Định nghĩa: Tứ giác có 4 đỉnh cùng thuộc một đường tròn được gọi là tứ giác nội tiếp.
Dấu hiệu nhận biết tứ giác nội tiếp: Một tứ giác là tứ giác nội tiếp khi và chỉ khi:
- Tổng hai góc đối bằng $180^o$.
- Góc ngoài bằng góc đối trong.
- Hai đỉnh kề cùng nhìn một cạnh dưới hai góc bằng nhau.
Ví dụ 1. Cho tam giác $ABC$ nhọn. Các đường cao $AD, BE$ và $CF$ cắt nhau tại $H$. Cho tam giác $ABC$ nhọn. Các đường cao $AD, BE$ và $CF$ cắt nhau tại $H$. (a) Chứng minh các tứ giác $AEHF$, $BDHE$ là tứ giác nội tiếp. (b) Chứng minh các tứ giác $BFEC$, $AEDC$ là tứ giác nội tiếp.
Gợi ý
(a) Xét tứ giác $AEHF$ có $\angle AEH + \angle AFH = 90^\circ + 90^\circ = 180^\circ$, suy ra tứ giác $AEHF$ là tứ giác nội tiếp (hai góc đối bù nhau).
Xét tứ giác $AEHF$ có $\angle AEH + \angle AFH = 90^\circ + 90^\circ = 180^\circ$, suy ra tứ giác $AEHF$ là tứ giác nội tiếp (hai góc đối bù nhau).\\ Xét tứ giác $BDHE$ có $\angle BDH + \angle BEH = 90^\circ + 90^\circ = 180^\circ$ nên là tứ giác nội tiếp (hai góc đối bù nhau).
(b) Xét tứ giác $BFEC$ có $\angle BFC = \angle BEC = 90^\circ$, suy ra tứ giác $BFEC$ nội tiếp (hai đỉnh kề cùng nhìn cạnh với một góc vuông).
Tương tự ta có $\angle AEC = \angle ADC = 90^\circ$, suy ra tứ giác AEDC nội tiếp.
Ví dụ 2. Cho đường tròn tâm $O$ và điểm $A$ nằm ngoài đường tròn. Từ $A$ dựng các tiếp tuyến $AB, AC$ đến $(O)$ với $B, C$ là các tiếp điểm. $OA$ cắt $BC$ tại $H$. (a) Chứng minh rằng tứ giác $OBAC$ nội tiếp. (b) Một đường thẳng qua $A$ cắt $(O)$ tại $D$ và $E$ sao cho $E$ nằm giữa $A$ và $D$. Chứng minh rằng $O, H, D, E$ cùng thuộc một đường tròn.
Gợi ý
(a)Vì $AB, AC$ là tiếp tuyến của $(O)$ tại B và C nên $\angle OBA = \angle OCA = 90^\circ$, suy ra $\angle OBA + \angle OCA = 180^\circ$, nên tứ giác $OBAC$ nội tếp.
Vì $AB, AC$ là tiếp tuyến của $(O)$ tại B và C nên $\angle OBA = \angle OCA = 90^\circ$, suy ra $\angle OBA + \angle OCA = 180^\circ$, nên tứ giác $OBAC$ nội tếp.
(b) Ta có $AB = AC$ (t/c tiếp tuyến) và $OB = OC$, suy ra $OA$ là trung trực của $BC$, suy ra $OA \bot BC$ tại $H$.
Tam giác $ABO$ vuông có $BH$ là đường cao nên $AH.AO = AB^2$. (1)
Mặt khác $\Delta ABD \backsim AEB (g.g)$, suy ra $AD.AE = AB^2$ (2)
Từ (1) và (2), suy ra $AD.AE = AH.AO$, suy ra $\dfrac{AH}{AD} = \dfrac{AE}{AO}$.
Xét tam giác AHE và tam giác EDO có $\angle DAO$ chung và $\dfrac{AH}{AD} = \dfrac{AE}{AO}$ nên $\Delta AHE \backsim \Delta ADO$, suy ra $\angle AHE = \angle ADO$, suy ra tứ giác $OHED$ nội tiếp.
