Tag Archives: Đồng dư

Phương trình nghiệm nguyên – P3

Ta tiếp tục với phương pháp giải phương trình nghiệm nguyên, nay ta sẽ bàn tới phương pháp sử dụng đồng dư, chú ý một số cách tiếp cận sau:

  • Sử dụng đồng dư để chứng minh phương trình vô nghiệm.
  • Sử dụng đồng dư để suy ra tính chất của biến (tính chẵn lẻ, …), đưa về các dạng đã biết.

Ví dụ 1.  Giải phương trình $ x^3 +21y^3+5=0 $.

Lời giải
  • Ta có với mọi $x$ thì
    $ x^3\equiv 0, 1, -1\ (\mod 7) \Rightarrow x^3 +21y^2+5\equiv 5,6,4\ (\mod 7) $
  • Do đó phương trình vô nghiệm.

Ví dụ 2. Giải phương trình trong tập số tự nhiên: $6^x = y^2+y-2 $.

Lời giải
  • Với mọi số nguyên x thì $ 6^x \equiv 1\ (mod\ 5) $.
  • Mặt khác, $ y^2+y-2 = (y-1)(y+2) \equiv 0,3,4\ (mod\ 5) \Rightarrow $ phương trình vô nghiệm.

Ví dụ 3. Tìm nghiệm nguyên dương của phương trình $$7^x – 9^y = 4$$

Lời giải
  • Ta có $9^y \equiv 1 (\mod 4)$ suy ra $7^x \equiv 2 (\mod 4)$ suy ra $x$ chẵn. $x = 2k$.
  • Ta có $7^{2k} – 3^{2y} = 4 \Leftrightarrow (7^k-2)(7^k+2) = 3^{2y}$.
  • Dễ thấy $(7^k-2, 7^k+2) = 1$ suy ra $7^k-2 = 1, 7^k+2 = 3^{2y}$ vô nghiệm.

Ví dụ 4. Tìm $x, y, z$ nguyên dương và $z \geq 2$ thỏa $3^x + 5^x = y^z$.

Lời giải
  • Nếu $x = 1$ ta có $y^z = 8$ thì $y = 2, z=3$.
  • Nếu $x$ chẵn. $3^x + 5^x \equiv 2( \mod 4)$, suy ra $y$ chẵn và $y^z \equiv 2(\mod 4)$, suy ra $z = 1$. (vô lý).
  • Nếu $x$ lẻ, $x > 1$. Khi đó $LHS=3^x + 5^x = (3+5)(3^{x-1}-3^{x-2}\cdot 5 +\cdots +5^{x-1})$.
  • Ta có $3^{x-1}-3^{x-2}\cdot 5 +\cdots +5^{x-1}$ có $x$ số hạng lẻ, nên tổng là lẻ. Do đó $LHS$ chia hết cho 8, nhưng ko chia hết cho 16, kết hợp $z > 1$ ta được $z=3$.
  • $3^x + 5^x = y^3$. $5^6 \equiv 1 (\mod 9)$, suy ra $5^x \equiv 5 (\mod 9)$ nếu $x \equiv 1 (\mod 6)$; $5^x \equiv -1 (\mod 9)$ khi $x \equiv 3 (\mod 6)$; $5^x \equiv 7 (\mod 9)$ khi $x \equiv 5(\mod 6)$.
  • Mặt khác $y^3 \equiv 0, 1, -1 (\mod 9)$. Do đó $x \equiv 3 (\mod 6)$.
  • Lại có $3^x + 5^x \equiv 5 (\mod 7)$ khi $x \equiv 3 (\mod 6)$.
    Do đó phương trình vô nghiệm.
  • Kết luận $(1,2,3)$.

