Đề thi và đáp án kì thi chọn đội tuyển thi Quốc gia trường Phổ thông Năng khiếu năm học 2014 – 2015

ĐỀ THI

 

Ngày thi thứ nhất

Bài 1. Cho $a, b, c>0$ thỏa mãn điều kiện $(a+1)(b+1)(c+1)=1+4 a b c$. Chứng mình rằng ta có bất đẳng thức $a+b+c \leq 1+a b c$.

Bài 2. Cho tập hợp $A=[n^3-4 n+15 \mid n \in \mathbb{N}]$. Tìm tất cả các phần tử $a \in A$ thỏa mãn đồng thời hai điều kiện sau đây:

$\quad (i)\quad a$ là số chẵn.

$\quad (ii)$ Nếu $a_1, a_2$ là các ước số của $\frac{a}{2}$ với $a_1, a_2>1$ thì $\operatorname{gcd}\left(a_1, a_2\right)>1$.

Bài 3. Tìm tất cả các hàm số $f: \mathbb{N}^* \rightarrow \mathbb{N}^*$ thỏa mãn:

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad f\left(\frac{f(n)}{n}\right)=n^2 \forall n \in \mathbb{N}^*$

Bài 4. Cho tam giác $A B C$ nội tiếp $(O)$, có $B, C$ cố định và $A$ thay đổi trên $(O)$. Ký hiệu $(I)$ là đường tròn nội tiếp tam giác $A B C$. Gọi $\left(O_1\right)$ là đường tròn qua $A, B$ và tiếp xúc với đường tròn $(I)$ tại $E$. Gọi $\left(O_2\right)$ là đường tròn qua $A, C$ và tiếp xúc với đường tròn $(I)$ tại $F$. Đường phân giác trong của góc $\angle A E B$ cắt $\left(O_1\right)$ tại $M$ và đường phân giác trong của góc $\angle A F C$ cắt $\left(O_2\right)$ tại $N$.

(a) Chứng minh rằng tứ giác $E F M N$ nội tiếp.

(b) Gọi $J$ là giao điểm của $E M$ và $F N$. Chứng minh rằng đường thẳng $I J$ luôn đi qua một điểm cố định.

Ngày thi thứ hai

Bài 5. Cho dãy số $\left(x_n\right)$ bởi $x_0=1, x_1=2014$ và $x_{n+1}=\sqrt[3]{x_n x_{n-1}^2} \forall n \in \mathbb{N}^*$.

(a) Chứng minh rằng dãy số $\left(x_n\right)$ có giới hạn hữu hạn và tìm giới hạn đó.

(a) Với mỗi $n \geq 2$, hãy tìm số nguyên dương $k$ nhỏ nhất sao cho $a=x_n^k$ là một số nguyên. Chứng minh rằng khi đó $a$ không thể viết được dưới dạng tổng các lũy thừa bậc ba của hai số tự nhiên.

Bài 6. Cho $X$ là tập hợp gồm 19 phần tử.

(a) Chứng minh rằng tồn tại ít nhất 2600 tập con 7 phần tử của $X$ sao cho với hai tập con $A, B$ bất kỳ trong số 2600 tập con đó, ta có $|A \cap B| \leq 5$.

(b) Xét một họ $\Omega$ gồm $k$ tập con có 7 phần tử của $X$. Một tập $A \subset X$ được gọi là một cận trên của $\Omega$ nếu như $|A|=8$ và tồn tại một tập con $F$ của họ $\Omega$ sao cho $F \subset A$. Gọi $d$ là số tập con cận trên của họ $\Omega$. Chứng minh rằng $d \geq \frac{3}{2} k$.

Bài 7. Cho tam giác $A B C$ không cân. Gọi $I$ là trung điểm $B C$. Đường tròn $(I)$ tâm $I$ đi qua $A$ cắt $A B, A C$ lần lượt tại $M, N$. Giả sử $M I, N I$ cắt $(I)$ tại $P, Q$. Gọi $K$ là giao điểm của $P Q$ với tiếp tuyến tại $A$ của $(I)$. Chứng minh rằng $K$ thuộc đường thẳng $B C$.

