Category Archives: Thi học kì

Đáp án đề học kì môn toán 11 – PTNK năm học 2019 – 2020

Bài 1.

a) $\sin 3 x-\sqrt{3} \cos 3 x=2\left(\cos ^{2} x-\sin ^{2} x\right)$

b) $\dfrac{\sin 2 x+2 \sin 2 x \cos 4 x}{\cos 3 x}=1$

Bài 2.

a) Từ các chữ số 0,1,2,3,4,5,6,7,8 có bao nhiêu số tự nhiên có 4 chữ số khác nhau mà có đúng 1 chữ số lẻ?

b) Lớp X có 30hs trong đó có 3 bạn Mai, An, Bình. Để tham gia trò chơi kéo có cần 10 học sinh. Tính xác suất để trong 10 học sinh được chọn có ít nhất 2 trong 3 bạn Mai, An và Bình nói trên.

Bài 3.  Cho số tự nhiên $n$ thỏa $A_{n}^{2}+3 C_{n+1}^{n}=38 .$ Tìm số hạng chứa $x^{5}$ trong khai triển $\left(\sqrt{x}-3 x^{3}\right)^{n}$

Bài 4. Cho cấp số cộng $u_{n}$ với công sai $d$ thỏa điều kiện:

$$
\left\{\begin{array}{l}
S_{20}-S_{15}=500 \\
u_{20}-u_{15}=75
\end{array} \right.$$

$S_{n}=u_{1}+u_{2}+\ldots+u_{n} $. Tìm $u_{1}, d$.

Bài 5. Trong mặt phẳng $O x y,$ cho các đường thẳng $d_{1}: 3 x-6 y-15=0$ và $d: y=x$. Gọi $d_{2}$ là ảnh của $d_{1}$ qua phép đối xứng trục $d$. Tìm tọa độ giao điểm của $d_{2}$ với trục tung.

Bài 6. Cho hình chóp $S . A B C D$ có đáy là hình bình hành tâm $O, M, N$ lần lượt là trung điểm $S A, C D$.

a) Tìm giao tuyến của măt phẳng $(S A C)$ và $(S B D) ;(S A D)$ và $(S B N)$.

b) Gọi $G$ là trọng tâm tam giác $A C D, K$ là trọng tâm tam giác $S B D$. Chứng minh: $G K |(S A D) . B K$ cắt $S D$ tại $I$. Chứng minh $I$ thuộc mặt phẳng $(O M N)$

c) Chứng minh: $SB \parallel (O M N)$ và tìm giao điểm của mặt phẳng $(A N K)$ với $S B$.

Lời giải

Bài 1.

a) $\sin 3 x-\sqrt{3} \cos 3 x=2\left(\cos ^{2} x-\sin ^{2} x\right)$
$\Leftrightarrow \dfrac{1}{2} \sin 3 x-\dfrac{\sqrt{3}}{2} \cos 3 x=\cos 2 x$
$\Leftrightarrow \cos \left(3 x+\dfrac{\pi}{6}\right)=\cos (2 x+\pi)$
$\Leftrightarrow\left[\begin{array}{c}x=\dfrac{5 \pi}{6}+k 2 \pi \ x=-\dfrac{7 \pi}{6}+\frac{k 2 \pi}{5}\end{array}(k \in \mathbb{Z}\right.$
b) $\dfrac{\sin 2 x+2 \sin 2 x \cos 4 x}{\cos 3 x}=1$
Điều kiện: $x \neq \dfrac{\pi}{6}+\dfrac{k \pi}{3}$
$\Leftrightarrow \sin 2 x+\sin 6 x-\sin 2 x=\cos 3 x$
$\Leftrightarrow \cos \left(\dfrac{\pi}{2}-6 x\right)=\cos 3 x$
$\Leftrightarrow\left[\begin{array}{l}x=\dfrac{\pi}{18}-\frac{k 2 \pi}{9} \ x=\dfrac{\pi}{6}-\dfrac{k 2 \pi}{3}\end{array}(k \in \mathbb{Z})\right.$
So sánh với điều kiện, ta được hoăc $\dfrac{5 \pi}{18}+\dfrac{k 2 \pi}{3}$

Bài 2. 

