Chuyên đề hình học: Bổ đề Eriq và ứng dụng

BỔ ĐỀ ERIQ VÀ ỨNG DỤNG (Trích tập san Star số 3)

Trương Tuấn Nghĩa – Lớp 12 Trường ĐHKHTN ĐHQG HN

Giới thiệu.

Bổ đề $ERIQ$ được đặt tên bởi tác giả Kostas Vittas trên diễn đàn AoPS với nick name vittasko. (là các chữ viết tắt của cụm từ $Equal$ $Ratios$ $In$ $Quadrilateral$). Nội dung bổ đề:

Cho tứ giác $ABCD$, lấy các điểm $M,N$ nằm trên cạnh $AD,BC$ sao cho
$\dfrac{MA}{MD}=\dfrac{NB}{NC}.$
Khi đó, trung điểm của $AB,MN,CD$ thẳng hàng.

Chứng minh.
Gọi $X,Y,Z$ là trung điểm của $AB,MN,CD$. Lấy $P,Q$ nằm trên $XM,XN$ sao cho $DP,CQ\parallel AB.$

Khi đó, theo định lý Thales, ta có $\frac{MA}{MD}=\frac{AX}{DP}=\frac{MX}{MP};\text{ }\frac{NB}{NC}=\frac{AY}{CQ}=\frac{NX}{NQ}.$ Suy ra
$DP=CQ;$ $\frac{MX}{MP}=\frac{NX}{NQ}$ hay $MN\parallel PQ$.
Do $DP=CQ;DP\parallel CQ$ nên $PCQD$ là hình bình hành hay $Z$ là trung điểm $PQ$. \

Kết hợp với $Y$ là trung điểm của $MN$, ta có $X,Y,Z$ thẳng hàng.

Nhận xét. Ta có thể chứng minh $X,Y,Z$ là các điểm chia cùng tỉ lệ trên $AB,MN,CD$ thẳng hàng bằng cách tương tự. Tiếp theo, ta sẽ đến với một số các mở rộng và ứng dụng của bổ đề trên.

Ứng dụng

Bài 1.  Cho tứ giác $ABCD$, lấy $M,N$ nằm trên cạnh $AD,BC$ sao cho $\frac{MA}{MD}=\frac{NB}{NC}.$ Lấy các điểm $X,Y,Z$ sao cho các tam giác $XAB,YMN,ZCD$ đồng dạng và $X,Y,Z$ lần lượt nằm trên các nửa mặt phẳng bờ $AB$ không chứa $C$, $MN$ không chứa $D$ và $CD$ chứa $A$. Chứng minh rằng $X,Y,Z$ thẳng hàng.
Lời giải.
Lấy $P,Q\in XM,XN$ sao cho $DP\parallel XA,CQ\parallel XB$.

Theo định lý Thales, $DP=XA.\frac{MD}{MA},CQ=XB.\frac{NB}{NC}$ mà $\frac{MA}{MD}=\frac{NB}{NC}$ nên $DP=CQ$
Mặt khác vì $\angle AXB=\angle CZD$ nên $\angle ZDP=\angle ZCQ.$
Do đó, $\vartriangle ZDP=\vartriangle ZCQ(c.g.c)$ dẫn tới $\angle PZD=\angle QZC$ hay $\angle CZD=\angle PZQ.$
Vì $DP\parallel XA,CQ\parallel XB$ nên $\frac{XM}{MP}=\frac{XN}{NQ}(=\frac{MA}{MD})$ nên $MN\parallel PQ$.
Lấy $Y’\in XZ$ sao cho $\frac{XY’}{Y’Z}=\frac{XM}{MP}=\frac{XN}{NQ}.$
Theo định lý Thales, $\frac{XY’}{Y’Z}=\frac{XM}{MP}=\frac{XN}{NQ}$ nên $$\begin{aligned}
& Y’M\parallel ZP,Y’N\parallel ZQ \
& Y’M=Y’N(=ZP.\frac{XY’}{XZ}=ZQ.\frac{XY’}{XZ}) \
\end{aligned}$$
Hay $\angle MY’N=\angle MYN,Y’M=Y’N.$
Do đó, $Y’\equiv Y$ hay $X,Y,Z$ thẳng hàng.

