Tag Archives: CucTri

Cực trị hình học (Lớp 8)

Cực trị hình học là bài toán tìm giá trị lớn nhất, giá trị nhỏ nhất của các đối tượng hình học như độ dài, chu vi, diện tích, …

Các bước cho một bài toán tìm giá trị lớn nhất, giá trị nhỏ nhất gồm các bước sau:

  • Đánh giá bất đẳng thức
  • Tìm điều kiện, vị trí để đẳng thức xảy ra
  • Kết luận

Một số tính chất cần nhớ trong các bài toán cực trị

Tính chất 1. Bất đẳng thức trong tam giác: Cho 3 điểm $A, B, C$ thì $AB + BC \geq AC$. Đẳng thức xảy ra khi $B$ nằm giữa $A, C$. Tính chất này có thể tổng quát cho trường hợp nhiều hơn 3 điểm.

Từ tính chất này ta có thể thấy rằng, con đường ngắn nhất để đi từ $A$ đến $B$ là con đường thẳng.

Tính chất 2. Đường xiên và hình chiếu: Cho điểm $A$ và đường thẳng $d$, khi đó $M$ thay đổi trên $d$ thì $AM$ nhỏ nhất khi và chỉ khi $M$ là hình chiếu vuông góc của $A$ trên $d$.

Một số bất đẳng thức cần dùng: Cho $a, b \geq 0$.

  • $a^2 + b^2 \geq \dfrac{1}{2} (a+b)^2 \geq 2ab$
  • $\dfrac{1}{a} + \dfrac{1}{b} \geq \dfrac{4}{a+b}$
  • $a^2+b^2+c^2 \geq \dfrac{1}{3}(a+b+c)^2 \geq ab+bc+ac$.

Chú ý trong các bài toán cực trị thì đẳng thức phải xảy ra, do đó việc đánh giá bất đẳng thức cần chặt chẽ để xảy ra dấu bằng, nếu tìm không được vị trí dấu bằng xảy ra thì đánh giá đó chưa hợp lý.

Kinh nghiệm làm bài, nếu bài toán có nhiều giá trị thay đổi ta có thể

  • Tính toán biến đổi để đưa về biểu thức ít yếu tố thay đổi hơn.
  • Tìm mối liên hệ giữa các biến mà không đổi như: tích không đổi, tổng không đổi,… và từ đó áp dụng các bất đẳng thức đại số để đánh giá.

Sau đây là một số ví dụ.

Ví dụ 1. Cho hai điểm $A, B$ và đường thẳng $d$. Tìm vị trí của $M$ thuộc $d$ sao cho $MA + MB$ nhỏ nhất trong hai trường hợp.

a) $A, B$ cùng phía với $d$.

b) $A,B$ khác phía đối với đường thẳng $d$.

Phân tích và Lời giải

a) Với bài toán này ta nhận thấy rằng ta có thể áp dụng ngay tính chất 1, ta có $MA + MB \geq AB$

Đẳng thức xảy ra khi $M$ là điểm nằm giữa $A,B$, mà $M$ thuộc $d$ nên $M$ là giao điểm của đoạn thẳng $AB$ và đường thẳng $d$. Rõ ràng giao điểm này tồn tại vì $A, B$ là khác phía đối với $d$.

b) Đối với ý này, nếu vội vàng áp dụng như câu a thì ta thấy do $A,B$ cùng phía nên giao điểm của đoạn thẳng $AB$ và $d$ không tồn tại. Do đó cách làm như câu a, cũng không đúng.

Vậy ta sẽ làm thế nào? Ta có thể đưa về trường hợp ở câu a hay không? nếu đưa về câu a thì ta sẽ làm gì?

Ở đây có một kĩ thuật, là sử dụng đối xứng trục, để thay đổi vị trí điểm $A$ và vẫn tạo ra một đoạn thẳng bằng với $MA$. Tạo ra điểm phụ sẽ giúp ta giải được bài toán này.

Gọi $A’$ là đối xứng của $A$ qua $d$, khi đó $A’, B$ khác phía đối với $d$ và $MA = MA’$, ta đưa về trường hợp của câu $a$.

