Đề thi và đáp án kì thi chọn đội tuyển thi Quốc gia trường Phổ thông Năng khiếu năm học 2011 – 2012

 

ĐỀ THI

Ngày thi thứ nhất

Bài 1. Cho các số $a, b, c>0$ thoả mãn $a b+b c+c a=1$. Chứng minh rằng:

$\quad\quad\quad\quad\quad\quad\quad\quad\frac{1}{3+2\left(a^2-b c\right)}+\frac{1}{3+2\left(b^2-c a\right)}+\frac{1}{3+2\left(c^2-a b\right)} \geq 1$

Bài 2. Có bao nhiêu bộ số nguyên dương $(x, y, z, t)$ thoả mãn

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad 12<x<y<z<t \text { và } x+y+z+t=2011 ?$

Bài 3. Cho tam giác $A B C$ nội tiếp đường tròn $(O, R)$. Gọi $\left(\mathcal{C}_1\right)$ là đường tròn thay đổi luôn qua $B, C$ và lần lượt cắt các cạnh $A B, A C$ tại $M, N$ khác $B, C$.

(a) Chứng minh rằng $(A M N)$ luôn tiếp xúc với một đường cố định.

(b) Cho $B, C$ cố định, $B C=2 R$ và $A$ thay đổi trên $(O)$. Đường thẳng qua $A$ vuông góc $B C$ cắt $(O)$ tại $D$ và cắt $\left(\mathcal{C}_1\right)$ tại $E, F$. Chứng minh rằng nếu $A$ và $\left(\mathcal{C}_1\right)$ thay đổi sao cho $\frac{E F}{A D}=\frac{\sqrt{5}}{2}$ thì $(A M N)$ luôn tiếp xúc với một đường cố định.

Bài 4. Cho $p$ là số nguyên tố lẻ và đa thức $Q(x)=(p-1) x^p-x-1$. Xét dãy số $\left(a_n\right)$ thoả mãn

$\quad\quad\quad\quad\quad\quad\quad\quad a_0=\frac{p-1}{2}, a_n=a_{n-1}+Q\left(a_{n-1}\right) \forall n \in \mathbb{N}^* .$

(a) Chứng minh rằng với mọi số nguyên dương $n$ thì $\left(a_n, p\right)=1$.

(b) Chứng minh rằng với mọi số nguyên dương $n$ thì $Q\left(a_n\right) \equiv 0\left(\bmod p^n\right)$.

Ngày thi thứ hai

Bài 5. Cho dãy số $\left(u_n\right)$ thoả mãn $u_1=\frac{1}{6}$ và $u_{n+1}=u_n^2+\frac{2}{3} u_n \forall n \in \mathbb{N}^*$.

Tìm $\lim \frac{5 u_{n+1}^2-2 u_n^2 u_{n+1}+5 u_n u_{n+1}}{3 u_n^2+u_n u_{n+1}\left(4+u_n^2\right)}$.

Bài 6. Cho hàm số $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ thoả mãn $f(0,0)=0$ và:

$\quad\quad\quad\quad\quad\quad\quad\quad f(a, b)=\left\{\begin{array}{l}f\left(\left\lfloor\frac{a}{2}\right\rfloor,\left\lfloor\frac{b}{2}\right\rfloor\right) \text { khi } a+b \equiv 0 \quad(\bmod 2) \\ 1+f\left(\left\lfloor\frac{a}{2}\right\rfloor,\left\lfloor\frac{b}{2}\right\rfloor\right) \text { khi } a+b \equiv 1 \quad(\bmod 2)\end{array}\right.$

(a) Có bao nhiêu số tự nhiên $m \leq 2011$ sao cho $f(2011, m)=5$ ?

(b) Cho số lẻ $p$, cho $n \in \mathbb{N}\left(1<p<2^n\right)$ và $A$ là tập hợp gồm $p$ số tự nhiên không vượt quá $2^n-1$. Chứng minh rằng $\sum_{{a, b} \subset A} f(a, b) \leq n \cdot \frac{p^2-1}{4}$.

Bài 7. Cho tam giác $A B C$ nội tiếp đường tròn $(O)$ với $B, C$ cố định và $A$ thay đổi trên $(O)$. Đường trung trực $d$ của $B C$ cắt $A B, A C$ tại $M, N$. Gọi $P, Q$ lần lượt là các điểm đối xứng của $M, N$ qua $O . K$ là giao điểm của $B P$ và $C Q$.

(a) Chứng minh rằng $K$ luôn thuộc một đường tròn cố định.