Bài 2. Cho tứ giác $ABCD$ có phân giác trong của các góc $\angle A,\angle B,\angle C,\angle D$ đồng quy tại $I$. $AD$ cắt $BC$ tại $E$, $AB$ cắt $CD$ tại $F$. Gọi $M,N$ là trung điểm $AC,EF.$ Chứng minh rằng $M,N,I$ thẳng hàng.
Lời giải.

Gọi $P,Q$ là giao điểm của đường thẳng qua $I,$ vuông góc với $IB$ với $BA,AC.$
Đầu tiên, dễ thấy $I$ là giao 3 phân giác $\vartriangle ABE$.
Do $BI$ là phân giác $\angle ABC$ nên $\vartriangle BPQ$ cân tại $B$ hay $I$ là trung điểm $PQ.$


Ta có $\angle BPQ=90{}^\circ -\frac{\angle ABE}{2}=\frac{\angle AEB}{2}+\frac{\angle BAE}{2},\angle IAB=\frac{\angle BAE}{2}$ nên $\angle PIA=\frac{\angle AEB}{2}.$
Tương tự thì $\angle EIQ=\frac{\angle BAE}{2}.$
Do đó, $\vartriangle PIA\sim \vartriangle QEA(g.g)$ nên $PA.QE=PI.QI.$
Hoàn toàn tương tự, $PF.QC=PI.QI.$
Vậy ta có $\frac{PA}{FA}=\frac{QC}{QE}$ nên theo bổ đề $ERIQ$, $M,I,N$ lần lượt là trung điểm của $PQ,AC,EF$ thẳng hàng.

Bài 3. Cho tứ giác $ABCD$ nội tiếp, không là hình thang. Gọi $E,F$ là giao điểm của các cặp đường thẳng $(AB,CD);(AD,BC).$ Giả sử phân giác của góc $\angle AEC,\angle AFB$ cắt nhau tại $I$. Gọi $M,N$ lần lượt là trung điểm của $AC,BD$. Chứng minh rằng $I\in MN.$

Lời giải.
Giả sử các điểm có vị trí như hình vẽ, các trường hợp khác tương tự.


Gọi $P,Q$ lần lượt là giao điểm của $FI$ với $AB,CD$.
Do $\angle ABC+\angle CDA=180^\circ $ nên $\angle FAB=\angle FCD$ nên $\triangle FAB \backsim \triangle FCD(g.g)$ () và $\angle EPQ=\angle FAB+\angle AFI=\angle FCD+\angle BFI=\angle EQP$
hay tam giác $EPQ$ cân tại $E$.
Mà $EI$ là phân giác $\angle AED$ nên $I$ là trung điểm $PQ$.
Mặt khác theo (
), $\frac{FA}{FB}=\frac{FC}{FD}$ nên theo tính chất đường phân giác, $\frac{AP}{PB}=\frac{CQ}{QD}.$
Do đó theo bổ đề $ERIQ$, trung điểm $AC,BD,PQ$ thằng hàng hay $I\in MN$. (đpcm)

Bài 4. (AOPS). Cho $\vartriangle ABC$, trực tâm $H$,$P$ bất kỳ trên $BC$, $X$ bất kỳ trên $HP$. Gọi $E,F\ne A$ là giao điểm của đường tròn đường kính $AX$ với $CA,AB$. Tiếp tuyến tại $E,F$ của $(AEF)$ cắt nhau tại $T$. Đường thẳng qua $P$ vuông góc $BC$ cắt $CA,AB$ tại $Z,Y$. Gọi $L$ là trung điểm $ZY$. Chứng minh rằng $LT$ chia đôi $BC.$

