Bài 1.
Điều kiện đã cho viết thành $ab+bc+ca+a+b+c=3abc$.
Chia hai vế cho $abc$ rồi đặt $a=\frac{1}{x},b=\frac{1}{y},c=\frac{1}{z}$, ta có
$xy+yz+zx+x+y+z=3.$ \medskip
Bất đẳng thức đã cho có thể viết thành
$$xy+yz+zx-xyz\le 1 \text{ hay } x+y+z+xyz\ge 2. $$
Theo bất đẳng thức Schur thì $${{(x+y+z)}^{3}}+9xyz\ge 4(xy+yz+zx)(x+y+z). $$
Đặt $m=x+y+z,n=xy+yz+zx$ thì $m+n=3$ và
$$xyz\ge \frac{4mn-{{m}^{3}}}{9}. $$
Ta sẽ chứng minh rằng
$$m+\frac{4mn-{{m}^{3}}}{9}\ge 2\Leftrightarrow {{m}^{3}}+4{{m}^{2}}-21m+18\le 0 $$ hay
$(m-2)({{m}^{2}}+6m-9)\le 0.$
Chú ý rằng ${{m}^{2}}\ge 3n$ nên
$${{m}^{2}}\ge 3(3-m)\Leftrightarrow {{m}^{3}}+3m\ge 9. $$
Do đó ${{m}^{2}}+6m-9\ge 0.$
Ta xét các trường hợp
Nếu $m>2$ thì $x+y+z>2$ nên hiển nhiên bất đẳng thức cần chứng minh là đúng.
Nếu $m\le 2$ thì $m-2\le 0$ nên ta cũng có $(m-2)({{m}^{2}}+6m-9)\le 0.$
Vậy trong mọi trường hợp, ta luôn có đpcm.
Bài 2.
Ta thấy rằng $a=n^3-4n+15$ chẵn nên $n^3+15$ chẵn hay $n$ lẻ. Đặt $n=2k+1$ với $k \in \mathbb{N}$. Ta có
$\begin{aligned}
a={{n}^{3}}-4n+15 & =(n+3)({{n}^{3}}-3n+15) \\
& =(2k+4)(4{{k}^{2}}-2k+3) \\
\end{aligned} $
nên $\frac{a}{2}=(k+2)(4{{k}^{2}}-2k+3)$.
Điều kiện ii) cho thấy rằng $\frac{a}{2}$ phải là lũy thừa của một số nguyên tố, vì nếu nó có hai ước nguyên tố trở lên, đặt là $p,q$ thì chọn $x=p,y=q$, ta có $x,y>1$ nhưng $\gcd (x,y)=1,$ không thỏa. \medskip
Vì $(4{{k}^{2}}-2k+3)-(k+2)=4{{k}^{2}}-3k+1>0$ với mọi $k\in \mathbb{N}$. Do đó, ta phải có $k+2|4{{k}^{2}}-2k+3$. Suy ra
$\frac{4{{k}^{2}}-2k+3}{k+2}=4k-10+\frac{23}{k+2}\in \mathbb{Z}. $
Do đó $k+2\in \{1,23\}$ vì $k+2>0.$ Ta xét các trường hợp
Nếu $k+2=1$ thì $k=-1$ hay $n=2k+1=-1<0$, không thỏa.
Nếu $k+2=23$ thì $k=21$ hay $n=43$, tính được $\frac{a}{2}=3\cdot {{5}^{2}}\cdot {{23}^{2}}$, cũng không thỏa.
Vậy không tồn tại số $a$ nào thỏa mãn.
Bài 3.