(b) Kết luận trên còn đúng không khi $d$ là đường thẳng Euler của tam giác $A B C ?$

Bài 8. Với mọi số nguyên dương $n$, đặt $S_n=x^n+y^n+z^n$. Ta đã biết rằng $S_n=$ $P_n(s, t, p)$ với $s=x+y+z, t=x y+y z+z x, p=x y z$. Hãy tính tổng các hệ số của các đơn thức chứa $p$ trong $P_{2011}(s, t, p)$.

 

LỜI GIẢI

Bài 1. Cho các số $a, b, c>0$ thoả mãn $a b+b c+c a=1$. Chứng minh rằng:

$\quad\quad\quad\quad\quad\quad\quad\quad \frac{1}{3+2\left(a^2-b c\right)}+\frac{1}{3+2\left(b^2-c a\right)}+\frac{1}{3+2\left(c^2-a b\right)} \geq 1$

Lời giải. Đặt $a b=x ; b c=y ; c a=z$ thì ta có $x+y+z=1$. Khi đó áp dụng bất đẳng thức Cauchy-Schwarz, ta có

$\quad\quad\quad\quad\quad \sum_{c y c} \frac{1}{3+2\left(\frac{x z}{y}-y\right)} =\sum_{c y c} \frac{y^2}{3 y^2+2 x y z-2 y^3} $

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad  \geq \frac{1}{3\left(x^2+y^2+z^2\right)+6 x y z-2\left(x^3+y^3+z^3\right)} .$

Ta đưa về chứng minh

$\quad\quad\quad\quad\quad\quad\quad\quad 3\left(x^2+y^2+z^2\right)+6 x y z-2\left(x^3+y^3+z^3\right) \leq 1 .$

Tuy nhiên đây lại là đẳng thức vì

$\quad\quad\quad\quad 3\left(x^2+y^2+z^2\right)+6 x y z-2\left(x^3+y^3+z^3\right) $

$\quad\quad\quad\quad\quad =3\left(x^2+y^2+z^2\right)-2(x+y+z)\left(x^2+y^2+z^2-x y-y z-z x\right) $

$\quad\quad\quad\quad\quad =3\left(x^2+y^2+z^2\right)-2\left(x^2+y^2+z^2\right)+2(x y+y z+z x) $

$\quad\quad\quad\quad\quad =(x+y+z)^2=1$

Đẳng thức xảy ra khi $x=y=z=1$ hay $a=b=c=\frac{1}{\sqrt{3}}$.

Bài 2. Có bao nhiêu bộ số nguyên dương $(x, y, z, t)$ thoả mãn $12<x<y<z<t$ và $x+y+z+t=2011 ?$

Lời giải. Đặt $x^{\prime}=x-12 ; y^{\prime}=y-12 ; z^{\prime}=z-12 ; t^{\prime}=t-12$. Phương trình đã cho tương đương với:

$\quad\quad\quad\quad\quad x^{\prime}+y^{\prime}+z^{\prime}+t^{\prime}=2011-48=1963 \text { với } 0 \leq x^{\prime}<y^{\prime}<z^{\prime}<t^{\prime}.$

Theo bài toán chia kẹo Euler thì nếu không có điều kiện thứ hai, số nghiệm của phương trình trên sẽ là $C_{1966}^3$. Ta sẽ trừ ra các trường hợp các số bị trùng nhau

  • Số bộ có 3 số giống nhau là $C_4^3 \cdot\left(1+\left\lfloor\frac{1963}{3}\right\rfloor\right)=2620=A$.
  • Số bộ có 2 số giống nhau là $C_4^2\left(\sum_{a=0}^{981}(1964-2 a)\right)=5791836=B$.

Do mỗi bộ nghiệm như trên chỉ tồn tại 1 cách sắp xếp $x, y, z, t$ thỏa mãn nên số bộ thoả mãn đề bài là

$\quad\quad\quad\quad\quad\quad\quad\quad \frac{C_{1966}^3-B+2 A}{4 !}=\frac{C_{1966}^3-5786596}{4 !} .$

Bài 3. Cho tam giác $A B C$ nội tiếp đường tròn $(O, R)$. Gọi $\left(\mathcal{C}_1\right)$ là đường tròn thay đổi luôn qua $B, C$ và lần lượt cắt các cạnh $A B, A C$ tại $M, N$ khác $B, C$.

(a) Chứng minh rằng $(A M N)$ luôn tiếp xúc với một đường cố định.

