Trục đẳng phương – Tâm đẳng phương

Bài 1. Cho đường tròn $(O)$. $A, B$ là hai điểm cố định đối xứng nhau qua $O$, $M$ là điểm chuyển động trên $(O)$. $MA, MB$ giao với $(O)$ tại $P$ và $Q$. Chứng minh rằng $\dfrac{{\overline {AM} }}{{\overline {AP} }} + \dfrac{{\overline {BM} }}{{\overline {BQ} }}$ nhận giá trị không đổi. 

Bài 2. Cho tam giác $ABC$ nhọn, kẻ đường cao $AD, BE, CF$ cắt nhau tại $H$. Cho $K$ là một điểm tùy ý trên cạnh $BC$ và khác $B,C$ kẻ đường kính $KM$ củaCho tam giác $ABC$ nhọn, kẻ đường cao $AD, BE, CF$ cắt nhau tại $H$. Cho $K$ là một điểm tùy ý trên cạnh $BC$ và khác $B,C$ kẻ đường kính $KM$ của đường tròn ngoại tiếp tam giác $BFK$ và đường kính $KN$ của đường tròn ngoại tiếp tam giác $CEK$. Chứng minh rằng ba điểm $M, H, N$ thẳng hàng.

Gợi ý

Gọi $P$ là giao điểm của $(KBF)$ và $KCE)$.

  • Ta có $AF.AB = AE.AC = AH.AD$ nên $A$ thuộc trục đẳng phương của $(KBF)$ và $(KCE)$. Suy ra $A, P, K$ thẳng hàng.
  • Do đó $AP. AK = AH.AD$, suy ra $\angle HPK = \angle ADK = 90^\circ$.
  • Mặt khác $KM, KN$ là đường kính của $(KBF), (KCE)$ nên $\angle KPM = \angle KPN = 90^\circ$. Vậy $H,M, P, N$ thẳng hàng.

Bài 3. Cho tam giác $ABC$ nhọn, $\angle B > \angle C$. Gọi $M$ là trung điểm đoạn $BC$ và $E, F$ lần lượt là chân đường cao từ $B$ và $C$. Gọi $K, L$ lần lượt là trung điểm của $ME$, $MF$. Gọi $T$ là giao điểm của $KL$ sao cho $TA||BC$. Chứng minh $TA = TM$.

Gợi ý

Xét đường tròn đường kính $AH$.

  •  $ME, MF$ là tiếp tuyến của $(AH)$.
  • $KL$ là trục đẳng phương của $(AH)$ và đường tròn điểm $M$.
  • Mà $TA$ là tiếp tuyến của $(AH)$ nên $TA^2 = TM^2$.

Bài 4. Cho tam giác $ABC$ nội tiếp đường tròn $(O)$, một đường thẳng qua $(O)$ song song với $BC$, cắt $AB$, $AC$ lần lượt tại $F, E$. Đường tròn ngoại tiếp các tam giác $(BFO)$ và $(CEO)$ cắt nhau tại điểm thứ 2 là $D$ và cắt $BC$ tại $L, K$. Gọi $M$ là giao của $BE$ và $CF$. Gọi $N$ là giao của $FL$ và $EK$. Chứng minh rằng $D, M, N$ thẳng hàng.

Gợi ý
  • Gọi $D’$ là giao điểm của đường cao hạ từ $A$ với $(O)$. Chứng minh được $D’BFO, D’CEO$ nội tiếp nên $D’ \equiv D$.
  • Chứng minh tứ giác $EFLK$ nội tiếp. Trục đẳng phương của $(OFBD), (OECD), (EFLK)$ cắt nhau tại $N$ nên $D, O, N$ thẳng hàng.
  • Gọi $P$ là trung điểm $BC$ ta có $A, M, P$ thẳng hàng.
  • Áp dụng Menelaus cho tam giác $ABP$ với đường thẳng $FC$ ta có $\dfrac{PM}{AM} = \dfrac{BF}{2AF} = \dfrac{OP}{AD}$. Suy ra $O, M, D$ thẳng hàng.
  • Vậy $D, M, N$ thẳng hàng.
  • Bài 5. (IMO 2000) Cho hai đường tròn $w_1$ và $w_2$ cắt nhau tại $M$ và $N$. Gọi $l$ là tiếp tuyến chung của $w_1, w_2$ sao cho $l$ gẩn $M$ hơn $N$. Gọi tiếp điểm của $l$ với $w_1$ là $A$, với $w_2$ là $B$. Đường thẳng qua $M$ song song với $l$ cắt $w_1$ tại $C$ và cắt $w_2$ tại $D$. Đường thẳng $CA$ và $DB$ cắt nhau tại $E$; đường thẳng $AN$ và $CD$ cắt nhau tại $P$; $BN$ và $CD$ cắt nhau tại $Q$. Chứng minh rằng $EP = EQ$.