Bài 8. Tìm số nguyên dương $n$ lớn nhất thỏa mãn các điều kiện sau:

$\quad (i)\quad n$ không chia hết cho 3 .

$\quad (ii)$ Bảng vuông $n \times n$ không thể được phủ kín bằng 1 quân tetramino $1 \times 4$ và các quân trimino $1 \times 3$. Trong phép phủ, các quân tetramino và trimino được phép quay dọc nhưng không được phép chườm lên nhau hoặc nằm ra ngoài bảng vuông.

LỜI GIẢI

Bài 1. Cho $a, b, c>0$ thỏa mãn điều kiện $(a+1)(b+1)(c+1)=1+4 a b c$. Chứng minh rằng ta có bất đẳng thức
$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad a+b+c \leq 1+a b c .$
Lời giải. Điều kiện đã cho viết thành $a b+b c+c a+a+b+c=3 a b c$. Chia hai vế cho $a b c$ rồi đặt $a=\frac{1}{x}, b=\frac{1}{y}, c=\frac{1}{z}$, ta có $x y+y z+z x+x+y+z=3$.
Bất đẳng thức đã cho có thể viết thành
$\quad\quad\quad\quad\quad\quad x y+y z+z x-x y z \leq 1 \text { hay } x+y+z+x y z \geq 2 \text {. }$
Theo bất đẳng thức Schur thì
$\quad\quad\quad\quad\quad\quad (x+y+z)^3+9 x y z \geq 4(x y+y z+z x)(x+y+z) .$
Đặt $m=x+y+z, n=x y+y z+z x$ thì $m+n=3$ và
$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad x y z \geq \frac{4 m n-m^3}{9} .$
Ta sẽ chứng minh rằng
$\quad\quad\quad\quad\quad\quad m+\frac{4 m n-m^3}{9} \geq 2 \Leftrightarrow m^3+4 m^2-21 m+18 \leq 0$
hay $(m-2)\left(m^2+6 m-9\right) \leq 0$. Chú ý rằng $m^2 \geq 3 n$ nên
$\quad\quad\quad\quad\quad\quad\quad\quad m^2 \geq 3(3-m) \Leftrightarrow m^3+3 m \geq 9$

Do đó $m^2+6 m-9 \geq 0$. Ta xét các trường hợp

  1. Nếu $m>2$ thì $x+y+z>2$ nên hiển nhiên bất đẳng thức cần chứng minh là đúng.
  2. Nếu $m \leq 2$ thì $m-2 \leq 0$ nên ta cũng có $(m-2)\left(m^2+6 m-9\right) \leq 0$.

Vậy trong mọi trường hợp, ta luôn có điều phải chứng minh.

Bài 2. Cho tập hợp $A=[n^3-4 n+15 \mid n \in \mathbb{N}]$. Tìm tất cả các phần tử $a \in A$ thỏa mãn đồng thời hai điều kiện sau đây:

$\quad (i)\quad a$ là số chẵn.

$\quad (ii)$ Nếu $a_1, a_2$ là các ước số của $\frac{a}{2}$ với $a_1, a_2>1$ thì $\operatorname{gcd}\left(a_1, a_2\right)>1$.

Lời giải. Ta thấy rằng $a=n^3-4 n+15$ chẵn nên $n^3+15$ chẵn hay $n$ lẻ. Đặt $n=2 k+1$ với $k \in \mathbb{N}$. Ta có

$\quad\quad\quad\quad\quad\quad a=n^3-4 n+15 =(n+3)\left(n^3-3 n+15\right) $

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad =(2 k+4)\left(4 k^2-2 k+3\right)$

nên $\frac{a}{2}=(k+2)\left(4 k^2-2 k+3\right)$. Điều kiện ii) cho thấy rằng $\frac{a}{2}$ phải là lũy thừa của một số nguyên tố, vì nếu nó có hai ước nguyên tố trở lên, đặt là $p, q$ thì chọn $x=p, y=q$, ta có $x, y>1$ nhưng $\operatorname{gcd}(x, y)=1$, không thỏa mãn.