(b) Cho $B, C$ cố định, $B C=2 R$ và $A$ thay đổi trên $(O)$. Đường thẳng qua $A$ vuông góc $B C$ cắt $(O)$ tại $D$ và cắt $\left(\mathcal{C}_1\right)$ tại $E, F$. Chứng minh rằng nếu $A$ và $\left(\mathcal{C}_1\right)$ thay đổi sao cho $\frac{E F}{A D}=\frac{\sqrt{5}}{2}$ thì $(A M N)$ luôn tiếp xúc với một đường cố định.

Lời giải. (a) Gọi $d$ là đường thẳng qua $A$, song song với $B C$ và cắt đường tròn $(O)$ tại $T$. Bằng biến đổi góc, ta có

$\quad\quad\quad\quad\quad\quad\quad\quad \angle T A C=\angle A C B=\angle A M N .$

Suy ra $A T$ là tiếp tuyến của đường tròn $(A M N)$ nên ( $A M N)$ tiếp xúc với đường thẳng $d$ cố định.

(b) Gọi $H$ là hình chiếu của $A$ lên $B C$. Xét phương tích từ $A$ đến $\mathcal{C}_1$ thì

$\quad\quad\quad\quad\quad\quad\quad\quad A M \cdot A B=A N \cdot A C=A E \cdot A F \text {. }$

Ta có $H E \cdot H F=H B \cdot H C=H A^2$, mà $\frac{E F}{A D}=\frac{\sqrt{5}}{2}$ nên $H E+H F=\sqrt{5} A H$. Giải hệ này, ta có

$\quad\quad\quad\quad\quad\quad\quad\quad H E=\frac{\sqrt{5}-1}{2} A H \text { và } H F=\frac{\sqrt{5}+1}{2} A H .$

Suy ra $A E=A H-H E=\frac{3-\sqrt{5}}{2} A H$ và $A F=A H+H F=\frac{3+\sqrt{5}}{2} A H$. Từ đó ta được

$\quad\quad\quad\quad\quad\quad\quad\quad A E \cdot A F=\frac{3-\sqrt{5}}{2} A H \cdot \frac{3+\sqrt{5}}{2} A H=A H^2 \text {. }$

Vì thế nên $A H^2=A M \cdot A B=A N \cdot A C$, chứng tỏ $H M, H N$ lần lượt vuông góc với $A B, A C$. Suy ra $(A M N)$ có đường kính là $A H$ nên $(A M N)$ tiếp xúc với $B C$ là đường thẳng cố định.

Bài 4. Cho $p$ là số nguyên tố lẻ và đa thức $Q(x)=(p-1) x^p-x-1$. Xét dãy số $\left(a_n\right)$ thoả mãn

$\quad\quad\quad\quad\quad\quad\quad\quad a_0=\frac{p-1}{2}, a_n=a_{n-1}+Q\left(a_{n-1}\right) \forall n \in \mathbb{N}^* .$

(a) Chứng minh rằng với mọi số nguyên dương $n$ thì $\operatorname{gcd}\left(a_n, p\right)=1$.

(b) Chứng minh rằng với mọi số nguyên dương $n$ thì $Q\left(a_n\right) \equiv 0\left(\bmod p^n\right)$.

Lời giải. (a) Ta có

$\quad\quad\quad\quad a_0=\frac{p-1}{2} \text { và } a_1=a_0+(p-1) a_0^p-a_0-1=\frac{(p-1)^{p+1}}{2^p}-1$

không chia hết cho $p$.

Giả sử tồn tại $k$ nhỏ nhất sao cho $p \mid a_k$ thì $k \geq 2$. Ta có

$\quad\quad\quad\quad a_k=(p-1) a_{k-1}^p-1 \text { và } p-1 \equiv-1, a_{k-1}^p \equiv a_k \quad(\bmod p) .$

Suy ra $a_{k-1} \equiv-1(\bmod p)$ từ đó ta được $a_{k-2} \equiv 0(\bmod p)$, mâu thuẫn với tính nhỏ nhất của $k$. Vậy nên ta phải có $\operatorname{gcd}\left(a_n, p\right)=1$ với mọi $n$ nguyên dương.

(b) Ta có $Q(x)=(p-1) x^p-x-1 \equiv(-1) x-x-1=-2 x-1(\bmod p)$ với mọi $x$ nguyên nên

$\quad\quad\quad\quad Q\left(a_1\right) \equiv-2 a_1-1 \equiv-2(p-1) \frac{p-1}{2}+2-1=0 \quad(\bmod p)$

nên khẳng định đúng với $n=1$. Ta sẽ chứng minh bằng quy nạp.