Ta có $MA + MB = MA’ + MB \geq A’B$, đẳng thức xảy ra khi $M$ là giao điểm của $A’B$ và $d$.

Vậy $MA + MB$ nhỏ nhất khi $M$ là giao điểm của $A’B$ với $d$.

Ví dụ 2. Cho tam giác $ABC$ đều cạnh $a$. $M$ là một điểm nằm trong tam giác. Gọi $D, E, F$ là hình chiếu của $M$ trên các cạnh $BC, AC, AB$.

a) Chứng minh $MD + ME + MF$ không đổi và tìm giá trị nhỏ nhất của $MD^2 +ME^2 +MF^2$.

b) Tìm giá trị nhỏ nhất của $BD^2+CE^2+AF^2$.

Phân tích và lời giải

a) Với bài này việc chứng minh ý đầu có thể còn khó hơn ý sau, việc chứng minh tổng này không đổi thì nhiều khi ta phải dự đoán được tổng này giá trị không đổi là bao nhiêu, phụ thuộc vào $a$ thế nào. Ta có thể đoán bằng cách cho $M$ trùng với một đỉnh nào đó, hoặc điểm đặc biệt như tâm của tam giác đều, khi cho trùng đỉnh $A$ thì ta có $E, F \equiv A$, $D \equiv H$, chân đường cao từ $A$, do đó ta có $MD + ME +MF = AH$ độ dài đường cao. Việc chứng minh tổng này bằng $AH$ ta có thể sử dụng phương pháp diện tích, rất hữu hiệu trong các bài có độ dài đường vuông góc.

a) $S_{A B C}=S_{M B C}+S_{M A C}+S_{M A B}$
$$
\begin{aligned}
\frac{1}{2} A H \cdot B C= & \frac{1}{2} M D \cdot B C+\frac{1}{2} M E \cdot A C \
& +\frac{1}{2} M F \cdot A C
\end{aligned}
$$
$\frac{1}{2} A H \cdot a=\frac{1}{2} a(M D+M E+M E)$
$$
\Rightarrow M D+M E+M F=A I+\text { (Ehongdon!) }
$$
$$
=\frac{a \sqrt{3}}{2}
$$
Áp dụng bất đẳng thức $x^2+y^2+z^2 \geqslant \frac{1}{3}(x+y+z)^2$
$$
\begin{array}{ll}
\Rightarrow M D^2+M E^2+M F^2 \geqslant \frac{1}{3}(M D+M E+M F)^2 & =\frac{1}{2} \cdot\left(\frac{a \sqrt{3}}{2}\right)^2 \
& =\frac{a^2}{4}
\end{array}
$$
Đẳng thức xảy ra khi và chỉ khi $M D=M E=M F$, tức là $M$ là giao điểm 3 đường phân giác của tam giác $ABC$, do tam giác $ABC$ đều nên $M$ cũng là trọng tâm tam giác.
$$
(M D^2+M E^2+M F^2)_{\min }=\dfrac{a^2}{4}
$$

b) Với câu này mình không có gợi ý như câu b, tìm min của đại lượng $P = BD^2+CE^2+AF^2$ ta có thể suy nghĩ tới việc tính tổng hay tích các số hạng, tuy vậy các giá trị này thay đổi theo $M$. Và quan sát thêm một chút là vị trí của các đoạn thẳng $DB, CE, AF$ trên các cạnh $BC, AC, AB$ có vẻ là cùng một hướng, và ta lại xem các đoạn thẳng còn lại thế nào? tức là $CD, BF, AE$ vai trò như nhau với các đoạn trên không? Liệu $BD^2+CE^2+AF^2 = CD^2+BF^2+AE^2?

Và khi đi vào kiểm tra thì rõ ràng ta chứng minh được $BD^2+CE^2+AF^2 = CD^2 + BF^2+AE^2 (1)$ và từ đó ta có lời giải như sau.