$\quad$ a) Từ các chữ số 0,1,2,3,4,5,6,7,8 có bao nhiêu số tự nhiên có 4 chữ số khác nhau mà có đúng 1 chữ số lẻ? Gọi số cần tìm: $\overline{a b c d}$ +TH1: a là số lẻ, có 4 cách Ta có: $4 \times A_{5}^{3}$
+TH2: a là số chãn, có 4 cách Ta chọn ra 1 số lẻ rồi xếp vào 3 vị trí còn lại: $4 \times 3$ Nên có: $4 \times 4 \times 3 \times A_{4}^{2}$
Do đó, có tất cả: 816 số.
b) Lớp X có 30hs trong đó có 3 bạn Mai, An, Bình. Để tham gia trò chơi kéo có cần 10 học sinh. Tính xác suất để trong 10 học sinh được chọn có ít nhất 2 trong 3 bạn Mai, An và Bình nói trên. Không gian mẫu: $|\Omega|=C_{30}^{10}$ Xác suất để trong 10 học sinh được chọn có ít nhất 2 trong 3 bạn Mai, An và Bình là: $P=\dfrac{C_{27}^{7}+3 C_{27}^{8}}{C_{30}^{10}}=\dfrac{51}{203}$.

Bài 3. 

Cho số tự nhiên $n$ thỏa $A_{n}^{2}+3 C_{n+1}^{n}=38 .$ Tìm số hạng chứa $x^{5}$ trong khai triển $\left(\sqrt{x}-3 x^{3}\right)^{n}$
Ta có: $A_{n}^{2}+3 C_{n+1}^{n}=38$
$\Leftrightarrow \dfrac{n !}{(n-2) !}+3 \cdot \dfrac{(n+1) !}{n !}=38$
$\Rightarrow n=5$
Nên $\left(\sqrt{x}-3 x^{3}\right)^{5}$ có $\mathrm{SHTQ}: C_{5}^{k}(-3)^{k} \cdot x^{\frac{5}{2}}(k+1)$
Theo ycbt ta được: $k=1$. Do đó, số hạng chứa $x^{5}$ là $-15 x^{5}$

Bài 4.
$$
\left\{\begin{array}{l}
S_{20}-S_{15}=500 \\
u_{20}-u_{15}=75
\end{array} \right.$$
Từ phương trình ( 2 ) ta được: $d=15$, thế vào ta được $u_{1}=-155$.
Bài 5. Trong mặt phẳng $O x y,$ cho các đường thẳng $d_{1}: 3 x-6 y-15=0$ và $d: y=x$. Gọi $d_{2}$ là ảnh của $d_{1}$ qua phép đối xứng trục $d$. Tìm tọa độ giao điểm của $d_{2}$ với trục tung. Gọi $M^{\prime}\left(x^{\prime} ; y^{\prime}\right)$ là ảnh của $M(x ; y) \in d_{1}$ qua phép đối xứng trục $d$. Ta có: $\left\{\begin{array}{l}x^{\prime}=y \\ y^{\prime}=x\end{array}\right.$
Nên ta có $d_{2}: 3 y^{\prime}-6 x^{\prime}-15=0$ hay $2 x-y+5=0$
Vậy giao điểm của $d_{2}$ và trục tung là $A(0 ; 5)$

Bài 6. 

a) $+(S A C) \cap(S B D)=S O$
$+$ Gọi $B N \cap A D=E .(S A D) \cap(S B N)=S E$
b) Ta có: $\dfrac{O G}{O D}=\dfrac{O K}{S}=\frac{1}{3}$
$\Leftrightarrow D K | S D$
Nên $G K |(S A D)$
Ta có: $K$ là trọng tâm tam giác $S B D$ nên $I$ là trung điểm $S D \Rightarrow M I | A D$. Ta lại có: $(M N O) \cap(S A D)=M x|A D| O N$.
Do đó: $I \in M x$ nên $I \in(O M N)$.
c) Gọi $F=O N \cap A B,$ ta được $F$ là trung điểm $A B$. $\Rightarrow M F | S B$
$\Rightarrow S B |(O M N)$
$+$ Ta thấy $(A K N) \cap(S B D)=K G$
Gọi $T=K G \cap S B$
Do đó: $T=S B \cap(A K N)$.