Với $n\in \mathbb{N}*$, ta thấy rằng nếu $n=1$ thì $f(f(1))=1$. \medskip
Nếu $n>1$ thì gọi $p$ là một ước nguyên tố bất kỳ của $n$. \medskip
Vì $\frac{f(n)}{n}\in \mathbb{N}*$ nên $n|f(n)$. Đặt $a={{v}_{p}}(n),b={{v}_{p}}\left( f(n) \right)$ thì trước hết, ta có $a\le b.$ \medskip
Từ $f\left( \frac{f(n)}{n} \right)={{n}^{2}}$, ta suy ra rằng $\left. \frac{f(n)}{n} \right|{{n}^{2}}$ hay $f(n)|{{n}^{3}}$, tức là $b\le 3a.$ \medskip
Trong biểu thức đã cho, thay $n\to \frac{f(n)}{n}$ thì
$f\left( \frac{f\left( \frac{f(n)}{n} \right)}{\frac{f(n)}{n}} \right)={{\left( \frac{f(n)}{n} \right)}^{2}}\Leftrightarrow f\left( \frac{{{n}^{3}}}{f(n)} \right)={{\left( \frac{f(n)}{n} \right)}^{2}}$
Do đó, ta phải có $\left. {{\left( \frac{f(n)}{n} \right)}^{2}} \right|\frac{{{n}^{3}}}{f(n)}\Leftrightarrow \left. {{f}^{3}}(n) \right|{{n}^{5}} \text{ nên } 3b \le 5a.$$ Sau đó lại tiếp tục thay $n$ trong biểu thức đã cho bởi $\frac{{{n}^{5}}}{{{f}^{3}}(n)}$ và cứ như thế, ta xây dựng được hai dãy hệ số của $a,b$ như sau
${{u}_{0}}={{v}_{0}}=1,{{u}_{1}}=3,{{v}_{1}}=1 \text{ và } $
${{u}_{k+1}}=2{{u}_{k-1}}+{{v}_{k}},{{v}_{k+1}}=2{{v}_{k-1}}+{{u}_{k}} \text{ với } k\ge 1. $
Khi đó $\frac{{{v}_{2k}}}{{{u}_{2k}}}\le \frac{b}{a}\le \frac{{{u}_{2k+1}}}{{{v}_{2k+1}}}. $
Biến đổi công thức của hai dãy, ta có ${{u}_{n+2}}=5{{u}_{n}}-4{{u}_{n-2}},{{v}_{n+2}}=5{{v}_{n}}-4{{v}_{n-2}}$ và cả hai dãy đều có phương trình đặc trưng là ${{t}^{2}}-5t+4=0$. Ngoài ra, dãy chẵn và dãy lẻ trong mỗi dãy đều độc lập với nhau.
Ta có ${{u}_{0}}=1,{{u}_{2}}=3,{{v}_{0}}=1,{{v}_{2}}=5$ nên
\[{{u}_{2k}}=\frac{13+2\cdot {{16}^{k}}}{15},{{v}_{2k}}=\frac{11+4\cdot {{16}^{k}}}{15},k\ge 1. \] Từ đó, dễ dàng tính được $\lim \frac{{{u}_{2k+1}}}{{{v}_{2k+1}}}=2$. \medskip
Một cách tương tự, ta tính được $\lim \frac{{{u}_{2k}}}{{{v}_{2k}}}=\frac{1}{2}$. Do đó, số $\frac{b}{a}$ bị kẹp ở giữa và là số nguyên nên chỉ có thể là $\frac{b}{a}=2\Leftrightarrow b=2a.$ \medskip
Rõ ràng tập hợp ước nguyên tố của $n$ và $f(n)$ là giống nhau. Hơn nữa, với một ước nguyên tố cụ thể thì số mũ trong $f(n)$ gấp đôi số mũ trong $n.$ Suy ra $f(n)={{n}^{2}}, \forall n>1.$ \medskip
Tiếp theo, giả sử $f(1)=n>1$ thì ta có $f(f(1))=1$ nên $f(n)=1,$ mâu thuẫn. Vì thế nên chỉ có thể $f(1)=1.$ \medskip
Vậy tất cả các hàm thỏa mãn là $f(n)={{n}^{2}},\forall n\in \mathbb{N}^*$.
Bài 4.
(a) Trước hết, ta thấy rằng ${{O}_{1}},I,E$ thẳng hàng và ${{O}_{2}},I,F$ thẳng hàng. \medskip
Vì $M$ là trung điểm cung $AB$ của $({{O}_{1}})$ nên ${{O}_{1}}M$ là trung trực của $AB$, suy ra $O\in {{O}_{1}}M.$ Tương tự, ta cũng có $O\in {{O}_{1}}N.$ \medskip
Gọi $P,Q$ lần lượt là tiếp điểm của $(I)$ với $AB,AC.$ \medskip
Vì $IP\parallel {{O}_{1}}M$ (cùng vuông góc với $AB$) nên $\angle M{{O}_{1}}E=\angle PIE$.