Trước hết ta chứng minh (1), theo định lý Pitago ta có $BD^2 – CD^2 = MB^2-MD^2 – (MC^2-MD^2) = MB^2-MC^2$, tương tự ta cũng có các đẳng thức khác.

Khi đó $BD^2+CE^2+AF^2 – CD^2-AE^2-BF^2 = MB^2 – MC^2 + MC^2-MA^2 +MA^2-MB^2 = 0$

Suy ra $BD^2+CE^2+AF^2 = CD^2+BF^2+AE^2 = \dfrac{1}{2} (BD^2+CD^2+AF^2+BF^2+CE^2+AE^2$.

Mà $CD^2+BD^2 \geq \dfrac{1}{2}(CD+BD)^2 = \dfrac{1}{2}a^2$

Tương tự thì $AF^2+BF^2 \geq \dfrac{1}{2}a^2, AE^2+CE^2 \geq \dfrac{3}{2}a^2$

Từ đó $BD^2+CE^2+AD^2 \geq \dfrac{3}{4}a^2$, đẳng thức xảy ra khi $M$ là giao điểm 3 đường trung trực của tam giác $ABC$.

Vậy $(BD^2+CE^2+AF^2)_{\max} = \dfrac{3}{4}a^2$.

Ví dụ 3. (PTNK 1999) Cho tam giác $A B C$ có diện tích $\mathrm{S}$ và một điểm $P$ nằm trong tam giác.
(a) Gọi $S_1, S_2, S_3$ lần lượt là diện tích của tam giác $P B C, P C A, P A B$. Hãy tìm giá trị nhỏ nhất của $S_1^2+S_2^2+S_3^2$.
(b) Gọi $P_1, P_2, P_3$ lần lượt là các điểm đối xứng của $P$ qua $B C, C A$ và $A B$. Đường thẳng qua $P_1$ song song với $B C$ cắt $A B$ và $A C$ tại $B_1$ và $C_1$. Đường thẳng qua $P_2$ song song với $A C$ cắt $B C, B A$ tại $C_2, A_2$, đường thẳng qua $P_3$ và song song với $A B$ cắt $C A, C B$ tại $A_3, B_3$. Hãy xác định vị trí của điểm $P$ dể tổng diện tích ba hình thang $B C C_1 B_1, C A A_2 C_2$ và $A B B_3 A_3$ đạt giá trị nhỏ nhất và tính giá trị đó.

Phân tích và lời giải

a) Bài này ta làm tương tự câu a ví dụ 2, cũng áp dụng bdt $x^2+y^2+z^2 \geq \dfrac{1}{3} (x+y+z)^2$ để suy ra cực trị.

b) Với bài toán này, để tìm cực trị của tổng diện tích các hình thang, ta phải tính diện tích các hình thang này thông qua một đại lượng trung gian, trong bài này thì đó là diện tích tam giác $ABC$, (S). Việc các đường thẳng song song gợi ta nghĩa tới tam giác đồng dạng và tính chất “tỉ số diện tích bằng bình phương tỉ số đồng dạng”, từ đó ta có cách giải sau:

b) Gọi độ dài các đường cao của tam giác $A B C$ là $h_a, h_b, h_c$ và khoảng cách từ $P$ đến $B C, A C, A B$ là $x, y, z$. Ta có $\frac{S}{S_{A B_1 C_1}}=\frac{h_a^2}{\left(h_a+x\right)^2}$.
Suy ra $S_{A B_1 C_1}=\left(1+\frac{x}{h_a}\right)^2 S$.
Tương tự ta có $S_{B A_2 C_2}=\left(1+\frac{y}{h_b}\right)^2 . S, S_{C A_3 B_3}=\left(1+\frac{z}{h_c}\right)^2 S$.
Đặt $a=\frac{x}{h_a}, b=\frac{y}{h_b}, c=\frac{z}{h_c}$ thì $a+b+c=1$.
Ta có $S_{B C C_1 B_1}+S_{A C C_2 A_2}+S_{A B B_3 A_3}=S\left((1+a)^2+(1+b)^2+(1+c)^2-3\right)=$ $S\left(2+a^2+b^2+c^2\right)$.
Ta có $a^2+b^2+c^2 \geq \frac{1}{3}(a+b+c)^2=\frac{1}{3}$. Do đó $S_{B C C_1 B_1}+S_{A C C_2 A_2}+S_{A B B_3 A_3} \geq \frac{7}{3} S$.
Đẳng thức xảy ra khi $P$ là trọng tâm tam giác $A B C$.