Bài tập rèn luyện

Bài 1. Tìm nghiệm nguyên của các phương trình sau:
a) $2^x-3^y=1$;

b) $2^x-3^y=7$;
c) $2^x+3^y=z^2$;
d) $3^x+4^y=5^z$;
e) $3^x+4^y=7^z$.
Bài 2. (PTNK 2013) Cho $M = a^2 + 3a + 1$ với $a$ là số nguyên dương.
a)  Chứng minh rằng mọi ước của $M$ đều là số lẻ.
b) Tìm $a$ sao cho $M$ chia hết cho 5. Với những giá trị nào của $a$ thì $M$ là lũy thừa của 5?
Bài 3. (PTNK 2009)
a) Chứng minh rằng không tồn tại số tự nhiên $a$ sao cho ${a^2} + a = {2010^{2009}}$
b) Chứng minh rằng không tồn tại số tự nhiên $a$ sao cho $a + {a^2} + {a^3} = {2009^{2010}}$

Phương pháp chứng minh chia hết – P3

Tiếp theo là phương pháp sử dụng đồng dư để chứng minh các bài toán chia hết.

Một số tính chất về đồng dư các bạn có thể xem lại từ bài giảng đồng dư

Sau đây ta xét một vài ví dụ sau.

Ví dụ 1. Chứng minh rằng với mọi số tự nhiên $n$:
a) $A = 7 \cdot 5^{2n} + 12 \cdot 6^n$ chia hết cho 19.
b) $5^{2n+1}+2^{n+4} + 2^{n+1}$ chia hết cho 23.

Lời giải

a) $5^{2n} = 25^n \equiv 6^n (\mod 19) \Rightarrow 7 \cdot 5^{2n} = 7 \cdot 6^n (\mod 19)$

Suy ra $ 7 \cdot 5^{2n} + 12 \cdot 6^n \equiv 19 \cdot 6^n \equiv 0 (\mod 19)$.

Do đó $A = 7 \cdot 5^{2n} + 12 \cdot 6^n$ chia hết cho 19.

b) Ta có $5^{2n+1}= 5 \cdot 25^n \equiv 5 \cdot 2^n (\mod 23)$.

Khi đó $5^{2n+1}+2^{n+4} + 2^{n+1} \equiv 5 \cdot 2^n + 16 \cdot 2^n + 2 \cdot 2^n (\mod 23)$

$\equiv 23 \cdot 2^n (\mod 23) \equiv 0 (\mod 23)$.

Do đó $5^{2n+1}+2^{n+4} + 2^{n+1}$ chia hết cho 23.

Ví dụ 2. Tìm tất các số $n$ để
a) $2^{2n} + 2^n + 1$ chia hết cho 5.
b) $2^n+ 1$ chia hết cho 9.

Lời giải

a) Ta thấy $16\equiv 1 (\mod 5)$, suy ra $16^n \equiv 1 (\mod 5)$.

Suy ra $2^{4k+r} \equiv 2^r (\mod 5)$.

Do đó ta xét $n$ theo moldun 4.

  • Nếu $n= 4k$, ta có $2^{2n} + 2^n + 1 \equiv 3 (\mod 5)$.
  • Nếu $n = 4k+1$ ta có $2^{2n} + 2^n + 1 \equiv 7 (\mod 5)$.
  • Nếu $n=4k+2$ ta có $2^{2n} + 2^n + 1 \equiv 4 (\mod 5)$.
  • Nếu $n=4k+3$ ta có $2^{2n} + 2^n + 1 \equiv 1 (\mod 5)$.

Vậy không tồn tại số tự nhiên $n$ để $2^{2n} + 2^n + 1$ chia hết cho 5.

b) Ta có $2^6 \equiv 1 (\mod 9)$, suy ra $2^{6k+r} equiv 2^r (\mod 9)$.

Đặt $n= 6k+r (0 \leq r \leq 5)$. Khi đó $2^n+1 \equiv 2^{6k+r}+1 \equiv 2^r + 1 (\mod 9)$

Do đó $2^n + 1$ chia hết cho 9 khi và chỉ khi $2^r+1$ chia hết cho 9, tìm ra được $r = 3$.

