Tag Archives: MonToan

Đáp án đề thi học kì 1 môn Toán 11 trường Phổ thông Năng khiếu

ĐỀ THI VÀ ĐÁP ÁN HK1 TOÁN LỚP 11 TRƯỜNG PTNK

Bài 1. Giải các phương trình
a) $\dfrac{\sin x + \sin 3x – 1}{2\cos x – 1} = 1$.
b) $\dfrac{1}{\sin x} + \dfrac{1}{\cos x} = 4\sqrt{2}\cos 2x$.

Bài 2.
a) Một bình chứa các quả cầu có kích thước khác nhau gồm 6 quả cầu đỏ, 10 quả cầu xanh và 14 quả cầu vàng. Chọn ngẫu nhiên 5 quả cầu. Tính xác suất để 5 quả cầu chọn được có đủ 3 màu, trong đó số quả cầu màu vàng và màu xanh bằng nhau.
b) Từ các số 0, 1, 2, 3, 4, 5, 6 hỏi có thể lập được bao nhiêu số tự nhiên chẵn có 6 chữ số phân biệt sao cho số đó chia hết cho 3.

Bài 3.
a) Tìm hệ số của $x^3$ trong khai triển thu gọn biểu thức $(2\sqrt{x} – \dfrac{3}{x})^{15}$\
b) Tìm số nguyên dương $x$ thỏa mãn đẳng thức $C_{x+2}^{x-1} + C_{x+2}^x = \dfrac{10}{3}A_x^2$.

Bài 4. Trong mặt phẳng tọa độ $Oxy$ cho đường thẳng $(d): x – y – 1 = 0$ và vectơ $\vec{u} = (-2;1)$. Tìm ảnh $(d’)$ của đường thẳng $(d)$ qua phép tịnh tiến theo $\vec{u}$.

Bài 5. Cho hình chóp $S.ABCD$ có đáy là hình thang, $AD // BC$ và $AD = 2BC$. Gọi $O$ là giao điểm của $AC$ và $BD$ và $M$ là trung điểm $SD$.
a) Tìm giao tuyến của mặt phẳng $(SAB)$ và $(SCD)$; $(SAD)$ và $(SBC)$.
b) Chứng minh $CM // (SAB)$. Tìm giao tuyến của $(SAB)$ và $(AMC)$.
c) Tìm giao điểm $I$ của $SC$ và $(ABM)$. Chứng minh $OI // (SAD)$.

Hết 

Đáp án  ĐỀ-THI-HỌC-KÌ-I-2015-2016-ĐÁP-ÁN