Ví dụ 4. (PTNK 2008) Cho góc $x A y$ vuông và hai điểm $B, C$ lần lượt trên các tia $A y, A y$. Hình vuông $M N P Q$ có các đỉnh $M$ thuộc cạnh $A B$, dỉnh $N$ thuộc cạnh $A C$ và các đỉnh $P, Q$ thuộc cạnh $B C$.
(a) Tính cạnh hình vuông $M N P Q$ theo cạnh $B C=a$ và đường cao $A H=h$ của tam giác $A B C$.
(b) Cho $B, C$ thay đổi lần lượt trên các tia $A x, A y$ sao cho tích $A B \cdot A C=k^2$ ( $k$ không đổi). Tìm giá trị lớn nhất của diện tích hình vuông $M N P Q$.

Phân tích và lời giải

a)

a) Đặt $x$ là độ dài hình vuông. Gọi $K$ là giao điểm của $A H$ và $M N$.
Ta có $M K H Q$ là hình chữ nhật, suy ra $K H=M Q=x, A E=A H-E H=$ $h-x$.
Ta có $M N \parallel B C$, suy ra $\frac{M N}{B C}=\frac{A N}{A C}$.
Và $N K \parallel C H$ nên ta có $\frac{A N}{A C}=\frac{A K}{A H}$.
Do đó ta có $\frac{M N}{B C}=\frac{A K}{A H}$ hay $\frac{x}{a}=\frac{h-x}{h}$, suy ra $x=\frac{a h}{a+h}$.
b) Ta có $b c=a h=k^2$ và $a^2=b^2+c^2 \geq 2 b c=2 a h$. Suy ra $a \geq 2 h$.
Ta có $S_{M N P Q}=M N^2=\frac{(a h)^2}{(a+h)^2}=\frac{k^4}{(a+h)^2}$.
Ta có $(a+h)^2=a^2+h^2+2 a h=h^2+\frac{1}{4} a^2+\frac{3}{4} a^2+2 a h$.
Mà $h^2+\frac{1}{4} a^2 \geq a h=k^2, \frac{3}{4} a^2 \geq \frac{3}{2} a h=\frac{3}{2} k^2, a h=k^2$.
Suy ra $(a+h)^2 \geq \frac{9}{2} k^2$.
Do đó $S \leq \frac{2}{9} k^2$. Đẳng thức xảy ra khi $a=2 h$ hay tam giác $A B C$ cân.
Vậy giá trị lớn nhất của diện tích hình vuông MNPQ là $\frac{2}{9} k^2$ khi $A B=A C=k$.

Chú ý, nếu ta áp dụng Cauchy ngay chỗ $(a+h)^2 \geq 4ah$ thì đẳng thức không xảy ra, do đó đánh giá chưa đủ chặt chẽ.

Bài tập rèn luyện.

Bài 1. Cho tam giác $ABC$ nhọn tìm vị trí điểm $M$ trong tam giác sao cho $MA + MB + MC$ nhỏ nhất.

Bài 2. Cho hình vuông $A B C D . M, N, P, Q$ là các đỉnh của tứ giác $M N P Q$ lần Iượt thuộc các cạnh $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}, \mathrm{DA}$ (MNPQ gọi là tứ giác nội tiếp hình vuông). Tìm điều kiện để tứ giác MNPQ có chu vi nhỏ nhất.

Bài 3. Cho tam giác $ABC$ nhọn. Tìm vị trí của $M$ bên trong tam giác sao cho $MA \cdot BC + MB \cdot AC + MC \cdot AB$ đạt giá trị nhỏ nhất.

Bài 4. Cho tam giác $ABC$ vuông tại $A$ có $BC$ không đổi $BC = 2a$. Vẽ đường cao $AH$. Tìm giá trị lớn nhất của $BH + AH$.