Vậy $n=6k+3$ với $k$ là số tự nhiên.

Ví dụ 3. Cho $a_n = 2^{2n+1} + 2^{n+1} + 1$ và $b_n = 2^{2n+1} – 2^{n+1} + 1$. Chứng minh rằng với mỗi số tự nhiên $n$, có một và chỉ một trong hai số $a_n, b_n$ chia hết cho 5.

Lời giải

Ta cần chứng minh $a_nb_n$ chia hết cho 5 và $a_n+ b_n$ không chia hết cho 5 với mọi $n$.

  • $a_n\cdot b_n = 2^{4n+2} + 1 \equiv 0 (\mod 5)$.
  • $a_n + b_n = 2^{2n+2} + 2 \equiv 4(-1)^n + 2  (\mod 5) \equiv 1, -2 (\mod 5)$.

Do đó $a_nb_n$ chia hết cho 5 và $a_n+b_n$ không chia hết cho 5.

Do đó có một và chỉ một trong hai số $a_n$ hoặc $b_n$ chia hết cho 5.

Ví dụ 4. (PTNK 2019) Cho $ A_n = 2018^n + 2032^n – 1964^n – 1984^n $ với $ n $ là số tự nhiên.
a) Chứng minh với mọi số tự nhiên $ n $ thì $ A_n $ chia hết cho $ 51 $.
b) Tìm tất cả những số tự nhiên $ n $ sao cho $ A_n $ chia hết cho $ 45. $

Lời giải

a) Do $ 2018 \equiv 1964 \quad \text{(mod 3)} \Rightarrow 2018^n \equiv 1964^n \quad \text{(mod 3)} . $
$ 2032 \equiv 1984 \quad \text{(mod 3)} \Rightarrow 2032^n \equiv 1984^n \quad \text{(mod 3)} $.
$ \Rightarrow A_n \ \vdots \ 3. $
Ta lại có $ 2018 \equiv 1984 \quad \text{(mod 17)} \Rightarrow 2018^n \equiv 1984^n \quad \text{(mod 17)} $.
$ 2032 \equiv 1964 \quad \text{(mod 17)} \Rightarrow 2032^n \equiv 1964^n \quad \text{(mod 17)} $.
$ \Rightarrow A_n \ \vdots\ 17. $
Do $ (3; 17) = 1 $ nên $ A_n \ \vdots \ 51 \quad \forall n$
b) $ A_n = 2018^n + 2032^n – 1964^n – 1984^n. $

b)

  • Ta xét các trường hợp của $ n $ để $ A_n \ \vdots \ 5. $
    Ta có $ A_n \equiv (-2)^n + 2^n -2\cdot(-1)^n $ (mod 5).
    Do đó nếu $ n $ lẻ $ \Rightarrow A_n \equiv 2 \quad $(mod 5)$ \quad \text{(loại)}$.
    Nếu $ n = 4k \Rightarrow A_n \equiv 2\cdot 2^{4k} -2 \equiv 2-2 \equiv 0 \quad$ (mod 5) (nhận)
    Nếu $ n = 4k + 2 \Rightarrow A_n \equiv 2\cdot 2^{4k+2} -2 \equiv 8 – 2 \equiv 6$ (mod 5) (loại).
    Vậy $ A_n \ \vdots \ 5 \Leftrightarrow n \ \vdots \ 4. $
  • Ta xét các trường hợp của $ n $ để $ A_n \ \vdots \ 9. $
    Ta có
    $A_n \equiv 2^n + (-2)^n – 2^n – 4^n \quad  (\mod 9)$
    $\equiv 2^n -4^n \quad \text { (mod 9) \quad (Do $n$ chẵn).}$
    $ \equiv 2^n(1-2^n) \quad \mod 9) Vì $ (2;9 ) = 1 \Rightarrow 2^n – 1  \vdots \ 9$.
    Xét $ n= 3k $ với $ k \in \mathbb{N} $. Ta có $ A_n \equiv 2^{3k} – 1 \equiv (-1)^k – 1 \quad (\mod 9) \Rightarrow k$ chẵn.