    Gợi ý

    Gọi $F$ là giao điểm của $NM$ và $AB$. Ta có $\mathscr{P}_{F/(w_1)} = FA^2, \mathscr{P}_{F/(w_1)} = FB^2$ mà $MN$ là trục đẳng phương của $w_1$ và $w_2$, suy ra $FA = FB$.

    Gọi $F$ là giao điểm của $NM$ và $AB$. Ta có $\mathscr{P}_{F/(w_1)} = FA^2, \mathscr{P}_{F/(w_1)} = FB^2$ mà $MN$ là trục đẳng phương của $w_1$ và $w_2$, suy ra $FA = FB$.

    $PQ||AB$, suy ra $M$ là trung điểm của $PQ$.

    Ta có $\angle FBA = \angle FDM = \angle ABM$ và $\angle FAB = \angle BAM$. Suy ra $\triangle AEM = \triangle BEM$.  Suy ra $BE = BM, AE = AM$ và $AB$ là trung trực của $EM$, suy ra $EM \bot AB$. Do đó $EM \bot PQ$.

    $EM \bot PQ$ và $MP = MQ$ nên tam giác $EPQ$ cân.

    Bài 6. Cho tam giác $ABC$ nội tiếp đường tròn $(O)$ với góc $A$ nhọn. Gọi $D$ là điểm chính giữa của cung nhỏ $BC$ và $E, F$ lần lượt là trung điểm của $AC, AB$. Giả sử $DE, DF$ cắt lại với $(O)$ tại điểm thứ hai tương ứng là $Y$, $Z$. Đường tròn $(AEY)$ cắt $(AFZ)$ tại điểm thứ hai $M$. Gọi $N$ là trung điểm của $BC$ và đường tròn $(DNM)$ giao với $BC$ tại điểm thứ hai $X$. Chứng minh rằng $AX$ là tiếp tuyến của $(O)$.

    Gợi ý

    Gọi $L, K$ là giao điểm của $DZ, DY$ với $BC$.

    • Ta có $DL.DZ = DB^2 = DK.DY$, suy ra $LKYZ$ nội tiếp. Suy ra $EFZY$ nội tiếp.
    • Khi đó $AM, ZF, YE$ đồng quy tại $D$.
    • Chứng minh $E, M, F$ thẳng hàng.
    • Ta có $\angle XMD = \angle XND = 90^o$, suy ra $XM \bot AP$ và $AM = MP$ suy ra $XA = XP$.
    • Từ đó chứng minh được $AX$ là tiếp tuyến của $(O)$.

    Bài 7. (China 2010) Lấy $AB$ là dây cung của đường tròn tâm $O$, $M$ là điểm chính giữa cung $AB$ và $C$ là điểm nằm ngoài đường tròn $(O)$. Từ $C$ vẽ hai tiếp tuyến đến $(O)$ tại tiếp điểm $S, T$. Gọi $E$ là giao điểm của $MS$ và$ AB$, $F$ là giao điểm của $MT$ và $AB$. Từ $E, F$ vẽ các đường thẳng vuông góc với $AB$, cắt $OS$ và $OT$ lần lượt tại $X$ và $Y$. Một đường thẳng qua $C$ cắt $(O)$ tại $P$ và $Q$, $MP$ cắt $AB$ tại $R$. Chứng minh rằng $XY$ đi qua tâm đường tròn ngoại tiếp tam giác $PQR$.

    Gợi ý
    • Chứng minh $XE = XS$.
    • Chứng minh $P, Q, U, R$ đồng viên, $Q, S, E, U$ đồng viên.
    • Chứng minh $MS.ME = MQ.MU = MP.MR$. Suy ra $M$ thuộc trục đẳng phương của $(PQR)$ và $(X)$. Và $CS^2 = CP.CQ$ nê $C$ cũng thuộc trục đẳng phương của hai đường tròn trên.
    • Do đó $MC \bot ZX$.
    • Cmtt thì $MC \bot ZY$, suy ra $Z, X, Y$ thẳng hàng.