Ví dụ 3. Cho tam giác $ABC$ nhọn, đường cao $AH$. Gọi $D, E$ là hình chiếu vuông góc của $H $ trên $AB$ và $AC$. Chứng minh rằng: (a) $AD.AB = AE.AC$. (b) Tứ giác $BDEC$ là tứ giác nội tiếp.
Gợi ý
(a) Tam giác $ABH$ vuông tại H có đường cao HD nên $AD.AB = AH^2$. (1)
Tam giác $ACH$ vuông tại H có đường cao $HE$ nên $AE.AC = AH^2$. (2)
Từ (1) và (2) suy ra $AD.AB = AE.AC$.
(b) Từ $AD.AC = AE.AC \Rightarrow \dfrac{AD}{AC} = \dfrac{AE}{AB}$.
Xét tam giác $ADE$ và $ACB$ có $\angle BAC$ chung và $\dfrac{AD}{AC} = \dfrac{AE}{AB}$ nên $\Delta ADE \backsim \Delta ACB$, suy ra $\angle ADE = \angle ACB$.
Tứ giác $BDEC$ có $\angle ADE = \angle ACB$ nên là tứ giác nội tiếp (góc ngoài bằng góc đối trong).
Ví dụ 4. Cho tam giác $ABC$, đường tròn tâm $I$ nội tiếp tam giác tiếp xúc với $AB, AC$ tại $D$ và $E$. Gọi $M$ là giao điểm của $BI$ và $DE$. Cho tam giác $ABC$, đường tròn tâm $I$ nội tiếp tam giác tiếp xúc với $AB, AC$ tại $D$ và $E$. Gọi $M$ là giao điểm của $BI$ và $DE$. (a) Chứng minh $\angle AED = \dfrac{180^\circ-\angle A}{2}$. (b) Chứng minh 4 điểm $I, E, M, C$ cùng thuộc một đường tròn. (c) Gọi $N$ là giao điểm của $CI$ và $DE$. Chứng minh 4 điểm $B, N, M, C$ cùng thuộc một đường tròn.
Gợi ý
(a) Ta có $AD, AE$ là tiếp tuyến của $(I)$ nên $AD = AE$. Tam giác $ADE$ cân tại $A$, suy ra $\angle AED = \dfrac{180^\circ – \angle A}{2}$.
(b) Ta có $AD, AE$ là tiếp tuyến của $(I)$ nên $AD = AE$. Tam giác $ADE$ cân tại $A$, suy ra $\angle AED = \dfrac{180^\circ – \angle A}{2}$.
Ta có $\angle MIC = \angle IBC + \angle ICB = \dfrac{1}{2} (\angle B + \angle C) = \dfrac{180^\circ – \angle A}{2}$. (1)\\ Theo câu a ta có $\angle MEC = \angle AED = \dfrac{180^\circ – \angle A}{2}$. (2)
Từ (1) và (2), suy ra $\angle MIC = \angle MEC$, do đó tứ giác $IEMC$ nội tiếp.
(c) Tứ giác $IEMC$ nội tiếp suy ra $\angle IMC = \angle IEC = 90^\circ$.
Chứng minh tương tự ta có $\angle INC = 90^\circ$.
Tứ giác $BCMN$ có $\angle BMC = \angle BNC = 90^\circ$ nên là tứ giác nội tiếp.
Ví dụ 5. Cho tam giác ABC. Trên cạnh BC lấy các điểm D, E sao cho $\angle BAD = \angle CAE$. Gọi $M, N$ là hình chiếu vuông góc của $B$ trên $AD, AE$; $P, Q$ là hình chiếu vuông góc của C trên $AD, AE$. Chứng minh 4 điểm $M, N, P, Q$ cùng thuộc một đường tròn có tâm là trung điểm $BC$.
Gợi ý
Ta có tứ giác $ABMN$ nội tiếp, suy ra $\angle AMN = \angle ABN = 90^\circ – \angle BAE$.(1)
Tứ giác $ACPQ$ nội tiếp, suy ra $\angle APQ = \angle ACP = 90^\circ – \angle CAD$.(2)
Ta lại có $\angle DAB = \angle CAE $ nên $\angle BAE = \angle CAD$.(3)
Từ (1), (2) và (3) ta có $\angle AMN = \angle APQ$, suy ra tứ giác $MNPQ$ nội tiếp.