Lời giải.
Trước hết, ta phát biểu và chứng minh hai bổ đề sau:
Bổ đề 1. Cho $\vartriangle ABC$, đường cao $BE,CF$. Gọi $M$ là trung điểm của $BC.$ Khi đó, $ME,MF$ là tiếp tuyến của $(AEF)$.
Bổ đề trên có thể chứng minh dễ dàng qua các phép cộng góc.
Bổ đề 2.Cho tứ giác $ABCD$, $AB$ cắt $CD$ tại $E$. Gọi $H,K$ là trực tâm của $\vartriangle EAD,\vartriangle EBC$. Khi đó, $HK$ là trục đẳng phương của 2 đường tròn đường kính $BD,AC$.
Chứng minh bổ đề
Gọi $M,N$ là hình chiếu của $B,C$ lên $EC,EB$. Khi đó, $MNBC$ là tứ giác nội tiếp nên $KN.KC=KM.KB.$

Mặt khác, $M,N$ lần lượt nằm trên đường tròn đường kính $BD,AC$ mà $KN.KC=KM.KB$ nên $K$ nằm trên trục đẳng phương của 2 đường tròn trên. Chứng minh tương tự, $HK$ là trục đẳng phương của đường tròn đường kính $BD$ và đường tròn đường kính $AC$.

Trở lại bài toán,


Gọi $M,N$ là giao điểm của $XF,XE$ với $CA,AB.$ Khi đó, theo bổ đề 1 dễ có $T$ là trung điểm của $MN$ nên theo bổ đề $ERIQ$, ta chỉ cần chứng minh $\frac{BN}{BZ}=\frac{CM}{CY}.$
Gọi $U,V$ là hình chiếu của $N,M$ lên $BC.$ Theo bổ đề 2 thì $HX$ là trục đẳng phương của đường tròn đường kính $MB,NC.$ Dễ thấy $U,V$ lần lượt nằm trên đường tròn đường kính $CN,BM$ nên và $P$ nằm trên $HX,BC$ nên ta có $PU.PC=PV.PB$ hay $\frac{PB}{PU}=\frac{PC}{PV}$, và theo định lý Thales thì
$\frac{BN}{BZ}=\frac{CM}{CY}$ .
Vậy ta thu được $LT$ chia đôi $BC.$

Bài 5. Cho $\vartriangle ABC$, $P$ bất kỳ trên $BC$, $J$ là trung điểm của $AP$. Gọi $E,F$ là giao điểm của $(J,JA)$ với $CA,AB.$ Gọi $L$ là tâm đường tròn ngoại tiếp $\vartriangle JEF$. Chứng minh rằng khi $P$ di chuyển trên $BC$ thì $L$ chuyển động trên đường thẳng cố định.

Lời giải
Trước hết ta chứng minh bổ đề sau:
Cho $\vartriangle ABC$, lấy điểm $M$ cố định trên $BC,P$ bất kỳ trên $BC.$ Gọi $E,F$ là hình chiếu của $P$ lên $CA,AB$, $K,L$ là hình chiếu của $M$ lên $CA,AB$. Khi đó, tỉ số $\frac{EK}{FL}$ không phụ thuộc vào vị trí của $P$ trên $BC.$

Chứng minh.
Gọi $X,Y$ là hình chiếu của $M,P$ lên $PF,MK$. Khi đó,
$$\begin{aligned}
& MX=LF=MP.\cos \angle XMP=MP.cos\angle ABC; \
& YP=KE=MP.\cos \angle YPM=MP.\cos \angle ACB. \
\end{aligned}$$
Do đó, $\frac{EK}{FL}=\frac{\cos \angle ACB}{\cos \angle ABC}.$

Trở lại bài toán,


Lấy $M,N$ cố định trên $BC.$ $X,Z$ là hình chiếu của $M$ lên $AB,AC;$ $Y,T$ là hình chiếu của $N$ lên $AB,AC.$ Khi đó, theo bổ đề 1 thì dễ có được $\frac{YF}{YX}=\frac{TE}{TZ}.$ (1)
Do $J$ là tâm đường tròn ngoại tiếp $\vartriangle AEF$ nên $\angle FJE=2.\angle BAC.$ Mà $L$ là tâm đường tròn ngoại tiếp của $\vartriangle JEF$ nên $\angle FLE=360{}^\circ -4.\angle BAC.$
Theo (1) và bổ đề $ERIQ$ thì các đỉnh của tam giác cân có đáy $FE,YT,XZ$ và có góc ở đỉnh là $360{}^\circ -4.\angle BAC$ thì thẳng hàng mà $M,N$ cố định nên $L$ nằm trên đường thẳng cố định. (đpcm)