Hơn nữa, các tam giác ${{O}_{1}}ME,IPE$ đều cân với đỉnh là ${{O}_{1}},I$ nên suy ra chúng đồng dạng, tức là
$\angle IEP=\angle {{O}_{1}}EM$ hay $E,P,M$ thẳng hàng. Tương tự thì $F,Q,N$ cũng thẳng hàng. \medskip
Vì ta đã có $E,F,P,Q$ cùng thuộc đường tròn $(I)$ nên để có $E,F,M,N$ cùng thuộc một đường tròn thì $\angle EMN=\angle EFN=\angle EPQ$ hay $MN\parallel PQ.$ \medskip
Mặt khác, $AI\bot PQ$ nên ta cần có $AI\bot MN.$ \medskip
Thật vậy, sử dụng phương tích với đường tròn $(I)$ ta có
\[M{{A}^{2}}-N{{A}^{2}}=MP\cdot ME-NQ\cdot NF=M{{I}^{2}}-N{{I}^{2}} \] nên theo định lý bốn điểm thì $AI\bot MN$, từ đó ta có đpcm. \medskip
(b) Vì $PQ\parallel MN,OM\parallel IP$ nên dễ dàng có $\angle IPQ=\angle OMN$. Tương tự $\angle IPQ=\angle ONM.$ \medskip
Do đó, hai tam giác $IPQ,OMN$ đồng dạng với nhau, tức là $$\frac{IP}{OM}=\frac{PQ}{MN}.$$
Ngoài ra, $$\frac{JP}{JM}=\frac{IP}{OM},$$ kết hợp với $\angle JPI=\angle JMO$, ta có hai tam giác $JPI,JMO$ đồng dạng, dẫn đến $$\angle PJI=\angle MJO.$$
Từ đây suy ra $I,J,O$ thẳng hàng hay $IJ$ luôn đi qua điểm $O$ cố định.
Bài 5.
(a) Đặt $u_n=\log_{2014}(x_n)$ thì ta thu được dãy $(u_n)$ như sau
$\left\{\begin{matrix} u_0=0,u_1=1\\ u_{n+1}=\dfrac{1}{3}u_n+\dfrac{2}{3}u_{n-1} \end{matrix}\right. $
Từ đó tìm được
$u_n=\dfrac{3}{5}-\dfrac{3}{5} \cdot \left ( \dfrac{-2}{3} \right )^n$
Suy ra $\underset{n\rightarrow +\infty }{\lim}u_n=\dfrac{3}{5}$ nên ta có được
$\underset{n\rightarrow +\infty }{\lim} x_n=\underset{n\rightarrow +\infty }{\lim}(2014^{u_n})=2014^{3/5} $
(b) Ta thấy rằng để có $(x_n)^k$ là một số nguyên thì $\dfrac{3k(3^{n}-(-2)^n)}{5 \cdot 3^n}\in \mathbb{Z}$ nguyên.
Ta xét các trường hợp
Nếu $n$ lẻ thì $3^n-(-2)^n=3^n+2^n\;\vdots\; 5$. Vì $\gcd\left ( \dfrac{3^n+2^n}{5},3^n \right )=1$ nên ta được $3^n\mid 3k$ nên $k$ nhỏ nhất thỏa mãn điều này là $k=3^{n-1}$.
Nếu $n$ chẵn thì $3^n-2^n\equiv (-2)^n-2^n=0 \pmod{5}$ và tương tự, ta cũng tìm được $k=3^{n-1}$.
Do đó số $k$ nhỏ nhất cần tìm là $k=3^{n-1}$.
Tiếp theo, ta sẽ chứng minh rằng phương trình sau không có nghiệm tự nhiên
$a^3+b^3=2014^n \Leftrightarrow (a+b)(a^2-ab+b^2)=2014^n $
Gọi ${{n}_{0}}$ số nguyên dương nhỏ nhất sao cho tồn tại $a,b\in {{\mathbb{Z}}^{+}}$ để ${{a}^{3}}+{{b}^{3}}={{2014}^{{{n}_{0}}}}$.
Dễ thấy ${{n}_{0}}=1$ không thỏa nên ta chỉ xét ${{n}_{0}}\ge 2.$
Ta xét các trường hợp
Nếu $\gcd (a+b,{{a}^{2}}-ab+{{b}^{2}})=1$ thì dễ thấy ${{(a-b)}^{2}}\ge 1$. Khi đó
\[{{a}^{2}}-ab+{{b}^{2}}\ge a+b>\sqrt{{{a}^{2}}-ab+{{b}^{2}}}. \]
Vì $2014=2\cdot 19\cdot 53$ nên chỉ có thể xảy ra \[a+b={{19}^{{{n}_{0}}}},{{a}^{2}}-ab+{{b}^{2}}={{106}^{{{n}_{0}}}}. \]
Ngoài ra ${{(a+b)}^{2}}\le 4({{a}^{2}}-ab+{{b}^{2}})$ nên ta phải có ${{361}^{{{n}_{0}}}}\le 4\cdot {{106}^{{{n}_{0}}}}$. Đánh giá này sai khi ${{n}_{0}}\ge 2$ nên trường hợp này không thỏa.