    Bài 8. Cho hai đường tròn $(C_1)$ và $(C_2)$ tiếp xúc ngoài với nhau tại tiếp điểm $M$. Gọi $AB$ là một tiếp tuyến chung của $()C1)$ và $(C_2)$ với $A, B$ phân biệt lần lượt là các tiếp điểm. Trên tia tiếp tuyến chung Mx của hai đường tròn ($Mx$ không cắt $AB$) lấy điểm $C$ khác $M$. Gọi $E$ và $F$ lần lượt là giao điểm thứ hai của $CA$ với $(C_1)$ và $CB$ với $(C_2)$. Chứng minh rằng tiếp tuyến của $(C_1)$ tại $E$, tiếp tuyến của $(C_2)$ tại $F$ và $Mx$ đồng quy.

    Gợi ý

    Gọi $G$ là giao điểm tiếp tuyến tại $E$ của $(C_1)$ và tại $F$ của $(C_2)$.

    •  Ta có $CE.CA = CF.CB$ nên $AEFB$ nội tiếp.
      $\angle GEA = \angle BAE = \angle CFE$, suy ra $GE$ cũng là tiếp tuyến tại $E$ của $(CEF)$.
    • Chứng minh tương tự thì $FG$ là tiếp tuyến tại $F$ của $(CEF)$.
      Suy ra $CG$ là đường đối trung của $CEF$.
    • Mặt khác $CM$ qua trung điểm $AB$ và $CEF \backsim CBA$ nên $CM$ cũng là đường đối trung của $CEF$.
    • Vậy $G \in CM$.

    Bài 9. Cho tam giác $ABC$ là tam giác nhọn, không cân nội tiếp đường tròn tâm O. Gọi $AD, BE, CF$ là ba đường phân giác trong của tam giác $ABC$. Gọi $L, M,N$ lần lượt là trung điểm của $AD, BE, CF$. Gọi $(O_1), (O_2), (O_3)$ lần lượt là các đường tròn đi qua $L$, tiếp xúc với $OA$ tại $A$; đi qua $M$, tiếp xúc với $OB$ tại $B$; đi qua $N$ tiếp xúc với $OC$ tại $C$. Chứng minh rằng $(O_1), (O_2), (O_3)$ có đúng hai điểm chung và đường thẳng nối hai điểm đó đi qua trọng tâm tam giác $ABC$.

    Gợi ý

    Gọi $AA_1, BB_1, CC_1$ là các đường cao của tam giác $ABC$. $A_2$ là giao điểm của $AO_1$ và $BC$.

    • Tam giác $A_2AD$ cân tại $A_2$ nên $A_2L \bot AL$. Và $O_1AL \backsim A_2AD$ nên $O_1$ là trung điểm của $AA_2$. Do đó $A_1$ thuộc đường tròn $(O_1)$ đường kính $AA_2$. Chứng minh tương tự thì $B_1, B_2 \in (O_2), C_1, C_2 \in (O_3)$.
    • Ta có $HA_1.HA = HB_1.HB$ và $OA, OB$ tiếp xúc với $(O_1), (O_2)$ và $OA = OB$ nên $HO$ là trục đẳng phương của $(O_1), (O_2)$.
    • Chứng minh tương tự thì $HO$ cũng là trục đẳng phương của các cặp đường tròn $(O_1), (O_3)$ và $(O_2), (O_3)$.
    • Do đó các đường tròn đi qua 2 điểm chung và đường thẳng qua 2 điểm chung là $HO$, và $HO$ qua $G$.

    Bài 10. Cho tam giác $ABC$ và điểm $D$ thay đổi trên cạnh $BC$. Đường tròn ngoại tiếp tam giác $ABD$ cắt $AC$ tại $E$, đường tròn ngoại tiếp tam giác $ACD$ cắt $AB$ tại $F$. Gọi $H$ là trực tâm.(a) Đường tròn ngoại tiếp tam giác $AEF$ và đường tròn đường kính $AH$ cắt nhau tại điểm thứ hai là $P$. Chứng minh $AP$ đi qua trung điểm của $BC$.(b) Chứng minh trực tâm tam giác $PEF$ thuộc một đường thẳng cố định.

    Gợi ý
    1. Các đường cao $AN, BE, CL$ cắt nhau tại $H$. Gọi $AM$ là trung tuyến, $HP \bot AM$. Chứng minh $P \in (AEF)$.
      $\dfrac{PK}{PN} = \dfrac{AC}{AB}$.
      $BF.BA = BD.BC, BK.BA = BL.BC$, suy ra $KF.BA = DL.BC$.
      Tương tự $EN.AC = DL.BC$, suy ra $\dfrac{KF}{EN} = \dfrac{AC}{AB}$.
      Do đó tam giác $PKF$ và $PNE$ đồng dạng, suy ra $P \in (AEF)$.
    2. Gọi $X, Y$ là giao điểm của $(P;PA)$ với $AB, AC$. Chứng minh trực tâm tam giác $PEF$ thuộc $XY$.