Bài 6.  (Nguyễn Văn Linh) Cho $\vartriangle ABC$, đường cao $AD$, $K\in AD.$ Gọi $E,F$ lần lượt là giao điểm của $BK,CK$ với $CA,AB.$ Giả sử $DE,DF$ cắt lại đường tròn ngoại tiếp $\vartriangle ABD;\vartriangle ACD$ tại $M,N$. Gọi $T$ là trung điểm của $MN.$ Chứng minh rằng $AT$ chia đôi đoạn thẳng $EF.$

Lời giải
Gọi $BP,CQ$ là đường cao của $\vartriangle ABC$, đường thẳng qua $A$ song song $BC$ cắt $DE,DF$ tại $K,L.$ Theo kết quả quen thuộc $DF,DE$ đối xứng nhau qua $AD$ và $DQ,DP$ đối xứng nhau qua $AD.$ Nên $A$ là trung điểm của $KL.$


Khi đó, theo bổ đề $ERIQ,$ ta chỉ cần chứng minh $\frac{NL}{NF}=\frac{MK}{ME}.$
Ta có, $A,M,P,D,Q$ nằm trên đường tròn và $A,N,Q,D,C$ nằm trên đường tròn. (1) \
Do đó, $\angle NAQ=\angle NDQ,\angle MAP=\angle MDP.$ Do $DF,DE$ đối xứng nhau qua $AD$ và $DQ,DP$ đối xứng nhau qua $AD,$nên $\angle QDF=\angle PDE.$
Từ (1), ta cũng có
$\angle AQN=\angle ADN=\angle ADM=\angle APM.$
Do đó, $\vartriangle ANQ\sim \vartriangle AMP.$ (2) \
Mặt khác, $\frac{FL}{AL}=\frac{\sin LFA}{\sin LAF};\frac{KA}{KE}=\frac{\sin KAE}{\sin KEA}.$ Vì $AK=AL;\angle FAL=\angle ABC;\angle EAK=\angle ACB,$ nên
$$\begin{aligned}
\frac{FL}{AL}.\frac{KA}{KE} &=\frac{\sin LFA}{\sin FAL}.\frac{\sin KAE}{\sin KEA}=\frac{FL}{KE} \
& =\frac{\sin LFA}{\sin KEA}.\frac{\sin KAE}{\sin FAL}=\frac{\sin ACB}{\sin ABC}.\frac{\sin LFA}{\sin KEA}=\frac{AB}{AC}.\frac{\sin LFA}{\sin KEA}. \
\end{aligned}$$
Ta lại có
$$\frac{\sin LFA}{\sin KEA}=\frac{\sin NFA}{\sin NAF}.\frac{\sin MAP}{\sin MEA}=\frac{AN}{FN}.\frac{ME}{MA}=\frac{AN}{AM}.\frac{ME}{FN}=\frac{AQ}{AP}.\frac{ME}{FN}=\frac{AC}{AB}.\frac{ME}{FN}.$$ (do (2)). Vậy nên $$\frac{FL}{KE}=\frac{AB}{AC}.\frac{\sin LFA}{\sin KEA}=\frac{AB.AC}{AC.AB}.\frac{ME}{NF}=\frac{ME}{NF}.$$

Bài 7. (Chọn đội tuyển PTNK TPHCM) Cho $\vartriangle ABC$, trực tâm $H.$ Lấy điểm $M$ bất kỳ trên cung $BHC$ của $(BHC)$. Trên $BM,CM$ lấy các điểm $E,F$ sao cho $\angle ECA=\angle FBA=90{}^\circ .$ Chứng minh rằng khi $M$ chuyển động thì trung điểm $EF$ luôn nằm trên đường thẳng cố định.

Lời giải. Ở bài toán này, ta có hai hướng tiếp cận như sau:
Cách 1.
Gọi $N$ là giao điểm của $CE,BF.$ Lấy $P$ đối xứng với $N$ qua $BC$, $BP,CP$ lần lượt cắt $CE,BF$ tại $X,Y.$ Dễ dàng chứng minh $B,H,M,P,C$ nằm trên đường tròn.


