Hoán vị

1.Định nghĩa

Cho tập hợp A có n(n1) phần tử. Khi sắp xếp n phần tử này theo một thứ tự ta được một \textbf{hoán vị } các phần tử của tập A (gọi tắt là một hoán vị của A).

Ví dụ 1. Các hoán vị của tập A=1,2,3(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1).

2.Tính chất

Số các hoán vị của một tập gồm n phần tử là Pn=n!=n(n1)(n2)2.1
Quy ước: 0!=1

Ví dụ 2. Có 6 con tem khác nhau cần dán vào 6 bì thư khác nhau. Hỏi có bao nhiêu cách dán?

Lời giải. Mỗi cách dán 6 con tem và 6 bì thư là một hoán vị của 6 phần tử, do đó số cách dán là số hoán vị của 6 phần tử: P6=6!=720 cách.

Ví dụ 3. Có 5 sách văn và 7 sách toán xếp thành một hàng. Có bao nhiêu cách xếp thỏa:

a. Xếp bất kì.

b. Các sách văn kế nhau, các sách toán kề nhau.

Lời giải.

a. Có 7 + 5 = 12 cuốn sách. Mỗi cách xếp là một hoán vị của 12 phần tử nên số cách xếp là số hoán vị của 12 phần tử. Do đó có 12! cách.

b. 7 sách toán xếp kề nhau có 7! cách.

5 sách văn kề nhau có 5! cách.

Xếp bộ sách toán và bộ sách văn có 2 cách.

Do đó số cách xếp thỏa đề bài là 2.7!5! cách.

Bài tập. 

  1. Có 4 quyển sách Toán, 5 quyển sách Lý và 6 quyển sách Hóa. Hỏi có bao nhiêu cách xếp các quyển sách này lên kệ dài sao cho:
    a. Các quyển sách được xếp tùy ý?
    b. Các quyển sách cùng môn được xếp cạnh nhau?
  2.  Xếp 5 nam và 5 nữ vào hai dãy ghế, mỗi dãy có 5 ghế. Hỏi có bao nhiêu cách xếp biết:
    a. Xếp tùy ý.
    b. Nam 1 dãy và nữ 1 dãy
  3.  Từ các số 1, 2, 3, 4, 5 có thể lập được bao nhiều số
    a. Có 5 chữ số khác nhau.
    b. Có 5 chữ số khác nhau và chia hết cho 2.

Leave a Reply

Your email address will not be published. Required fields are marked *