Đáp án Phổ thông Năng khiếu 2010

Bài 1. (Toán chung)  Cho hình chữ nhật $ABCD$ có tâm $O$, cạnh $AB = 3a$ và $\angle ABD = 30^\circ$. Gọi $G$ là trọng tâm của tam giác $AOD$; $AG$ cắt $CD$ tại $E$.

a. Chứng minh tứ giác $ADOE$ nội tiếp một đường tròn.

b. Cho $DG$ cắt $AB$ tại $F$.Tính diện tích tứ giác $AFOE$.

c. Đường tròn tâm $J$ nội tiếp tam giác $BCD$ tiếp xúc với $DB, CD$ tại $I$ và $K$. Gọi $H$ là giao điểm của $IK$ và $AC$. Tính $\angle IOJ$ và độ dài đoạn $HE$ theo $a$.

Lời giải

a.

  • Ta có $OA = OD$ do $ABCD$ là hình chữ nhật và $\angle ADO = 90^\circ – \angle ABD = 60^\circ$. Suy ra tam giác $ADO$ đều.
  • Mà $G$ là trọng tâm nên cũng là tâm đường tròn nội tiếp, ngoại tiếp của tam giác $OAD$. Suy ra AG là phân giác $AOD$.
  • Suy ra $\triangle ADE = \triangle AOE $ (c.g. c), từ đó $\angle AOE = \angle ADE = 90^\circ$.
  • Xét tứ giác ADEO có $\angle ADE + \angle AOE = 180^\circ$ nên là tứ giác nội tiếp.

b. Gọi $P$ là giao điểm của $AE$ và $OD$.

  • Tam giác $OAD$ đều nên $DG$ là trung trực của $AO$, suy ra $FA = FO$,tam giác $FAO$ cân tại $F$. Do đó $\angle FAO = \angle FOA = 90^\circ – \angle AOD = 30^\circ = \angle OAE$.
  • Suy ra $OF||AE$, suy ra $OFAE$ là hình thang.
  • $AD = AB \tan \angle ABD = 3a \tan 30^\circ = a\sqrt{3}$.
  • Tính được $AE = 2a, OF = AF = a$ và $OP = \dfrac{a\sqrt{3}}{2}$.
  • Suy ra $S_{AEOF} = \dfrac{1}{2}(OF+AE)OP = \dfrac{3a^2\sqrt{3}}{4}$.

c.

  • Ta có $\triangle OBC = \triangle OAD$ nên $\triangle OBC$ cũng là tam giác đều.
    Suy ra $BO = BC$, suy ra $\triangle BOJ = \triangle BCJ$ (c.g.c)
  • Mà $\angle BCJ = \dfrac{1}{2} \angle BCD = 45^\circ$ nên $\angle BOJ = 45^\circ$ hay $\angle IOJ = 45^\circ$.
    Ta có tứ giác $JIDK$ nội tiếp, suy ra $\angle JIK = \angle JDK = \dfrac{1}{2} \angle IDC = 15^\circ$. Và $\angle JOH = \angle BOC – \angle JOI = 15^\circ$.
  • Ta có $\angle JIK = \angle JOH$ nên tứ giác $JIOH$ nội tiếp, suy ra $\angle JHO = 90^\circ$.
  • Tam giác $JOC$ cân tại $J$ ($BJ$ là đường trung trực của $OC$) mà $JH \bot OC$, suy ra $H$
    là trung điểm của $OC$, do đó $OH = \dfrac{1}{2}OC = \dfrac{1}{2}OA = \dfrac{a\sqrt{3}}{2}$.
  • Từ đó áp dụng định lý Pytagore cho tam giác $EOH$ tính được $EH = \dfrac{a\sqrt{7}}{2}$

 

Bài 2. (Toán chuyên)  Cho đường tròn tâm $O$, bán kính $R$, dây cung $BC$ cố định có độ dài $R\sqrt{3}$. $A$ là một điểm thay đổi trên cung lớn $BC$. Gọi $E$ là điểm đối xứng của $C$ qua $AB$; $F$ là điểm đối xứng của $B$ qua $AC$. Các đường tròn ngoại tiếp các tam giác $ABE$ và $ACF$ cắt nhau tại $K$ ($K \neq A$).

a. Chứng minh $K$ luôn thuộc một đường tròn cố định.
b. Xác định vị trí của $K$ để tam giác $KBC$ có diện tích lớn nhất và tính diện tích đó theo $R$.
c. Gọi $H$ là giao điểm của $BE$ và $CF$. Chứng minh rằng tam giác $ABH$ đổng dạng với tam giác $ACK$ và $AK$ đi qua điểm cố định.

Lời giải

a.

  • Từ $BC = R\sqrt{3}$ nên tính được $\angle BAC = 60^o$, suy ra $\angle ABE = \angle AEB = 30^o$ ($\Delta ABE$ cân tại $A$).
  • Tứ giác $ABKE$ nội tiếp, suy ra $\angle AKB = \angle AEB = 30^o$.
  • Chứng minh tương tự ta cũng có $\angle AKC = \angle AFC = 30^o$.
  • Từ đó $\angle BKC = \angle AKB + \angle AKC = 60^o$.
  • Xét tứ giác $OBKC$ có $\angle BOC + \angle BKC = 120^o + 60^o = 180^o$ nên là tứ giác nội tiếp. Vậy $K$ thuộc đường tròn ngoại tiếp tam giác $OBC$ cố định.

b.

  • Ta có $S_{KBC} = \dfrac{1}{2}BC.KT$($T$ là hình chiếu của $T$ trên $BC$).
  • Suy ra $S_{KBC}$ max khi và chỉ khi $KT$ max khi và chỉ khi $K$ là điểm chính giữa cung lớn $BC$ của đường tròn ngoại tiếp tam giác $OBC$. Khi đó $A$ là điểm chính giữa cung lớn $BC$ của $(O)$.
  • Khi đó tam giác $BCK$ đềy cạnh $BC = R\sqrt{3}$ nên có diện tích là $S_{BCK} =\dfrac{3R\sqrt{3}}{4}$.

c.

  • Ta có $\angle AKC = \angle AKE = 30^o$ nên suy ra $K, C, E$ thẳng hàng. Tứ giác $AHCE$ có $\angle AEH = \angle ACH = 30^o$ nên là tứ giác nội tiếp ,suy ra $\angle AHE = \angle ACE$. Từ đó suy ra $\angle AHB = \angle ACK$.
  • Xét $\Delta ABH$ và $\Delta ACK$ có $\angle ABH = \angle AKC, \angle AHB = \angle ACK (cmt)$ nên $\Delta ABH \sim \Delta ACK (g.g)$.
  • Gọi $D$ là giao điểm của $AO$ và $(O)$. Ta có $\angle ABC = \angle ADC, \angle BAH +\angle BAC = \angle DAC + \angle ADC = 90^o$. Suy ra $\angle BAH = \angle DAC$.
  • Hơn nữa $\angle BAH = \angle KAC$. Từ đó ta có $\angle KAC = \angle OAC$. Suy ra $A, K, O$ thẳng hàng. Vậy $AK$ qua $O$ cố định.

Leave a Reply

Your email address will not be published. Required fields are marked *