1.Cộng hai số nguyên cùng dấu
- – Muốn cộng hai số nguyên dương, ta cộng chúng như cộng hai số tự nhiên.
– Muốn cộng hai số nguyên âm, ta cộng hai số đối của chúng rồi thêm dấu trừ đằng trước kết quả.
– Tổng của hai số nguyên cùng dấu luôn cùng dấu với hai số nguyên đó.
Chú ý. Nếu $a, b$ là các số nguyên dương.
- $(+a) +(+b) = a+b$
- $(-a) + (-b) = -(a+b)$.
Ví dụ 1.
a) $ (+2) +(+5) = 2+5 = 7$
b) $ (-4) + (-6) = -(4+6) = -10$.
2. Cộng hai số nguyên khác dấu
- Cộng hai số nguyên đối nhau: $a+(-a) = 0$.
-
Công hai số nguyên khác dấu không đối nhau ta làm như sau:
- Nếu số dương lớn hơn số đối của số âm thì ta lấy số dương trừ đi số đối của số âm.
- Nếu số dương bé hơn số đối của số âm thì ta lấy số đối của số âm trừ đi số dương rồi thêm dấu trừ trước kết quả.
Chú ý. Khi cộng hai số nguyên trái dấu:
– Nếu số dương lớn hơn số đối của số âm thì ta có tổng dương.
– Nếu số dương bằng số đối của số âm thì ta có tổng bằng $0 .$
– Nếu số dương bé hơn số đối của số âm thì ta có tổng âm.
Ví dụ 2.
a) $97+(-83)=97-83=14($ vì $97>83)$;
b) $45+(-45)=0$;
c) $22+(-64)=-(64-22)=-42($ vì $64>22$ ).
3. Tính chất của phép cộng các số nguyên
a) Tính chất giao hoán
$$a + b = b+ a$$
b) Tính chất kết hợp
$$ a + (b+c) = (a+b) + c$$
Ví dụ 3. Tính một cách hợp lí:
a) $\mathrm{S}=12+(-91)+188+(-9)+400$
b) $\mathrm{~T}=(-2019)+100+(-81)+2000$
4. Phép trừ hai số nguyên
Muốn trừ số nguyên a cho số nguyên $\mathrm{b}$, ta cộng a với số đối của $\mathrm{b}$.
$$
a-b=a+(-b)
$$
Ví dụ 4.
\begin{aligned}
&5:(+5)-(+2)=5+(-2)=5-2=3 \
&1-2=1+(-2)=-(2-1)=-1 ; \
&1-(-2)=1+2=3 ; \
&(-10)-(-12)=(-10)+(12)=12-10=2 .
\end{aligned}
Chú ý
– Cho hai số nguyên a và b. Ta gọi $\mathrm{a}-\mathrm{b}$ là hiệu của a và $\mathrm{b}$ (a được gọi là số bị trừ, $\mathrm{b}$ là số trừ).
– Phép trừ luôn thực hiện được trong tập hợp số nguyên. Như vậy, hiệu của hai số nguyên a và $\mathrm{b}$ là tổng của a và số đối của $\mathrm{b}$.
5. Quy tắc dấu ngoặc
Khi bỏ dấu ngoặc, nếu đằng trước dấu ngoặc:
– có dấu “+”, thì vẫn giữ nguyên dấu của các số hạng trong ngoặc
$$
+(a+b-c)=a+b-c
$$
– có dấu “-“, thì phải đổi dấu tất cả các số hạng trong ngoặc
$$
-(a+b-c)=-a-b+c
$$
Bài tập rèn luyện
Bài 1. Thực hiện các phép tính sau:
a) $23+45$;
b) $(-42)+(-54)$;
c) $2025+(-2025)$;
d) $15+(-14)$;
e) $35+(-135)$.
Bài 2. Em hãy dùng số nguyên âm để giải bài toán sau:
Một chiếc tàu ngầm đang ở độ sâu $20 \mathrm{~m}$, tàu tiếp tục lặn xuống thêm $15 \mathrm{~m}$ nữa. Hỏi khi đó, tàu ngầm ở độ sâu là bao nhiêu mét?
Bài 3. Thực hiện các phép tính sau:
a) $6-8$
b) $3-(-9)$
c) $(-5)-10$;
d) $0-7$;
e) $4-0$;
g) $(-2)-(-10)$
Bài 4. Tính nhanh các tổng sau:
a) $\mathrm{S}=(45-3756)+3756$;
b) $\mathrm{S}=(-2021)-(199-2021)$.
Bài 5. Bỏ dấu ngoặc rồi tính:
a) $(4+32+6)+(10-36-6)$;
b) $(77+22-65)-(67+12-75)$;
c) $-(-21+43+7)-(11-53-17)$