Nếu $\gcd (a+b,{{a}^{2}}-ab+{{b}^{2}})>1$ thì chẳng hạn
\[a+b={{2}^{x}}u,{{a}^{2}}-ab+{{b}^{2}}={{2}^{y}}v \text{ với } \gcd (u,2)=\gcd (v,2)=1.\] Các trường hợp còn lại chứng minh tương tự.
Ngoài ra $uv={{1007}^{{{n}_{0}}}},x+y={{n}_{0}}. $
Chú ý rằng ${{(a+b)}^{2}}-({{a}^{2}}-ab+{{b}^{2}})=3ab$ nên $3ab$ cũng chẵn, tức là cả hai số $a,b$ đều chẵn (vì nếu không thì ${{a}^{3}}+{{b}^{3}}$ lẻ).
Từ đây dễ dàng chứng minh được $3{{v}_{2}}(a)=3{{v}_{2}}(b)={{n}_{0}}$, ta đưa về
${{{x}’}^{3}}+{{{y}’}^{3}}={{1007}^{{{n}_{0}}}}$.
Cứ như thế, ta được $2014|a,2014|b$ nên phương trình sau cũng có nghiệm nguyên dương
${{\left( \frac{a}{2014} \right)}^{3}}+{{\left( \frac{b}{2014} \right)}^{3}}={{2014}^{{{n}_{0}}-3}}. $
Điều này mâu thuẫn với các chọn ${{n}_{0}}$ nên phương trình trên vô nghiệm. Các trường hợp còn lại tương tự.
\end{enumerate}
Ta có đpcm.
Bài 6.
(a) Không mất tính tổng quát, ta có thể giả sử $X$ là tập hợp $19$ số nguyên dương đầu tiên.
Gọi $X(k)$ là tập hợp tất cả các tập con có $7$ phần tử của $X$ và tổng các phần tử của nó chia $19$ dư $k$. \medskip
Khi đó, dễ thấy rằng $\left| X(0) \right|+\left| X(1) \right|+\cdots +\left| X(18) \right|$ chính là số tập con có $7$ phần tử tùy ý của $X$ và là $C_{19}^{7}.$ \medskip
Ta thấy rằng hai tập hợp $A,B\in X(k)$ tùy ý đều thỏa mãn đề bài. \medskip
Thật vậy, \medskip
Giả sử $\left| A\cap B \right|=6$ (không thể có $\left| A\cap B \right|=7$ vì khi đó hai tập hợp trùng nhau). Đặt
$A=\{{{a}_{1}},{{a}_{2}},{{a}_{3}},{{a}_{4}},{{a}_{5}},{{a}_{6}},x\},B=\{{{a}_{1}},{{a}_{2}},{{a}_{3}},{{a}_{4}},{{a}_{5}},{{a}_{6}},y\}$
thì \[\sum\limits_{i=1}^{6}{{{a}_{i}}}+x\equiv \sum\limits_{i=1}^{6}{{{a}_{i}}}+y\equiv k\pmod{19}\] nên $x\equiv y\pmod{19}$. Suy ra $x=y$, mâu thuẫn.
Đến đây, dễ thấy rằng \[\underset{0\le k\le 18}{\mathop{\max }}\,\left\{ \left| X(k) \right| \right\}\ge \frac{C_{19}^{7}}{19}=2652>2600.\]Ta có đpcm. \medskip
(b) Xét một tập hợp $F$ thuộc họ $\Omega $. Vì $\left| X\backslash F \right|=19-7=12$ nên có tất cả $12$ tập hợp $A\subset X$ với $\left| A \right|=8$ và $F\subset A.$ \medskip
Ngược lại, ứng với một tập hợp $A$ là một cận trên của họ $\Omega $, có không quá $8$ tập $F$ trong họ $\Omega $ sao cho $F\subset A.$ Do đó $d\ge \frac{12}{8}k$ hay $d\ge \frac{3}{2}k.$ \medskip
Đẳng thức xảy ra khi họ $\Omega $ là tập hợp tất cả các tập con có $7$ phần tử của $X$.
Bài 7.
Không mất tính tổng quát, giả sử $AB<AC.$ \medskip
Kẻ đường kính $AJ$ của đường tròn $(I).$ Khi đó, dễ thấy tứ giác $ABJC$ và $ANJQ$ là các hình bình hành nên $JB\parallel AC,JQ\parallel AN$ dẫn đến $J,Q,B$ thẳng hàng. Tương tự $J,P,C$ thẳng hàng. \medskip
Gọi $H$ là hình chiếu của $A$ lên $BC$ thì tứ giác $AQBH$ nội tiếp. \medskip
Suy ra
\[\angle QHB=\angle QAB=\angle QAM=\angle QPM=\angle QPI \] nên tứ giác $PQHI$ cũng nội tiếp.