    Bài 11. Cho tam giác $ABC$ nhọn. Đường tròn đường kính $AB$ cắt đường cao $CD$ tại hai điểm $M$ và $N$, $M$ nằm ngoài tam giác; đường tròn đường kính $AC$ cắt đường cao $BE$ tại hai điểm $P$ và $Q$, $Q$ nằm ngoài tam giác.(a) Chứng minh 4 điểm $M, N, P, Q$ cùng thuộc một đường tròn. (b) Chứng minh $MP, NQ$ và $BC$ đồng quy.

    Gợi ý

    1.

    • Gọi $H$ là trực tâm tam giác $ABC$ và $AF$ là đường cao thì $HM.HN = HA.HF = HP.HQ$, suy ra $M, N, P, Q$ cùng thuộc đường tròn.

    2.

    • Ta có $AN^2 = AH.AF = AE.AC = AQ^2$, tương tự $AM = AP$. Suy ra $A$ là tâm của $(MNPQ)$.
    • Gọi $V$ là giao điểm của $MP$ và $QN$.
    • Ta có $\angle PFN = \angle PFA +\angle AFN = \angle AQP + \angle AMN = 180^o – \angle BAC – \angle PAN$.
    • Mặt khác $\angle PVN = 180^o – \angle VMQ – \angle VQM = 180^o – \angle PMN – \angle PQN – \angle HMQ – \angle HQM = 180^o – \angle PAN – \angle BAC$.
    • Do đó $\angle PVN = \angle PFN$, suy ra $FVNP$ nội tiếp.
    • Khi đó $\angle VFN = \angle VPN = \angle MQN = \dfrac{1}{2} \angle MAN = \angle MAB = 90^o – \angle AMN = 90^o – \angle APN = 90^o – \angle AFN = \angle NFC$.
    • Do đó $F, K, C$ thẳng hàng.

    Bài 12. (VMO 2014) Cho tam giác nhọn $ABC$ nội tiếp đường tròn $(O)$, trong đó $B, C$ cố định và $A$ thay đổi trên $(O)$. Trên các tia $AB$ và $AC$ lần lượt lấy các điểm $M$ và $N$ sao cho $MA = MC$ và $NA = NB$. Các đường tròn ngoại tiếp các tam giác $AMN$ và $ABC$ cắt nhau tại $P$ ($P \neq A$). Đường thẳng $MN$ cắt đường thẳng $BC$ tại $Q$. (a) Chứng minh rằng ba điểm $A, P, Q$ thẳng hàng. (b) Gọi $D$ là trung điểm của $BC$. Các đường tròn có tâm là $M, N$ và cùng đi qua $A$ cắt nhau tại $K$ ($K \neq A$). Đường thẳng qua $A$ vuông góc với $AK$ cắt $BC$ tại $E$. Đường tròn ngoại tiếp tam giác $ADE$ cắt $(O)$ tại $F (F \neq A)$. Chứng minh rằng đường thẳng $AF$ đi qua một điểm cố định.

    Gợi ý

    1.

    • Ta có $MA = MC$ và $NA = NB$ nên tam giác $MAC$ cân tại $M$ và tam giác $NAB$ cân tại $N$.
    • Do đó $\angle BMC = \angle BAC + \angle MAC = 2\angle BAC = \angle BOC$ hay tứ giác $BMOC$ nội tiếp.
    • Tương tự thì tứ giác $BONC$ nội tiếp nên $BMNC$ nội tiếp.
    • Khi đó $QM.QN = QB.QC$, lại có $APMN, APBC$ nội tiếp nên $A, P, Q$ thẳng hàng.

    2.

    • Tam giác $AMN$ có $OM \bot AN, ON \bot AM$ nên $AO \bot MN$. Mặt khác $AK \bot MN$ nên $A, O, K$ thẳng hàng.
    • Ta có $\angle OAE = \angle ODE = 90^o$ nên $AODE$ nội tiếp, do đó $\angle OAE = \angle OFE = 90^o$. Hơn nữa $OA = OF$ nên $A, F$ đối xứng qua $OE$.
    • Giả sử $OE$ cắt $AF$ tại $H$ thì $EH.EO = EA^2= EB.EC$ nên $BHOC$ nội tiếp, lại có $\angle OHA = 90^o$ nên $AH$ đi qua $G$ là điểm chính giữa cung $BC$ không chứa $O$ của đường tròn ngoại tiếp tam giác $OBC$.
    • Vậy $AF$ luôn đi qua điểm $G$ cố định.