Ta sẽ chứng minh $\frac{XE}{YF}$ không đổi khi $M$ chuyển động trên cung $BHC.$
Do $\angle BMC=\angle BNC=180{}^\circ -\angle BAC$ nên $\angle CME=\angle CNF$ hay 4 điểm $M,N,E,F$ nằm trên đường tròn nên $\angle CFY=\angle BEX.$ (1)
Mặt khác, do $B,H,M,P,C$nằm trên đường tròn nên $\angle YCF=\angle MCP=\angle XBE.$ (2)
Từ (1) và (2) suy ra $\vartriangle CYF\sim \vartriangle BXE(g.g)$. Do đó, $\frac{XE}{YF}=\frac{BX}{CY}$ không đổi.
Vậy $\frac{XE}{YF}$ không đổi khi $M$ chuyển động trên cung $BHC$ nên theo bổ đề $ERIQ$, trung điểm của $EF$ luôn nằm trên đường thẳng cố định. \medskip

Cách 2. Trước hết ta phát biểu và chứng minh bổ đề sau: \textbf{(IMO2009 Shortlist G4)} Cho tứ giác $ABCD$ nội tiếp đường tròn $(O).$ $AC$ cắt $BD$ ở $E,$ $AD$ cắt $BC$ tại $F.$ Gọi $M,N$ lần lượt là trung điểm của $AB,CD$. Khi đó, $EF$ tiếp xúc với đường tròn ngoại tiếp của $\vartriangle EMN.$
Chứng minh.
Gọi $I$ là trung điểm của $EF.$ Xét tứ giác toàn phần $AEBF.CD$ có $I,M,N$ lần lượt là trung điểm của các đường chéo $EF,AB,CD$ nên $I,M,N$ thẳng hàng.


Ta sẽ chứng minh $\overline{IM}.\overline{IN}=I{{E}^{2}}.$
Gọi $L,P,T$ lần lượt là giao điểm của $AB$ với $CD$, $EF$ với $AB,CD$. Khi đó,
$(LP,AB)=(LT,CD)=-1$
nên áp dụng hệ thức $Maclaurin$ và $ABCD$ là tứ giác nội tiếp, ta thu được
$\overline{LM}.\overline{LP}=\overline{LA}.\overline{LB}=\overline{LC}.\overline{LD}=\overline{LT}.\overline{LN}$
nên 4 điểm $M,P,N,T$ nằm trên đường tròn.
Do đó, $\overline{IM}.\overline{IN}=\overline{IP}.\overline{IT}.$
Mặt khác, ta lại có $(EF,PT)=-1$ nên theo $I{{E}^{2}}=\overline{IT}.\overline{IP}$.
Vậy $\overline{IM}.\overline{IN}=I{{E}^{2}}.$ Do đó, $EF$ là tiếp tuyến của đường tròn ngoại tiếp $\vartriangle EMN.$ (đpcm)

Trở lại bài toán,
Gọi $N$ là giao điểm của $CE,BF.$ Lấy $I,P,Q$ lần lượt là trung điểm của $BC,EF,MN.$

Theo lời giải thứ nhất, ta có 4 điểm $M,N,E,F$ nằm trên đường tròn nên theo bổ đề 4 thì $BC$ là tiếp tuyến của $(QCP)$ hay $I{{C}^{2}}=\overline{IQ}.\overline{IP}.$

Do đó, $I_I^{IC^2}:P\leftrightarrow Q.$ (1)
Mặt khác $V_{N}^{2}:Q\mapsto M$ mà $M$ chuyển động trên cung $BHC$ nên $Q$ chuyển động trên đường tròn $(\omega )$ cố định. (2)

Từ (1) và (2), ta thu được $P$ chuyển động trên đường thẳng ảnh của $(\omega )$ qua ${I}_{I}^{IC^2}:P\leftrightarrow Q.$

Nhận xét. Qua các bài toán trên, ta có thể thấy được ứng dụng của bổ đề $ERIQ$ trong các bài toán hình học. Sau đây sẽ là một số các bài toán luyện tập.