Bài 5. Cho hình bình hành $ABCD$, một đường thẳng $d$ qua $A$ không cắt các cạnh của hình bình hành. Tìm vị trí của $d$ để tổng khoảng cách từ các đỉnh $B, C, D$ đến $d$ là lớn nhất.

Bài 6. Cho đoạn thẳng $A B=a$. $C$ là điểm trên đoạn thẳng $A B$. Vẽ các hình vuông $A C D E$ và $C B F G$. Xác định vị trí điểm $C$ để $S_{A C D E}+S_{C B F G}$ đạt giá trị nhỏ nhất.

Đáp án toán PTNK 2013

Bài 1. (Toán chung)  Cho tứ giác $ABCD$ nột tiếp đường tròn đường kính $AC$, $AC=2a$. Gọi $M$,$N$ lần lượt là trung điểm của $AB$ và $AD$, tam giác $ABD$ đều.
a. Tính $BC$ và $CN$ theo $a$.
b. Gọi $H$ là trực tâm của tam giác $CMN$, $MH$ cắt $CN$ tại $E$, $MN$ cắt $AC$ tại $K$. Chứng minh năm điểm $B$, $M$, $K$, $E$, $C$ cùng thuộc một đường tròn $(T)$.
Đường tròn $(T)$ cắt $BD$ tại $F$ ($F \ne B$), tính $DF$ theo a.
c. $KF$ cắt $ME$ tại $I$. Chứng minh $KM$ tiếp xúc với đường tròn ngoại tiếp tam giác $MIF$. Tính góc $IND$.

Gợi ý

a.

  • Ta có $OB = OD$, $AB = AD$ nên $AO$ là trung trực của $BD$.
  • $\angle{BOC}=2\angle{BAC}=60^0$ nên tam giác $OBC$ đều, suy ra $BC=OC=a$.$AD=\sqrt{AC^2-CD^2}=a\sqrt{3}$ (vì $BC=CD=OC=a$), suy ra $DN=\dfrac{1}{2}AD=\dfrac{a\sqrt{3}}{2}$, suy ra $CN=\sqrt{CD^2+DN^2} = \sqrt{a^2 \dfrac{3}{4} a^2 } =\dfrac{a\sqrt{7}}{2}$.

b.

  • Ta có $MN // BD$, suy ra $MN \bot AC$, suy ra $H$ thuộc $AC$.
  • Ta có $\angle{CBM} = \angle{CEM} =\angle{CKM} =90^0$ nên 5 điểm $B$, $C$, $M$, $K$, $E$ cùng thuộc đường tròn.
  • Ta có $\angle{KFB}=\angle{KCB} =\angle{ADB}$, suy ra $KF // AD$.
  • Gọi $P$ là giao điểm của $AC$ và $BD$. Tam giác $PAD$ có $KF // AD $ mà $K$ là trung điểm của $AP$ suy ra $F$ là trung điểm $PD$. Suy ra $FD = \dfrac{1}{2} PD = \dfrac{a\sqrt{3}}{4}$.

c.

  • Ta có $\angle{KMI}=\angle{KCE}$, $\angle{KCM}=\angle{KFM}$ và $\angle{KCE}=\angle{KCM}$ vì tam giác $CMN$ cân.
  • Do đó $\angle{KMI}=\angle{KFM}$. (1)
  • Vẽ tia tiếp tuyến $Mx$ của đường tròn ngoại tiếp tam giác $MFI$.
  • Ta có $\angle{xMI}=\angle{IFM} $  (2)
  • Từ (1) và (2) suy ra $\angle KMI = \angle xMI$, suy ra $Mx$ và $MK$ trùng nhau. Hay $MK$ là tiếp tuyến của đường tròn ngoại tiếp tam giác $MFI$.
  • Ta có $\triangle KMI \backsim \triangle KFM $, suy ra $KI.KF=KM^2 =KN^2$, suy ra $\triangle KIN \backsim \triangle KNF$, suy ra $\angle{KIN}=\angle{KNF}=90^0$, mà $KF // ND$, suy ra $\angle{IND} =90^0$.