Vì $\left(4 k^2-2 k+3\right)-(k+2)=4 k^2-3 k+1>0$ với mọi $k \in \mathbb{N}$. Do đó, ta phải có $k+2 \mid 4 k^2-2 k+3$. Suy ra

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\frac{4 k^2-2 k+3}{k+2}=4 k-10+\frac{23}{k+2} \in \mathbb{Z} .$

Do đó $k+2 \in{1,23}$ vì $k+2>0$. Ta xét các trường hợp

  1. Nếu $k+2=1$ thì $k=-1$ hay $n=2 k+1=-1<0$, không thỏa mãn.
  2. Nếu $k+2=23$ thì $k=21$ hay $n=43$, tính được $\frac{a}{2}=3 \cdot 5^2 \cdot 23^2$, cũng không thỏa mãn.

Vậy không tồn tại số $a$ nào thỏa mãn.

Bài 3. Tìm tất cả các hàm số $f: \mathbb{N}^* \rightarrow \mathbb{N}^*$ thỏa mãn:

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad f\left(\frac{f(n)}{n}\right)=n^2 \forall n \in \mathbb{N}^* .$

Lời giải. Với $n \in \mathbb{N} *$, ta thấy rằng nếu $n=1$ thì $f(f(1))=1$.

Nếu $n>1$ thì gọi $p$ là một ước nguyên tố bất kỳ của $n$.

Vì $\frac{f(n)}{n} \in \mathbb{N} *$ nên $n \mid f(n)$. Đặt $a=v_p(n), b=v_p(f(n))$ thì trước hết, ta có $a \leq b$.

Từ $f\left(\frac{f(n)}{n}\right)=n^2$, ta suy ra rằng $\frac{f(n)}{n} \mid n^2$ hay $f(n) \mid n^3$, tức là $b \leq 3 a$.

Trong biểu thức đã cho, thay $n \rightarrow \frac{f(n)}{n}$ thì

$\quad\quad\quad\quad\quad\quad f\left(\frac{f\left(\frac{f(n)}{n}\right)}{\frac{f(n)}{n}}\right)=\left(\frac{f(n)}{n}\right)^2 \Leftrightarrow f\left(\frac{n^3}{f(n)}\right)=\left(\frac{f(n)}{n}\right)^2$

Do đó, ta phải có

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\left(\frac{f(n)}{n}\right)^2\left|\frac{n^3}{f(n)} \Leftrightarrow f^3(n)\right| n^5 \text { nên } 3 b \leq 5 a \text {. }$

Sau đó lại tiếp tục thay $n$ trong biểu thức đã cho bởi $\frac{n^5}{f^3(n)}$ và cứ như thế, ta xây dựng được hai dãy hệ số của $a, b$ như sau

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad u_0=v_0=1, u_1=3, v_1=1 \text { và } $

$\quad\quad\quad\quad\quad\quad\quad\quad u_{k+1}=2 u_{k-1}+v_k, v_{k+1}=2 v_{k-1}+u_k \text { với } k \geq 1 .$

Khi đó

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\frac{v_{2 k}}{u_{2 k}} \leq \frac{b}{a} \leq \frac{u_{2 k+1}}{v_{2 k+1}} .$

Biến đổi công thức của hai dãy, ta có $u_{n+2}=5 u_n-4 u_{n-2}, v_{n+2}=5 v_n-4 v_{n-2}$ và cả hai dãy đều có phương trình đạạc trưng là $t^2-5 t+4=0$. Ngoài ra, dãy chăn và dãy lẻ trong mỗi dãy đều độc lập với nhau.

Ta có $u_0=1, u_2=3, v_0=1, v_2=5$ nên

$\quad\quad\quad\quad\quad\quad\quad\quad u_{2 k}=\frac{13+2 \cdot 16^k}{15}, v_{2 k}=\frac{11+4 \cdot 16^k}{15}, k \geq 1 .$

Từ đó, dễ dàng tính được $\lim \frac{u_{2 k+1}}{v_{2 k+1}}=2$.