$\quad\quad\quad\quad Q\left(a_{n+1}\right)=(p-1)\left(a_{n+1}^p-a_n^p\right)=(p-1) Q\left(a_n\right)\left(\sum_{i=1}^p a_n^{i-1} a_{n+1}^{p-i}\right).$

Giả sử rằng $p^n \mid Q\left(a_n\right)$ nên suy ra

$\quad\quad\quad\quad a_{n+1} \equiv a_n \quad(\bmod p) \Rightarrow \sum_{i=1}^p a_n^{i-1} a_{n+1}^{p-i} \equiv p a_n^{p-1} \equiv 0 \quad(\bmod p) .$

Như vậy $p^{n+1} \mid Q\left(a_{n+1}\right)$.Theo nguyên lí quy nạp thì ta có điều phải chứng minh.

Bài 5. Cho dãy số $\left(u_n\right)$ thoả mãn $u_1=\frac{1}{6}$ và $u_{n+1}=u_n^2+\frac{2}{3} u_n \forall n \in \mathbb{N}^*$.

Tìm $\lim \frac{5 u_{n+1}^2-2 u_n^2 u_{n+1}+5 u_n u_{n+1}}{3 u_n^2+u_n u_{n+1}\left(4+u_n^2\right)}$.

Lời giải. Trước hết, ta sẽ tìm giới hạn của dãy $\left(u_n\right)$. Bằng quy nạp, ta sẽ chứng minh rằng $0<u_n<\frac{1}{3}, \forall n$. Thật vậy,

  • Với $n=1$ thì khẳng định đúng.
  • Giả sử khẳng định đúng với $n=k>1$ thì $0<u_k<\frac{1}{3}$. Ta có:

$\quad\quad\quad\quad\quad\quad\quad\quad 0<u_{k+1}=u_k^2+\frac{2}{3} u_k<\frac{1}{9}+\frac{2}{3} \cdot \frac{1}{3}=\frac{1}{3}$

nên khẳng định cũng đúng với $n=k+1$.

Theo nguyên lí quy nạp, khẳng định được chứng minh. Xét hàm số $f(x)=x^2+$ $\frac{2}{3} x, x \in\left(0 ; \frac{2}{3}\right)$ thì $f^{\prime}(x)=2 x+\frac{2}{3}>0$ nên đây là hàm đồng biến. Dãy số đã cho chính là $u_1=\frac{1}{6}, u_{n+1}=f\left(u_n\right), n=1,2,3, \ldots$

Hơn nữa $u_2=\frac{1}{6^2}+\frac{2}{3} \cdot \frac{1}{6}=\frac{5}{36}<\frac{1}{6}$ nên đây là dãy giảm và bị chặn dưới nên có giới hạn. Gọi $l$ là giới hạn của dãy thì

$\quad\quad\quad\quad\quad\quad\quad\quad l=l^2+\frac{2}{3} l \Leftrightarrow l=0 \text { hay } l=\frac{1}{3} \text {. }$

Nhưng do dãy này giảm và theo chứng minh trên thì $0<u_n<\frac{1}{3}, \forall n$ nên giới hạn của dãy là 0 .

Theo công thức xác định dãy, ta có $\frac{u_{n+1}}{u_n}=u_n+\frac{2}{3}$. Do dãy $\lim u_n=0$ nên dãy tương ứng $\left(\frac{u_{n+1}}{u_n}\right)$ có giới hạn là $\frac{2}{3}$. Từ đó, ta tính được

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad =\frac{5\left(\frac{2}{3}\right)^2-2 \cdot 0+5 \cdot \frac{2}{3}}{3+\frac{2}{3}\left(4+0^2\right)}=\frac{50}{51} .$

Bài 6 . Cho hàm số $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ thoả mãn $f(0,0)=0$ và:

$\quad\quad\quad\quad\quad\quad\quad\quad f(a, b)=\left\{\begin{array}{l}f\left(\left\lfloor\frac{a}{2}\right\rfloor,\left\lfloor\frac{b}{2}\right\rfloor\right) \text { khi } a+b \equiv 0 \quad(\bmod 2) \\ 1+f\left(\left\lfloor\frac{a}{2}\right\rfloor,\left\lfloor\frac{b}{2}\right\rfloor\right) \text { khi } a+b \equiv 1 \quad(\bmod 2)\end{array}\right.$

(a) Có bao nhiêu số tự nhiên $m \leq 2011$ sao cho $f(2011, m)=5$ ?