Bài 2. (Toán chuyên) Cho tam giác $ABC$ có góc $\angle A = 60^o$ , đường tròn $(I)$ nội tiếp tam giác (với tâm I) tiếp xúc với các cạnh $BC,CA,AB$ lần lượt tại $D,E,F$. Đường thẳng $ID$ cắt $EF$ tại $K$, đường thẳng qua $K$ và song song với $BC$ cắt $AB,AC$ theo thứ tự tại $M,N$.
a. Chứng minh rằng các tứ giác IFMK và IMAN nội tiếp .
b. Gọi J là trung điểm cạnh BC.Chứng minh rằng ba điểm A,K,J thẳng hàng.
c. Gọi r là bán kính của dường tròn (I) và S là diện tích tứ giác $IEAF$.Tính $S$ theo $r$ và
chứng minh $S_{IMN} \geq \dfrac{S}{4}$ ($S_{IMN}$ là diện tích tam giác $IMN$).

Gợi ý

a.

  • Do $MN||BC$ nên $IK \bot MN$. Do $\angle IKN = \angle IFM = 90^o$ nên tứ giác $IFMK$ nội tiếp.
  • Tam giác $AEF$ đều nên $\angle KFI = 30^o$. Từ đó $\angle IMN = \angle KFI = \angle IAN = 30^o$ nên tứ giác $IMAN$ nội tiếp.

b.

  • Ta có $\angle IMN = \angle INM = 30^o$ nên tam giác $IMN$ cân tại $I$.
  • Lại có $IK \bot MN$ nên $K$ là trung điểm của $MN$.
  • Gọi $J’$ là giao điểm của $AK$ và $BC$, ta có $\dfrac{MK}{BJ’} = \dfrac{AK}{AJ’} = \dfrac{NK}{CJ’}$ mà $MK = NK$ nên $BJ’ = CJ’$. Suy ra $J’$ là trung điểm của $BC$. Suy ra $J \equiv J’$, do đó $A, K, J$ thẳng hàng.

c.

  • Ta có $AE = AF = r\sqrt{3}$, suy ra $S = 2S_{IAF} = 2.\dfrac{1}{2}IF.AF = r^2 \sqrt{3}$.
  • Ta chứng minh được $S_{IEF} = \dfrac{1}{4}S$.
  • Các tam giác $IMN$ và $IEF$ cân tại $I$ có $\angle IMN = \angle IEF$ nên đồng dạng. Do đó $\dfrac{S_{IMN}}{S_{IEF}} = \dfrac{IM^2}{IF^2} \geq 1$ (do $IM \geq IF$). Suy ra $S_{IMN} \geq S_{IEF} = \dfrac{S}{4}$.
  • Dấu bằng xảy ra khi $M \equiv F$ hay tam giác $ABC$ là tam giác đều.

Đáp án PTNK năm 2012

Bài 1. (Toán chung) Cho hình thang $ABC (AB||CD)$ nội tiếp đường tròn $(C)$ tâm $O$, bán kính $R$ và có $\angle DAB = 105^\circ, \angle ACD =30^\circ$.
a. Tính $\dfrac{DB}{DC}$ và tính $AB$ theo $R$.
b. Tiếp tuyến của $(C)$ tại $B$ cắt đường thẳng $DO$ và $DA$ lần lượt tại $M, N$. Tính $\dfrac{MN}{MD}$.
c. Gọi $E$ là trung điểm của $AB$, tía $DE$ cắt $MN$ tại $F$. Tính $\dfrac{BF}{BC}$.

Gợi ý

a.

  • Ta có $\angle DAB + \angle BCD = 180^\circ$, suy ra $\angle BCD = 75^\circ$ (1), suy ra $\angle ABC = 105^\circ$.
  • $\angle ABD = \angle ACD = 30^\circ$, suy ra $\angle DBC = \angle ABC – \angle ABD = 75^\circ$. (2)
  • Từ (1) và (2) ta có $\angle DBC = \angle DCB$, nên tam giác $DCB$ cân tại $D$, do đó $\dfrac{DB}{DC} = 1$.
  • Ta có $\angle ACB = 75^\circ – 30^\circ = 45^\circ$,suy ra $\angle AOB = 90^\circ$, tam giác $ABO$ vuông cân tại $O$ nên $AB = AO \sqrt{2} = R\sqrt{2}$.

b.

