Tổ hợp

1.Định nghĩa

  • Cho tập $A$ có $n$ phần tử, mỗi tập con có $k$ phần tử của $A$ ($ 0 \leq k \leq n$) được gọi là một tổ hợp chập $k$ của $n$.

Ví dụ 1. Cho $A = { 1, 2, 3, 4 }$. Các tổ hợp chập 3 của là $A$ là $ {1, 2, 3}, {1, 2, 4}, {1, 3, 4 }, {2, 3, 4 }$.

  • Số tổ hợp chập $k$ của $n$ là $C_n^k   = \dfrac{A^k_n}{k!} = \dfrac{n!}{(n-k)!k!}$.

2.Các ví dụ.

Ví dụ 1. Lớp 11A có 15 bạn nam và 20 bạn nữ, hỏi có bao nhiêu cách chọn một nhóm 5 bạn để đi làm việc biết

a. Có 3 bạn nam và 2 bạn nữ.

b. Có ít nhất 2 bạn nữ.

Lời giải.

a.

  • Số cách chọn 3 bạn nam từ 15 bạn nam là số tổ hợp chập 3 của 15 nên có $C^3_{15}$ cách.
  • Số cách chọn 2 bạn nữ từ 20 bạn nữ là số tổ hợp chập 2 của 20 nên có $C^2_{20}$.
  • Vậy theo quy tắc nhân, số cách chọn là $C^3_{15} \cdot C^2_{20} = 86.450$

b. Bài này ta có thể sử dụng phần bù.

  • 0 bạn nữ, 5 bạn nam: $C^0_{20} \cdot C^5_{15}$.
  •  1 bạn nữ, 4 bạn nam: $C^1_{20} \cdot C^4_{15}$.
  • Chọn 5 bạn tùy ý: $C^5_{35}$.
  • Do đó ta có, số cách chọn ít nhất 2 bạn nữ:
  •  $C^5_{35} – C^0_{20} \cdot C^5_{15} – C^1_{20} \cdot C^4_{15}$

Ví dụ 2. Trong hộp có 5 bi xanh, 4 bi đỏ và 5 bi vàng. Lấy ra 4 viên bi, hỏi có bao nhiêu cách lấy thỏa:

a. Có cùng một màu.

b. Có đầy đủ 3 màu.

Lời giải.

a.

  • Cùng màu xanh: $C^4_5 = 5$ cách.
  • Cùng màu đỏ: $C^4_4 = 1$ cách.
  • Cùng màu vàng $C^4_5 = 5$ cách.
  •  Số cách lấy là: $ 5 + 1 + 5 = 11$ cách

b.

  • 2 vàng 1 đỏ 1 xanh. $C^2_5 \cdot C^1_4 \cdot C^1_5$
  • 2 vàng 1 đỏ 1 xanh:$C^1_5\cdot C^2_4 \cdot C^1_5$

3.Bài tập

Bài 1. Một nhóm học sinh có 10 bạn. Có bao nhiêu cách chọn
a) 3 bạn đi dọn vệ sinh trường lớp.
b) 5 bạn để lập một nhóm tình nguyện, trong đó có một đội trưởng.

Bài 2.  Trong hộp có 7 bi xanh và 8 bi vàng. Có bao nhiêu cách lấy ra 5 bi thỏa:
a) Lấy tùy ý.
b) Có ít nhất 2 bi vàng.
c) Các bi cùng màu.
 Bài 3. Có 3 hộp, trong đó hộp thứ nhất chứa 5 viên bi xanh, hộp thứ hai chứa 6 viên bi đỏ và hộp thứ ba chứa 8 viên bi vàng, các viên bi đều khác nhau. Chọn ra 5  viên bi từ 3 hộp. Hỏi có bao nhiêu cách chọn
a) 5 viên bi đều màu vàng.
b) 2 viên bi màu đỏ, 3 viên bi màu xanh.
c) Có đầy đủ 3 màu.
d) Không có bi màu đỏ hoặc màu xanh và ít nhất 2 viên bi màu vàng.

Bài 4. Từ 5 bông hồng vàng, 3 bông hồng trắng, và 4 bông hồn đỏ (các bông hoa xem như đôi một khác nhau) người ta muốn chọn ra 1 bó hoa gồm 7 bông. Có bao nhiêu cách chọn 1 bó hoa trong đó có ít nhất 3 bông hồng vàng và ít nhất 3 bông hồng đỏ.

Bài 5. Bạn An mời tiệc sinh nhật, vì nhà nhỏ nên trong 20 người bạn của mình An chỉ có thể mời được 8 bạn. Biết rằng trong các bạn của An thì có Nam và Long không thích nhau nên An không thể mời cả hai bạn dự cùng lúc. Hỏi An có bao nhiêu cách mời?

 

Leave a Reply

Your email address will not be published. Required fields are marked *