2\leq n $.
Bài 5. Cho số nguyên tố $p$. Khẳng định sau đúng hay sai: “Nếu $ a|p(p-1) $ thì a|p hoặc a|(p-1)”.
Bài 6. Tìm tất cả các số tự nhiên $n$ lẻ để $n, n+10, n+14$ là số nguyên tố.
Bài 7. Tìm tất cả các số nguyên tố $p$ sao cho $ 2p^2+1 $ là số nguyên tố.
Bài 8. Tìm tất cả các số nguyên dương sao cho $ a^4+4b^4 $ là số nguyên tố.

Bài 9. Tìm tất cả các số nguyên tố p sao cho $ 2p^2+1 $ là số nguyên tố.
Bài 10. Chứng minh rằng nếu số nguyên dương $ n\geq 2 $ là số nguyên tố nếu nó không có ước nguyên tố nào nhỏ hơn hoặc bằng $ \sqrt n $