  • Ta có $\angle AOD = 2\angle ACD = 60^\circ$, suy ta tam giác $OAD$ đều. Suy ra $\angle ODA = 60^\circ$ hay $\angle NDM = 60^\circ$.
  • Tam giác $DBC$ cân, nên $DO$ cũng là trung trực của $BC$ và cũng là phân giác góc $\angle BDC$.
  • $\angle BOM = 180^\circ – \angle AOB – \angle AOD = 30^\circ$, suy ra $\angle OMB = 90^\circ – \angle BOM = 60^\circ$ (do $OB \bot BM$).
  • Do đó tam giác $DMN$ đều, suy ra $\dfrac{MN}{MD} = 1$.

c.

  • Gọi $E$ là trung điểm của $AB$, tam giác $AOB$ vuông cân tại $O$ nên $OE = AE, \angle AEO = 90^\circ$.
  • Ta có $\triangle ADE = \triangle ODE$ nên $\angle AED = \angle OED = 45^\circ$, $\angle ADE = \angle ODE = 30^\circ$, suy ra $DF$ là đường cao của tam giác $MDN$.
  • Gọi $I$ là trung điểm $BC$. Ta có $\angle FDB = 15^\circ = \angle IDB$.
  • Khi đó $\triangle BFD = \triangle BID$, suy ra $BF = BI$, suy ra $\dfrac{BF}{BC} = \dfrac{1}{2}$.

 

Bài 2. (Toán Chuyên) Cho hình vuông $ABCD$ cạnh $a$. $M$ và $N$ là hai điểm lần lượt nằm trên các cạnh $AB$ và $BC$ sao cho $\dfrac{AM}{AB} = \dfrac{CN}{CB} = x$ với $0 < x < 1$. Các đường thẳng qua $M , N$ song song với $BD$ lần lượt cắt $AD$ tại $Q$ và $CD$ tại $P$. Tính diện tích tứ giác $MNPQ$ theo $a$ và $x$ và tìm $x$ sao cho diện tích này lớn nhất.

 

Gợi ý

  • Chứng minh được $MNPQ$ là hình chữ nhật.
  • Ta có $\dfrac{MN}{AC} = \dfrac{MB}{BA} = \dfrac{AB-AM}{AB} = 1 – \dfrac{AM}{AB} = 1 – x$, suy ra $MN = (1-x)a\sqrt{2}$.
  • $\dfrac{MQ}{BD} = \dfrac{AM}{AB} = x$, suy ra $MQ = xa\sqrt{2}$.
  • Từ đó $S = MN.MQ = 2a^2x(1-x)$ Mà $x(1-x) \leq \dfrac{1}{4}(x+1-x)^2 = \dfrac{1}{4}$. Suy ra $S \leq \dfrac{a^2}{2}$. Đẳng thức xảy ra khi $x = \dfrac{1}{2}$.
  • Vậy diện tích đạt giá trị lớn nhất bằng $\dfrac{1}{2}a^2$ khi $M$ là trung điểm $AB$.

Bài 3 (Toán chuyên)  Cho tam giác $ABC$ vuông tại $A$. Trên đường thẳng vuông góc với $AB$ tại $B$ ta lấy điểm $D$ di động nằm cùng phía với $C$ đối với đường thẳng $AB$ .
a. Chứng minh rằng nếu $AC + BD < CD$ thì trên cạnh $AB$ tồn tại hai điểm $M$ và $N$ sao cho $\angle CMD =\angle CND = 90^\circ$
b. Giả sử điều kiện trên được thỏa mãn. Đường thẳng qua $A$ song song với $MD$ cắt đường thẳng qua $B$ song song với $MC$ tại $E$. Chứng minh rằng đường thẳng $DE$ luôn đi qua một điểm cố định . 