    • Xét $ n= 3k + 1 $ với $ k \in \mathbb{N} $. Ta có $ A_n \equiv 2^{3k + 1} – 1 \equiv 2\cdot(-1)^k – 1 \quad \text { (mod 9) \quad (loại)}. $
    • Xét $ n= 3k + 2 $ với $ k \in \mathbb{N} $. Ta có $ A_n \equiv 2^{3k + 2} – 1 \equiv 4\cdot(-1)^k – 1 \quad \text { (mod 9) \quad (loại)}. $
  • Vậy $ A_n \ \vdots \ 45 \Leftrightarrow n \ \vdots \ 12. $

Bài tập rèn luyện

Bài 1. Cho $n$ là số tự nhiên. Chứng minh rằng:
a) $5^{2n+1}+2^{n+4}+2^{n+1}$ chia hết cho $23$;
b) $11^{n+2}+12^{2n+1}$ chia hết cho $133$;
c)  $5^{n+2}+26.5^n+8^{2n+1}$ chia hết cho $59$;
d)  $5^{2n+1}.2^{n+2}+3^{n+2}.2^{2n+1}$ chia hết cho $38$.

Bài 2. Tìm tất cả các số tự nhiên $n$ sao cho:
a) $2^{3n+4}+3^{2n+1}$ chia hết cho 19
b) $n.2^n+ 1$ chia hết cho 3
c) $2^2n+2^n+1$ chia hết cho 21
d)  $1^n+ 2^n+ 3^n+ 4^n$ chia hết cho 5

Bài 3. Cho $n$ là số tự nhiên. Chứng minh rằng:
a)  $2^{2^{2n}}+10$ chia hết cho $13$;
b) $3^{2^{4n+1}}+2^{3^{4n+1}}+5$ chia hết cho $22$.

Bài 4. (PTNK) Tìm các số nguyên dương $n$ sao cho:
a) $n.2^n+3^n$ chia hết cho $5$;
b) $n.2^n+3^n$ chia hết cho $25$.

Đồng dư

Định nghĩa. Cho hai số nguyên $a,b$ và số tự nhiên $n$. Nếu $a,b$ chia cho $n$ có cùng số dư, ta nói rằng $a$ và $b$ đồng dư khi chia cho $n$ và kí hiệu $ a \equiv b (mod n)$ (đọc là $a$ đồng dư $b$ theo modul $n$).

Nhận xét. $ a \equiv b (mod n) \Leftrightarrow (a-b) \vdots n $

Ví dụ 1. $ 28 \equiv 3(mod5) $

Định lý. Cho $a, b, c$ là các số nguyên, $n$ là số nguyên dương.
1) Nếu $ a\equiv b(mod n), b \equiv c(mod n) $ thì $ a \equiv c(mod n) $
2) Nếu $ a\ \equiv b(mod n)$ thì $ a\pm c \equiv b\pm c(mod n) $ với mọi số nguyên c.
3) Nếu $ a\equiv b(mod n), c \equiv d(mod n) $ thì $a+c \equiv b+d(mod n)$
4) Nếu $ a\equiv b(mod n)$ thì $ c.a\equiv c.b(mod n) $ với mọi số nguyên c.
5) $ a\equiv b(mod n) $ thì $ a^k\equiv b^k(mod n) $ với mọi số nguyên dương k. Đặc biệt nếu $ a\equiv 1(mod n) $ thì $ a^k \equiv 1(mod n) $