Gọi $I$ là trung điểm của $BC$, ta có $BM||CP$ nên đường thẳng $d$ qua $I$ song song với $BM$ đi qua trung điểm của $MP$ mà $BM \bot MP$ nên đường thẳng $d$ là trung trực của $MP$. Vậy $IM = IP$.
Tương tự ta cũng có $IN = IQ$.
Hơn nữa tứ giác $MNPQ$ là tứ giác nội tiếp khác hình thang nên $I$ chính là tâm của đường tròn ngoại tiếp tứ giác.
Ví dụ 6. Cho tam giác $ABC$. Đường tròn đi qua hai đỉnh $B, C$ và cắt các cạnh $AB, AC$ tại $D$ và $E$. Gọi $M$ là giao điểm của $CD$ và $BE$. Gọi $P$ là điểm đối xứng của $M$ qua $AC$ và $Q$ lá điểm đối xứng của $M$ qua trung điểm cạnh $BC$. Chứng minh 4 điểm $A, C, P, Q$ cùng thuộc một đường tròn.
Gợi ý
Gọi $F$ là giao điểm của đường tròn ngoại tiếp tam giác $BMD$ và $AM$. Khi đó ta có $AM.AF = AD.AB = AE.AC$, suy ra $M$ thuộc đường tròn ngoại tiếp của tam giác $MCE$.
Ta có $\angle MFB = \angle ADM = \angle AEM = \angle AFC$ và $\angle FMB = \angle AME = \angle ACF$, suy ra $\Delta FBM \backsim \Delta FAC \Rightarrow \dfrac{BF}{AF} = \dfrac{BM}{AC}$.
Mà $BF = CQ$, suy ra $\dfrac{BF}{AF} = \dfrac{CQ}{AC} \Rightarrow \dfrac{BF}{CQ} = \dfrac{AF}{AC}$.
Xét tam giác $ABF$ và $ACQ$ có $\angle AFB = \angle ACQ$ (cùng bù với $\angle BDC$) và $\dfrac{BF}{CQ} = \dfrac{AF}{AC}$ nên $\Delta ABF \backsim \Delta ACQ$. Suy ra $\angle AQC = \angle ABF$.
Mặt khác $ABF = \angle CMF = 180^\circ – \angle AMC = 180^\circ – \angle APC$.
Nên $AQC = 180^\circ – \angle APC \Rightarrow \angle AQC + \angle APC = 180^\circ$, do đó tứ giác $APCQ$ là tứ giác nội tiếp.
Bài tập.
- Cho tam giác ABC nhọn, đường cao AH. Gọi D, E là hình chiếu vuông góc của H trên AB và AC. Chứng minh rằng: Cho tam giác ABC nhọn, đường cao AH. Gọi D, E là hình chiếu vuông góc của H trên AB và AC. Chứng minh rằng: (a) $AD.AB = AE.AC$. (b) Tứ giác $BDEC$ là tứ giác nội tiếp. [Gợi ý]
- Cho tam giác $ABC$ nội tiếp đường tròn $(O)$. Các đường cao $BD, CE$ cắt nhau tại $H$. $M$ là một điểm thuộc cung BC không chứa $A$. $AM$ cắt $DE$ tại $K$. Chứng minh rằng các tứ giác $BEKM, CDKM$ là các tứ giác nội tiếp. [Gợi ý]
- Cho tam giác $ABC$ vuông tại $A$, đường cao $AH$ và trung tuyến $BM$. Gọi $D$ là hình chiếu vuông góc vuông góc của $A$ trên $BM$. Chứng minh tứ giác $HDMC$ nội tiếp.[Gợi ý]
- Cho tam giác $ABC$ nhọn $(AB < AC)$ nội tiếp đường tròn $(O)$. Các đường cao $AD, BE, CF$ cắt nhau tại $H$. Gọi $M$ là trung điểm cạnh BC và $N$ là trung điểm đoạn thẳng CH.Cho tam giác $ABC$ nhọn $(AB < AC)$ nội tiếp đường tròn $(O)$. Các đường cao $AD, BE, CF$ cắt nhau tại $H$. Gọi $M$ là trung điểm cạnh BC và $N$ là trung điểm đoạn thẳng CH. (a) Chứng minh rằng 5 điểm $D, E, F, M, N$ cùng thuộc một đường tròn. (b) $EF$ cắt $BC$ tại $K$, $AK$ cắt $(O)$ tại $Q$. Chứng minh $AQFE, KQFB$ là các tứ giác nội tiếp. (c) Chứng minh 3 điểm $Q, H, M$ thẳng hàng.[Gợi ý]