(b) Cho số lẻ $p$, cho $n \in \mathbb{N}\left(1<p<2^n\right)$ và $A$ là tập hợp gồm $p$ số tự nhiên không vượt quá $2^n-1$. Chứng minh rằng $\sum_{{a, b} \subset A} f(a, b) \leq n \cdot \frac{p^2-1}{4}$.

Lời giải. (a) Đổi số 2011 sang hệ nhị phân, ta có $2011=\overline{11111011011}(2)$. Khi đổi số $m$ sang hệ nhị phân, ta cũng có tương ứng $m=\overline{a_1 a_2 \ldots a_{11}(2)}$ (do $m \leq 11$ nên ta chỉ xét 11 chữ số).

Do công thức xác định của hàm, ta thấy $f(2011, m)$ chính bằng số vị trí trong dãy chữ số trên mà hai chữ số tại cùng vị trí là khác tính chẵn lẻ.

Trong 11 chữ số của $m$, ta chọn 5 vị trí để cho chúng khác tính chẵn lẻ với các chữ số của 2011 thì có $C_{11}^5=462$ cách. Mỗi cách chọn tính chẵn lẻ đó tương ứng với đúng một số $m$.

Tuy nhiên, ta phải trừ đi trường hợp đổi tính chẵn lẻ tại vị trí thứ 6 (và giữ nguyên từ $a_1 \rightarrow a_5$ ), tức là

$\quad\quad\quad\quad\quad\quad\quad\quad a_1=a_2=\cdots=a_6=1$

khi đó thì $m>2011$, không thỏa mãn. Ta sẽ đếm số cách chọn $m$ như thế. Trong 5 vị trí từ $a_7 \rightarrow a_{11}$, chọn ra 4 vị trí để đổi tính chẵn lẻ, có $C_5^4=5$ cách. Chú ý rằng số 0 ở vị trí thứ 9 không ảnh hưởng vì sau nó chỉ còn 2 vị trí, không đủ để thực hiện chọn ra 4 vị trí để đổi tính chẵn lẻ như trên.

Vậy nên số các số $m$ thỏa mãn là $462-5=457$.

(b) Đổi tất cả $p$ số của tập $A$ sang hệ nhị phân thì mỗi số sẽ có không quá $n$ chữ số và xếp vào bảng ô vuông kích thước $p \times n$. Mỗi dòng tương ứng với một số, và số nào không có đủ $n$ chữ số trong hệ nhị phân thì ta thêm 0 vào trước nó. Khi đó, tổng $\sum_{{a, b} \subset A} f(a, b)$ chính bằng tổng các cặp vị trí khác nhau trên mỗi cột.

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad \begin{array}{|l|l|l|l|}\hline a_{1,1} & a_{1,2} & \cdots & a_{1, n} \\ \hline a_{2,1} & a_{2,2} & \cdots & a_{2, n} \\ \hline \cdots & \cdots & \cdots & \cdots \\ \hline a_{p, 1} & a_{p, 2} & \cdots & a_{p, n} \\ \hline\end{array}$

Xét cột thứ 1 , giả sử trên đó có $x$ số 0 và $y$ số 1 với $x+y=p$. Khi đó, số cặp chữ số khác nhau trên cột này sẽ là

$\quad\quad\quad\quad x y=\frac{1}{4}\left[(x+y)^2-(x-y)^2\right]=\frac{1}{4}\left[p^2-(x-y)^2\right] \leq \frac{p^2-1}{4}$

(do $x, y$ khác tính chẵn lẻ nên $|x-y| \geq 1$ ). Tương tự với các cột khác, số cặp chữ số khác nhau cũng không vượt quá $\frac{p^2-1}{4}$. Và do tính độc lập giữa các cột, ta có

$\quad\quad\quad\quad\quad\quad\quad\quad \sum_{{a, b} \subset A} f(a, b) \leq n \cdot \frac{p^2-1}{4} .$

Bài 7. Cho tam giác $A B C$ nội tiếp đường tròn $(O)$ với $B, C$ cố định và $A$ thay đổi trên $(O)$. Đường trung trực $d$ của $B C$ cắt $A B, A C$ tại $M, N$. Gọi $P, Q$ lần lượt là các điểm đối xứng của $M, N$ qua $O$. $K$ là giao điểm của $B P$ và $C Q$.