Giải nhanh đề học kì 1 gửi đến các em học sinh,  cảm ơn thầy Dương Trọng Đức đã đóng góp cho geosiro.com

LOP 11 PTNK_HK1

Đề và đáp án ôn thi học kì 1 – Toán 8

Thời gian trôi qua rất nhanh, mới ngày nào bước vào năm học giờ đã chuẩn bị thi học kì một. Trong giai đoạn ôn thi căng thẳng này, các em cần phải chú một số điều sau đây:

  • Tổng hợp các kiến thức đã học, làm lại các dạng bài tập thầy cô hay ra.
  • Chỗ nào hổng phải hỏi bạn, hỏi thầy để được khắc phục ngay lập tức.
  • Rủ các bạn học chung để đạt hiệu quả cao nhất.
  • Giải các đề ôn tập là một trong những việc quan trọng giúp hệ thống kiến thức và rèn luyện trình bày bài toán, ngoài ra còn phải canh thời gian để làm kịp giờ.

Để giúp các em ôn thi tốt các Giáo viên trẻ của Star Education có chọn lựa và giải một số đề toán ôn thi học kì một. Chúc các em thành công.

Link Download

STAR_L8_ON-TAP_1920 (1) (Phiên bản V1.1 – sẽ update chỉnh sửa sau)

Đề thi cuối khóa STAR 2017 -2018: Toán 8

Đề bài

Bài 1. Giải các phương trình sau:

a) $ x^2 – 4x + 3 = 0$

b) $ \dfrac{1}{x-1} + \dfrac{2x^2 -5}{x^3 – 1} = \dfrac{4}{x^2 + x +1}$

c) $ |x-3| -3x = 1 $

d) $(x+3)^4 + (x+ 5)^4 = 2$

Bài 2. Giải các bất phương trình sau:

a) $ x – 5 > -5x + 3 $

b) $ \dfrac{2x-3}{-4 } \ge \dfrac{4-x}{-3}$

c) $ x^2 – 3x + 2 \le 0 $

d) $ \dfrac{x+1}{991} + \dfrac{x+5}{995} < \dfrac{x+4}{994} + \dfrac{x+9}{999}. $

Bài 3. 

a)  Quãng đường từ $ A $ đến $ B $ dài 180 $ km $. Xe thứ nhất khởi hành từ $ A $ đến $ B $. Cùng lúc đó và trên quãng đường $ AB $, xe thứ hai khởi hành từ $ B $ đến $ A $ với vận tốc lớn hơn vận tốc xe thứ nhất là $ 10km/h $. Biết hai xe gặp nhau tại nơi cách $ A $ là $ 80km/h $. Tính vận tốc của mỗi xe.

b) Dân số hiện nay của phường 12, quận 10 là 41618 người. Cách đây 2 năm dân số của phường là 40000 người. Hỏi trung bình mỗi năm dân số của phường đã tăng bao nhiêu phần trăm? ( giả sử \% tăng dân số mỗi năm là như nhau)

Bài 4. Một ngọn đèn đặt trên cao ở vị trí $A$, hình chiếu vuông góc của nó trên mặt đất là $H$. Người ta đặt 2 chiếc cọc có cùng độ cao là $1,6m$, thẳng đứng ở 2 vị trí $B$ và $C$ và 2 điểm $ B $, $ C $ thẳng hàng với $H$. Khi đó bóng cọc ở 2 vị trí $ B $, $ C $ ở trên mặt đất có độ dài lần lượt là $0,4m$ và $0,6m$. Biết $BC = 1,4m$. Hãy tính độ cao $AH$ của cột đèn.

Bài 5. Cho tam giác $ABC$ nhọn, các đường cao $ AD, BE, CF $ cắt nhau tại $ H $. Chứng minh rằng:
a) $ AF\cdot AB = AE\cdot AC $ và $ HF\cdot HC = HE\cdot HB. $
b) $ BE $ là phân giác của $ \widehat{DEF} $ . Từ đó chứng minh $ H $ là giao điểm các đường phân giác của $ \Delta DEF $.
c) $ BH\cdot BE + CH\cdot CF = BC^2 $
d)  Gọi $ O $ là giao điểm 3 đường trung trực, $ G $ là trọng tâm. Chứng minh $ G, H, O $ thẳng hàng và $ \dfrac{OG}{GH} = \dfrac{1}{2} $.