Đề bài. Cho tam giác $OBA$ vuông tại $B$ đường cao $BH$. Gọi $C$, $D$ lần lượt là điểm đối xứng của $B$, $O$ qua $H$. Từ $B$ kẻ hai tiếp tuyến $BP$, $BQ$ đến đường tròn đường kính $AD$. Chứng minh ba điểm $C$, $P$, $Q$ thẳng hàng.
Tag Archives: CyclicQuadrilateral
Leave a reply
Bài tập cực trị
Đề bài. Cho tam giác nhọn $ABC$ nội tiếp $(O)$. Tia $AO$ cắt $(OBC)$ tại $D$, tia $BO$ cắt $(OCA)$ tại $E$, tia $CO$ cắt $(OAB)$ tại $F$. Chứng minh
\[ OD.OE.OF \ge 8R^3 \]
Nhận xét
- Trường hợp $ABC$ là tam giác tù, ta vẫn có $ OD.OI = OE.OJ = OF.OK= R^2 $. Tuy nhiên $OI$, $OJ$, $OK$ có thể lớn nhỏ tùy ý [geogebra], nên bất đẳng thức không còn đúng.
Một bài tứ giác nội tiếp khó
Đề bài. Cho tam giác $ABC$. Đường tròn đi qua hai đỉnh $B, C$ và cắt các cạnh $AB, AC$ tại $D$ và $E$. Gọi $M$ là giao điểm của $CD$ và $BE$. Gọi $P$ là điểm đối xứng của $M$ qua $AC$ và $Q$ lá điểm đối xứng của $M$ qua trung điểm cạnh $BC$. Chứng minh 4 điểm $A, C, P, Q$ cùng thuộc một đường tròn.
Bài giảng Tứ giác nội tiếp