- Hình bình hành $ABCD$ có góc tù $B$, gọi $O$ là giao điểm của hai đường chéo. Dựng $DE$ vuông góc $AC, DF$ vuông góc $AB, DG$ vuông góc $BC$. Chứng minh 4 điểm $O, E, G, F$ cùng thuộc một đường tròn. [Gợi ý]
- Cho hình chữ nhật ABCD. Gọi M là trung điểm cạnh BC, N là trung điểm cạnh CD. AM cắt BN tại E, BN cắt DM tại F và DM cắt AN tại G. Chứng minh rằng tứ giác AEPF nội tiếp. [Gợi ý]
- Cho tam giác $ABC$ nhọn nội tiếp đường tròn $(O)$ với $\angle A = 60^\circ$. Gọi $H$, $I$ lần lượt là trực tâm và tâm đường tròn nội tiếp của tam giác $ABC$. Chứng minh 5 điểm $B, C, H, I, O$ cùng thuộc một đường tròn. [Gợi ý]
- Cho tam giác $ABC$ nội tiếp đường tròn (O), vẽ đường kính $AD$. Đường thẳng $d$ vuông góc với $AD$ cắt $CD, BD$ tại $E$ và $F$. Chứng minh 4 điểm $B, C, E, F$ cùng thuộc một đường tròn. [Gợi ý]
- Cho tứ giác $ABCD$ nội tiếp đường tròn $O$ với $\angle A > 90^\circ$. Đường thẳng qua $A$ vuông góc $AB$ cắt $CD$ tại $E$; đường thẳng qua $A$ vuông góc $AD$ cắt $CB$ tại $F$. Gọi $P$ là điểm đối xứng của $A$ qua đường thẳng $EF$. Cho tứ giác $ABCD$ nội tiếp đường tròn $O$ với $\angle A > 90^\circ$. Đường thẳng qua $A$ vuông góc $AB$ cắt $CD$ tại $E$; đường thẳng qua $A$ vuông góc $AD$ cắt $CB$ tại $F$. Gọi $P$ là điểm đối xứng của $A$ qua đường thẳng $EF$. (a) Chứng minh rằng 4 điểm $E,F , C, P$ cùng thuộc một đường tròn. (b) Chứng minh $P$ thuộc $(O)$ và $E, O, F$ thẳng hàng. [Gợi ý]
- Cho tam giác $ABC$ với $AB < AC$. Phân giác trong góc $A$ và trung trực đoạn $BC$ cắt nhau tại $D$. Chứng minh rằng $ABDC$ là tứ giác nội tiếp. [Gợi ý]
- Cho tam giác $ABC$ vuông tại $A$ ($AB < AC$) nội tiếp đường tròn tâm $O$.Vẽ đường cao $AH$. Đường tròn đường kính $AH$ cắt $AB, AC$ tại $D$ và $E$ và cắt $(O)$ tại điểm $P$ khác $A$. $AP$ cắt $BC$ tại điểm $K$.Cho tam giác $ABC$ vuông tại $A$ ($AB < AC$) nội tiếp đường tròn tâm $O$.Vẽ đường cao $AH$. Đường tròn đường kính $AH$ cắt $AB, AC$ tại $D$ và $E$ và cắt $(O)$ tại điểm $P$ khác $A$. $AP$ cắt $BC$ tại điểm $K$. (a) Chứng minh các tứ giác $KPEC, KPDB$ nội tiếp. (b) Chứng minh $K, D, E$ thẳng hàng. [Gợi ý]
- Cho tam giác $ABC$. Đường tròn đi qua hai đỉnh $B, C$ và cắt các cạnh $AB, AC$ tại $D$ và $E$. Gọi $M$ là giao điểm của $CD$ và $BE$. Gọi $P$ là điểm đối xứng của $M$ qua $AC$ và $Q$ lá điểm đối xứng của $M$ qua trung điểm cạnh $BC$. Chứng minh 4 điểm $A, C, P, Q$ cùng thuộc một đường tròn.[Gợi ý]