Cộng trừ hai phân thức

Quy tắc:

  • Muốn cộng hai phân thức có cùng mẫu thức, ta giữ nguyên mẫu thức và cộng các tử thức.
  • Muốn cộng hai phân thức không cùng mẫu, ta quy đồng mẫu thức rồi thực hiện phép cộng.
  • Muốn trừ phân thức $\dfrac{A}{B}$ cho phân thức $\dfrac{C}{D}$, ta cộng $\dfrac{A}{B}$ với phân thức đối của $\dfrac{C}{D}$: $\dfrac{A}{B}-\dfrac{C}{D}=\dfrac{A}{B}+\left(-\dfrac{C}{D}\right).$

Ví dụ 1: $\dfrac{{5xy – 4y}}{{2{x^2}{y^3}}} + \dfrac{{3xy + 4y}}{{2{x^2}{y^3}}}$

Giải

$\dfrac{{5xy – 4y}}{{2{x^2}{y^3}}} + \dfrac{{3xy + 4y}}{{2{x^2}{y^3}}}$

=$\dfrac{{5xy – 4y+3xy+4y}}{{2{x^2}{y^3}}} $

=$\dfrac{{8xy}}{{2{x^2}{y^3}}} $

=$\dfrac{{4}}{{2{x}{y^2}}} $.

Ví dụ 2: $\dfrac{{3{\rm{x}}}}{{5{\rm{x}} + 5y}} – \dfrac{x}{{10{\rm{x}} – 10y}}$

Giải

Ta có:

$\dfrac{3x}{5x+5y}=\dfrac{3x}{5(x+y)}$

$\dfrac{x}{10x-10y}=\dfrac{x}{10(x-y)}$

MTC: $10(x+y)(x-y)$

$\dfrac{3x}{5x+5y}-\dfrac{x}{10(x-y)}$

$=\dfrac{3x.2(x-y)}{2.5(x+y)(x-y)}-\dfrac{x(x+y)}{10(x-y)(x+y)}$

$=\dfrac{6x^2-6xy-x^2-xy}{10(x-y)(x+y)}$

$=\dfrac{5x^2-7xy}{10(x-y)(x+y)}$.

 

Ví dụ 3: $\dfrac{x-4}{4x-16} + \dfrac{4+x}{8-2x}$.

Giải

Ta có:

$\dfrac{x-4}{4x-16}=\dfrac{x-4}{4(x-4)}$

$\dfrac{4+x}{8-2x}=\dfrac{4+x}{2(4-x)}$

MTC: $4(x-4)$

$\dfrac{x-4}{4x-16}+\dfrac{4+x}{8-2x}$

$=\dfrac{x-4}{4(x-4)}+\dfrac{(4+x).(-2)}{2(4-x).(-2)}$

$=\dfrac{x-4-8-2x}{4(x-4)}$

$=\dfrac{-x-12}{4(x-4)}$.

Ví dụ 4: $\dfrac{y+1}{2y-2} +\dfrac{-2y}{y^2-1}$

Giải

Ta có:

$\dfrac{y+1}{2y-2}=\dfrac{y+1}{2(y-1)}$

$\dfrac{-2y}{y^2-1}=\dfrac{-2y}{(y-1)(y+1)}$

MTC: $2(y+1)(y-1)$

$\dfrac{y+1}{2y-2} +\dfrac{-2y}{y^2-1}$

$=\dfrac{(y+1)(y+1)}{2(y+1)(y-1)} +\dfrac{-2y.2}{2(y-1)(y+1)}$

$=\dfrac{(y+1)^2}{2(y+1)(y-1)} +\dfrac{-4y}{2(y-1)(y+1)}$

$=\dfrac{y^2+2y+1-4y}{2(y+1)(y-1)}$

$=\dfrac{y^2-2y+1}{2(y+1)(y-1)}$

$=\dfrac{(y-1)^2}{2(y+1)(y-1)}$

$=\dfrac{y-1}{2(y+1)}$.

Bài tập

Bài 1. Thực hiện phép tính:
a) $\dfrac{{x – 5}}{5} + \dfrac{{1 – x}}{5}$
b) $\dfrac{{x – y}}{8} + \dfrac{{2y}}{8}$
c) $\dfrac{{{x^2} – x}}{{xy}} + \dfrac{{1 – 4{\rm{x}}}}{{xy}}$
d)  $\dfrac{{5{\rm{x}}{y^2} – {x^2}y}}{{3{\rm{x}}y}} + \dfrac{{4{\rm{x}}{y^2} + {x^2}y}}{{3{\rm{x}}y}}$ .

Bài 2.Thực hiện phép tính:

a) $\dfrac{{2{\rm{x}} + 4}}{{10}} + \dfrac{{2 – x}}{{15}}$

b)  $\dfrac{{3{\rm{x}}}}{{10}} + \dfrac{{2{\rm{x}} – 1}}{{15}} + \dfrac{{2 – x}}{{20}}$
c) $\dfrac{{x + 1}}{{2{\rm{x}} – 2}} + \dfrac{{{x^2} + 3}}{{2 – 2{{\rm{x}}^2}}}$
d)  $\dfrac{{{x^2}}}{{{x^2} – 4{\rm{x}}}} + \dfrac{6}{{6 – 3{\rm{x}}}} + \dfrac{1}{{x + 2}}$.

Bài 3. Thực hiện phép tính:

a) $\dfrac{{4x + 1}}{2} – \dfrac{{3{\rm{x}} + 2}}{3}$
b)  $\dfrac{{x + 3}}{x} – \dfrac{x}{{x – 3}} + \dfrac{9}{{{x^2} – 3{\rm{x}}}}$
c)  $\dfrac{{x + 3}}{{{x^2} – 1}} – \dfrac{1}{{{x^2} + x}}$
d) $\dfrac{1}{{3{\rm{x}} – 2}} – \dfrac{4}{{3{\rm{x}} + 2}} – \dfrac{{ – 10{\rm{x}} + 8}}{{9{{\rm{x}}^2} – 4}}$
e)  $\dfrac{3}{{2{{\rm{x}}^2} + 2{\rm{x}}}} + \dfrac{{2{\rm{x}} – 1}}{{{x^2} – 1}} – \dfrac{2}{x}$.

Bài 4. Thực hiện phép tính:

a) $\dfrac{{4{{\rm{a}}^2} – 3{\rm{a}} + 5}}{{{a^3} – 1}} – \dfrac{{1 – 2{\rm{a}}}}{{{a^2} + a + 1}} – \dfrac{6}{{a – 1}}$
b) $\dfrac{{5{{\rm{x}}^2} – {y^2}}}{{xy}} – \dfrac{{3{\rm{x}} – 2y}}{y}$
c) $\dfrac{{x + 9y}}{{{x^2} – 9{y^2}}} – \dfrac{{3y}}{{{x^2} + 3{\rm{x}}y}}$

d)  $\dfrac{{3x + 2}}{{{x^2} – 2x + 1}} – \dfrac{6}{{{x^2} – 1}} – \dfrac{{3x – 2}}{{{x^2} + 2x + 1}}$

d) ${x^2} + 1 – \dfrac{{{x^4} + 1}}{{{x^2} + 1}}$.

One thought on “Cộng trừ hai phân thức

Leave a Reply

Your email address will not be published. Required fields are marked *