(a) Chứng minh rằng $K$ luôn thuộc một đường tròn cố định.

(b) Kết luận trên còn đúng không khi $d$ là đường thẳng Euler của tam giác $A B C ?$

Lời giải. Ta sẽ chứng minh bài toán tổng quát khi thay trung trực $B C$ lẫn đường thẳng Euler bởi đường thẳng $d$ bất kỳ đi qua $O$.

Kẻ đường kính $B B^{\prime}, C C^{\prime}$ của $(O)$ và giả sử $B^{\prime} N, C^{\prime} M$ cắt nhau ở $T$. Khi đó, vì $M, N, O$ thẳng hàng nên theo định lý Pascal đảo thì lục giác tạo bởi các đỉnh $A, B, C, B^{\prime}, C^{\prime}, T$ nội tiếp. Do đó, $T \in(O)$.

Ngoài ra, vì $\angle B T N=\angle B T B^{\prime}=90^{\circ}$ nên $T B \perp T N$, tương tự thì $T C \perp T M$.

Kẻ đường kính $T K^{\prime}$ của $(O)$ thì do $O$ là trung diểm chung của $T K^{\prime}, M P$ nên tứ giác $T M K^{\prime} P$ là hình bình hành. Suy ra $T M | K^{\prime} P$ nên $K^{\prime} P \perp T C$.

Mà tứ giác $C M C^{\prime} P$ cũng là hình bình hành nên $C P | C^{\prime} M$, mà $C^{\prime} M \perp T C$ nên $C P \perp T C$. Từ các điều này, ta suy ra $K^{\prime}, P, C$ thẳng hàng. Tương tự thì $K^{\prime}, Q, B$ thẳng hàng. Vì thế nên $K^{\prime} \equiv K$, hay $K$ luôn thuộc đường tròn $(O)$ cố định.

Nhận xét. Trong bài toán trên, $T$ chính là giao điểm của hai đường tròn đường kính $B N, C M$. Nếu gọi $S$ là giao điểm còn lại thì ta chứng minh được bằng phép nghịch đảo trực tâm $H$ rằng $S$ nằm trên đường tròn Euler của tam giác $A B C$.

Bài 8. Với mọi số nguyên dương $n$, đặt $S_n=x^n+y^n+z^n$. Ta đã biết rằng $S_n=P_n(s, t, p)$ với $s=x+y+z, t=x y+y z+z x, p=x y z$. Hãy tính tổng các hệ số của các đơn thức chứa $p$ trong $P_{2011}(s, t, p)$.

Lời giải. Theo định lý Viete thì $x, y, z$ là nghiệm của phương trình

$\quad\quad\quad\quad\quad\quad\quad\quad\quad a^3-s a^2+t a-p=0 .$

Để tính tổng hệ số của tất cả các đơn thức trong $P_{2011}$, ta xét $P_{2011}(1,1,1)$. Tương tự, tổng các hệ số của các đơn thức không chứa $p$ trong $P_{2011}$ là $P_{2011}(1,1,0)$. Do đó, ta cần tính

$\quad\quad\quad\quad\quad\quad\quad\quad M=P_{2011}(1,1,1)-P_{2011}(1,1,0) .$

Xét phương trình $a^3-a^2+a-1=0$ có ba nghiệm là $a=1, a=i$ và $a=-i$. Vì $P_{2011}(s, t, p)=x^n+y^n+z^n$ nên ta có

$\quad\quad\quad\quad\quad\quad\quad P(1,1,1)=1^{2011}+i^{2011}+(-i)^{2011}=1 .$

Tiếp tục xét $a^3-a^2+a=0$ có ba nghiệm là $a=0, a=\frac{1 \pm i \sqrt{3}}{2}$. Áp dụng công thức Moivre của lũy thừa số phức, ta tính được

$\quad\quad\quad\quad P(1,1,0) =0^{2011}+\left(\frac{1+i \sqrt{3}}{2}\right)^{2011}+\left(\frac{1-i \sqrt{3}}{2}\right)^{2011} $

$\quad\quad\quad\quad\quad\quad\quad\quad =\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)^{2011}-\left(\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\right)^{2011} $

$\quad\quad\quad\quad\quad\quad\quad\quad =\left(\cos \frac{2011 \pi}{3}+i \sin \frac{2011 \pi}{3}\right)-\left(\cos \frac{4022 \pi}{3}+i \sin \frac{4022 \pi}{3}\right)=1$

Vì thế nên $M=0$.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Leave a Reply

Your email address will not be published. Required fields are marked *