Chứng minh
1) Ta có $ a-c=a-b+b-c $, mà $ a\equiv b(mod n), b\equiv c(mod n) $ nên $ a-b\vdots n, b-c\vdots n $, do đó $ a-c \vdots n $ hay $ a\equiv c(mod n) $.
2) $ a-b=(a\pm c)-(b\pm c) $, do đó $ a\equiv b(mod n) \Leftrightarrow a\pm c \equiv b\pm c(mod n) $
3) $ a+c-(b+d)=(a-b)+(c-d)\vdots n $, suy ra $ a+c\equiv b+d(mod n) $
4) Do $ a\equiv b(mod n) $ nên $ a-b\vdots n\Rightarrow ca-cb\vdots n$với mọi số nguyên c. Do đó $ ca\equiv cb(mod n) $.
5) Ta có $ (a^k-b^k)\vdots (a-b) $ với mọi số tự nhiên k. Do đó nếu $ a\equiv b (mod n) $ thì $ a^k\equiv b^k(mod n) $

Ví dụ 2. Chứng minh rằng với mọi số tự nhiên n thì $ 6^{2n}+2^{3n+2}+4 $ chia hết 7.

 

Ta có $ 6\equiv-1(mod 7) $, suy ra $ 6^{2n}\equiv (-1)^{2n}(mod n)\equiv 1(mod n) $
Và $ 2^{3n+1}=2.8^n\equiv 1(\mod 7) $ nên $ 2^{3n+1}\equiv 2(mod 7) $
Do đó $ 6^{2n}+2^{3n+1}+4\equiv2+1+4\equiv0(mod 7) $ hay $ 6^{2n}+2^{3n+1}+4\vdots7 $.

Định lý 27. Cho a, b là các số nguyên, $ m_1, m_2 $ là các số tự nhiên thỏa $ a\equiv b(mod m_1), a\equiv b\ (mod m_2) $ và $ (m_1, m_2)=1 $ thì $ a\equiv b(mod m_1\cdot m_2) $.

Chứng minh. Ta có $ m_1|(a-b) $ và ($ m_1, m_2 $)=1 thì $ m_1.m_2|(a-b) $. Từ đó suy ra điều cần chứng minh.\

Bài tập rèn luyện

Bài 1. Cho $n$ là số tự nhiên. Tìm chữ số tận cùng của các số $ 2^n, 3^n, 4^n $.

Bài 2. Chứng minh rằng $ 1941^{1963}+ 1963^{1941}-1 $ chia hết cho 7.

Bài 3. Chứng minh $ 3^{n+2}+4^{2n+1} $ chia hết cho 13.

Bài 4. Tìm phần dư của $ 1! + 2!+…+10! $ khi chia hết cho 15.

trong đó $ n!= 1.2…(n-1)n. $

Bài 5. Tìm số nguyên dương nhỏ nhất m biết $ m \equiv 2\ (mod\ 6),\ m \equiv 2\ (mod\ 8) $

Bài 6. Chứng minh $ 2^{2^n} +5 $ là hợp số.

Bài 7. Cho $ a^2+b^2 \equiv 0\ (mod\ 3) $, chứng minh $ a \equiv 0\ (mod\ 3),\ b \equiv 0\ (mod\ 3) $.

Bài 8. Tìm hai chữ số tận cùng của số $ 9^{9^9} $.

Bài 9. Một lớp học khi sắp thành 2 hàng, 3 hàng, 5 hàng đều dư ra 1 em. Hỏi lớp học đó có bao nhiêu học sinh biết rằng số học sinh không nhiều hơn 50.

Bài 10. Chứng minh rằng nếu $ a_i \equiv b_i (mod\ m) $ với i = 1, 2, …,n thì

a) $$  \qquad \sum_{i=1}^{n} a_{i}\equiv\sum_{i=1}^{n} b_{i} \quad \text{(mod m)}$$

b) $$ \qquad \prod_{i=1}^{n} a_{i}\equiv \prod_{i=1}^{n} b_{i} \quad \text{(mod m)}$$

Trong đó $$ \qquad \sum_{i=1}^{n} {x_i} = x_1+x_2+…+x_n,\qquad \prod_{i=1}^{n} x_{i}=x_1, x_2…x_n $$.