Gợi ý

a.

  • Xét đường tròn đường kính $CD$ có tâm $O$ là trung điểm $CD$. Gọi $I$ là trung điểm $AB$, khi đó $OI \bot AB$ và $OI$ là đường trung bình của hình thang $ACDB$ nên $OI = \dfrac{1}{2} (AC+BD) < \dfrac{CD}{2}$.
  • Do đó khoảng cách từ $O$ đến $AB$ nhỏ hơn bán kính đường tròn đường kính $CD$ nên $AB$ cắt đường tròn đường kính $AB$ tại hai điểm $M, N$. Suy ra $\angle CMD = \angle CND = 90^o$.
  • Hơn nữa $\angle OCA + \angle ODB = 180^o$ nên có một góc lớn hơn hoặc bằng $90^o$.
  • Giả sử là $\angle ACD \geq 90^o$. Suy ra $OA > OC$. Suy ra $A$ nằm ngoài đường tròn $(O)$. Do đó $M, N$ thuộc đoạn $AB$.

b.

  • Gọi $E’$ là giao điểm của đường thẳng qua $A$ song song với $MD$ với $CD$. Gọi $P$ là giao điểm của $MD$ với $AC$, $Q$ là giao điểm của $MC$ với $BD$.
  • Theo định lý Thalet ta có: $\dfrac{CE’}{CD} = \dfrac{CA}{CP}, \dfrac{CA}{CD} = \dfrac{BQ}{DQ}$. Suy ra $\dfrac{CE’}{CD} = \dfrac{BQ}{DQ}$.
  • Từ đó ta có $BE’ ||MC$. Suy ra $C, D, E$ thẳng hàng. Vậy đường thẳng $DE$ luôn qua điểm $C$ cố định.

Bài tập cực trị

Đề bài. Cho tam giác nhọn $ABC$ nội tiếp $(O)$. Tia $AO$ cắt $(OBC)$ tại $D$, tia $BO$ cắt $(OCA)$ tại $E$, tia $CO$ cắt $(OAB)$ tại $F$. Chứng minh

\[ OD.OE.OF \ge 8R^3 \]

Gợi ý

Gọi $I,J,K$ lần lượt là giao điểm của $AO$, $BO$, $CO$ với các cạnh $BC$, $CA$, $AB$ của tam giác $ABC$. Sử dụng tam giác đồng dạng ta chứng minh được

\[ OD.OI = OE.OJ = OF.OK= R^2 \]

Do đó điều cần chứng minh tương đương với

\[ 8 OI.OJ.OK \le R^3 \]

Đặt $OI = x, OJ – y, OK = z$. Từ $O$ kẻ các đường vuông góc xuống 3 cạnh, đồng thời kẻ 3 đường cao của tam giác $ABC$. Kết hợp Thales cùng tỷ số diện tích ta có được

\[ \frac{x}{x + R} + \frac{y}{y + R} + \frac{z}{z + R} = 1 \]

Quy đồng mẫu và rút gọn ta có

\[ R(xy + yz + zx) + 2xyz = R^3 \]

Đặt $t = \sqrt[3]{xyz}$ và sử dụng bất đẳng thức AM-GM: $xy + yz + zx \ge 3t^2$, thay vào trong biểu thức trên ta được

\[ R^3 \le 3Rt^2 + 2t^3 \]

tương đương với

\[ (2t – R)(t+R)^2 <= 0 \]

Ta có được $t \le R/2$. Từ đó suy ra điều cần chứng minh.

Đẳng thức xảy ra khi tam giác $x=y=z$, tức khi tâm $O$ cách đều 3 cạnh, tam giác $ABC$ là tam giác đều.

Nhận xét

  • Trường hợp $ABC$ là tam giác tù, ta vẫn có $ OD.OI = OE.OJ = OF.OK= R^2 $. Tuy nhiên $OI$, $OJ$, $OK$ có thể lớn nhỏ tùy ý [geogebra], nên bất đẳng thức không còn đúng.