Gọi $(O)$ là đường tròn ngoại tiếp tam giác $ABC$ thì dễ thấy đường tròn $(AHI)$ tiếp xúc với $(O)$ tại $A.$
Xét ba đường tròn $(O),(AHI),(PQHI)$ thì
Trục đẳng phương của $(O),(AHI)$ là tiếp tuyến của $(O)$ tại $A$.
Trục đẳng phương của $(O),(PQHI)$ là $PQ$.
Trục đẳng phương của $(PQHI),(AHI)$ là $HI.$
Do đó, $K$ chính là tâm đẳng phương của ba đường tròn nên $K\in HI$ hay $K,B,C$ thẳng hàng.
Bài 8.
Ta sẽ chứng minh $n = 5$ là giá trị lớn nhất cần tìm. \medskip
Ta nhận thấy rằng nếu $n = 3k+1, k \ge 1$ thì ta luôn phủ được bảng vuông $n \times n$ bằng cách phủ hàng đầu tiên bằng $1$ quân tetramino kích thước $1 \times 4$ (ta sẽ gọi tắt là tetramino) và $k-1$ quân trimino kích thước $1 \times 3$ (ta sẽ gọi tắt là trimino). Các cột còn lại có chiều dài $3k$ có thể phủ được bằng các quân trimino (xoay dọc lại). \medskip
Ta chứng minh rằng nếu $n = 3k+2, k \ge 2$ thì bảng vuông $n \times n$ cũng phủ được. Cách phủ với $n = 8$ được minh họa như sau
Dễ dàng thấy rằng với $k \ge 3$ thì ta có thể thu được cách phủ cho bảng vuông $n \times n$ bằng cách phủ phần hình vuông $8 \times 8$ ở góc trên bên trái như trên, phần còn lại gồm $1 $ hình chữ nhật kích thước $3(k-2) \times (3k+2)$ và 1 hình chữ nhật kích thước $8 \times 3(k-2)$ phủ được bằng các quân trimino.
Bây giờ ta chứng minh bảng vuông $5 \times 5$ không thể phủ được bằng 1 quân tetramino và 7 quân trimino.
Trước hết ta chứng minh bổ đề: Nếu bảng vuông $5 \times 5$ có thể phủ được bằng một hình vuông $1 \times 1$, ta gọi là unomino và $8$ quân trimino thì quân unomino $1 \times 1$ phải phủ ô trung tâm. \medskip
Thật vậy, \medskip
Ta đánh số các ô của bảng vuông $5 \times 5$ như hình vẽ
Ta thấy rằng một quân trimino luôn phủ đúng một ô mang số $1,$ một ô mang số $2$ và một ô mang số $3.$ Vì số các số $2$ bằng $9,$ còn số các số $1$ và $3$ bằng $8$ nên nếu phép phủ ở đề bài thực hiện được thì quân unomino phải phủ một ô mang số $2.$ \medskip
Mặt khác, ta có thể đánh số bảng vuông $5 \times 5$ bằng một cách khác
Các tính chất nói ở trên vẫn đúng cho cách đánh số này, tuy nhiên ở đây số số $1$ là $9$, còn số số $2$ và $3$ là $8.$ Do đó, một lần nữa ta kết luận quân unomino phải phủ một ô mang số $1.$ \medskip
Giao hai điều kiện cần nói trên lại, ta thấy với một cách phủ hợp lệ thì quân unomino phải phủ ô trung tâm. \medskip
Quay trở lại với vấn đề phủ bảng vuông $5 \times 5$ bằng $1$ quân tetramino và $7$ quân trimino. Nếu tồn tại một cách phủ như thế thì cắt quân tetramino thành $1$ quân unomino và $1$ quân trimino, ta thu được một phép phủ bảng vuông $5 \times 5$ bằng $1$ quân unomino và $8$ quân trimino. \medskip
Theo bổ đề thì quân unomino phải nằm ở ô trung tâm, nghĩa là một đầu của quân tetramino phải nằm ở ô trung tâm, mâu thuẫn (vì khi đó quân tetramino sẽ bị lòi ra ngoài bảng vuông). \medskip
Với những lý luận ở trên, ta kết luận $n = 5$ là giá trị lớn nhất cần tìm.