Bài tập tự giải.

  1. Cho $\vartriangle ABC$ nội tiếp $(O)$. Tiếp tuyến của $(O)$ tại $A$ cắt tiếp tuyến của $(O)$ tại $B,C$ lần lượt tại $E,F$. Gọi $M,N$ là trung điểm của $BF,CE$. Đường thẳng qua $O$ và vuông góc với $OA$ cắt $BC$ tại $S$. Chứng minh rằng $MN$ chia đôi $SO$.

  2. Cho $\vartriangle ABC,$ trực tâm $H$, trung tuyến $AM.$ $P$ bất kỳ trên $HM$. Đường tròn đường kính $AP$ cắt $CA,AB$ tại $E,F$. Tiếp tuyến tại $E,F$ của $(AEF)$ cắt nhau tại $T$. Chứng minh rằng $TB=TC.$

  3. Cho $\vartriangle ABC$, đường tròn $(K)$ đi qua $B,C$ cắt $CA,AB$ tại $E,F$. Gọi $H$ là giao điểm của $BE,CF.$ Lấy $P$ bất kỳ trên $BC$. Đường thẳng qua $P$ và song song với $AH$ cắt $CA,AB$ tại $X,Y.$Lấy $Q$ bất kỳ trên $HP.$ Đường thẳng qua $Q$ song song với $BE,CF$ cắt $CA,AB$ tại $X,Y,Z,T.$ \
    a) Chứng minh rằng 4 điểm $X,Y,Z,T$ nằm trên đường tròn $(L)$. \
    b) $KL$ cắt trung trực $PQ$ tại $Z$. Chứng minh rằng $\vartriangle ZPQ\sim \vartriangle KBC.$

  4. Cho $\vartriangle ABC$, $P$ bất kỳ trên $BC.$ Đường thẳng qua $P$ song song với $CA,AB$ cắt trung trực $BA,AC$ tại $M,N$. Chứng minh rằng khi $P$ chuyển động trên $BC$, tâm đường tròn ngoại tiếp của $\vartriangle MNP$ luôn nằm trên một đường thẳng cố định.

  5. (Việt Nam TST 2008) Cho $\triangle ABC$ nhọn không cân nội tiếp $(O).$ Với $k\in {{\mathbb{R}}^{+}},$ trên các đoạn phân giác $AD,BE,CF,$ lấy $M,N,P$ sao cho $\frac{AM}{AD}=\frac{BN}{BE}=\frac{CP}{CF}=k.$

Vẽ đường tròn $({{O}_{1}})$ đi qua $A,M$ và tiếp xúc với $OA;$

Vẽ đường tròn $({{O}_{2}})$ đi qua $B,N$ và tiếp xúc với $OB;$

vẽ đường tròn $({{O}_{3}})$ đi qua $C,P$ và tiếp xúc với $OC.$

Tìm tất cả các giá trị $k$ sao cho $(O_1),(O_2),(O_3)$ có đúng hai điểm chung.

  1. Cho tam giác $ABC$ nhọn không cân có điểm $D$ thay đổi trong tam giác sao cho $\angle ABD=\angle ACD,$ lấy $E\in AB,F\in AC$ sao cho $D$ là trực tâm tam giác $AEF.$ Chứng minh rằng:
    a) Trung tuyến đỉnh $D$ của tam giác $DEF$ luôn đi qua điểm cố định.
    b) Trung trực $EF$ luôn đi qua điểm cố định.
    c) Tâm đường tròn ngoại tiếp tam giác $(DEF)$ luôn thuộc đường cố định.
    d) Trục đẳng phương của $(BDE),(CDF)$ luôn đi qua một điểm cố định.

Tài liệu tham khảo.

  1. Nguyễn Văn Linh, Về bài 3 đề VMO 2016.
  2. Nguyễn Văn Linh, 2015, Định lý ERIQ, \url{https://nguyenvanlinh.wordpress.com
  3. Diễn đàn \url{artofproblemsolving.com/community
  4. Trần Quang Hùng, Các bài giảng đội tuyển.