Một cách tương tự, ta tính được $\lim \frac{u_{2 k}}{v_{2 k}}=\frac{1}{2}$. Do đó, số $\frac{b}{a}$ bị kẹp ở giữa và là số nguyên nên chỉ có thể là $\frac{b}{a}=2 \Leftrightarrow b=2 a$.

Rõ ràng tập hợp ước nguyên tố của $n$ và $f(n)$ là giống nhau. Hơn nữa, với một ước nguyên tố cụ thể thì số mũ trong $f(n)$ gấp đôi số mũ trong $n$. Suy ra $f(n)=$ $n^2, \forall n>1$.

Tiếp theo, giả sử $f(1)=n>1$ thì ta có $f(f(1))=1$ nên $f(n)=1$, mâu thuẫn. Vì thế nên chỉ có thể $f(1)=1$.

Vậy tất cả các hàm thỏa mãn là $f(n)=n^2, \forall n \in \mathbb{N}^*$.

Bài 4. Cho tam giác $A B C$ nội tiếp $(O)$, có $B, C$ cố định và $A$ thay đổi trên $(O)$. Ký hiệu $(I)$ là đường tròn nội tiếp tam giác $A B C$. Gọi $\left(O_1\right)$ là đường tròn qua $A, B$ và tiếp xúc với đường tròn $(I)$ tại $E$. Gọi $\left(O_2\right)$ là đường tròn qua $A, C$ và tiếp xúc với đường tròn $(I)$ tại $F$. Đường phân giác trong của góc $\angle A E B$ cắt $\left(O_1\right)$ tại $M$ và đường phân giác trong của góc $\angle A F C$ cắt $\left(O_2\right)$ tại $N$.

(a) Chứng minh rằng tứ giác $E F M N$ nội tiếp.

(b) Gọi $J$ là giao điểm của $E M$ và $F N$. Chứng minh rằng đường thẳng $I J$ luôn đi qua một điểm cố định.

Lời giải. (a) Trước hết, ta thấy rằng $O_1, I, E$ thẳng hàng và $O_2, I, F$ thẳng hàng. Vì $M$ là trung điểm cung $A B$ của $\left(O_1\right)$ nên $O_1 M$ là trung trực của $A B$, suy ra $O \in O_1 M$. Tương tự, ta cũng có $O \in O_1 N$.

Gọi $P, Q$ lần lượt là tiếp điểm của $(I)$ với $A B, A C$.

Vì $I P | O_1 M$ (cùng vuông góc với $A B$ ) nên $\angle M O_1 E=\angle P I E$. Hơn nữa, các tam giác $O_1 M E, I P E$ đều cân với đỉnh là $O_1, I$ nên suy ra chúng đồng dạng, tức là $\angle I E P=\angle O_1 E M$ hay $E, P, M$ thẳng hàng. Tương tự thì $F, Q, N$ cũng thẳng hàng.

Vì ta đã có $E, F, P, Q$ cùng thuộc đường tròn $(I)$ nên để có $E, F, M, N$ cùng thuộc một đường tròn thì $\angle E M N=\angle E F N=\angle E P Q$ hay $M N | P Q$.

Mặt khác, $A I \perp P Q$ nên ta cần có $A I \perp M N$.

Thật vậy, sử dụng phương tích với đường tròn $(I)$ ta có

$\quad\quad\quad\quad\quad\quad M A^2-N A^2=M P \cdot M E-N Q \cdot N F=M I^2-N I^2$

nên theo định lý bốn điểm thì $A I \perp M N$, từ đó ta có điều phải chứng minh.

(b) Vì $P Q|M N, O M| I P$ nên dễ dàng có $\angle I P Q=\angle O M N$. Tương tự $\angle I P Q=$ $\angle O N M$.

Do đó, hai tam giác $I P Q, O M N$ đồng dạng với nhau, tức là

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\frac{I P}{O M}=\frac{P Q}{M N} \text {. }$

Ngoài ra,

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\frac{J P}{J M}=\frac{I P}{O M}$

kết hợp với $\angle J P I=\angle J M O$, ta có hai tam giác $J P I, J M O$ đồng dạng, dẫn đến

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\angle P J I=\angle M J O \text {. }$

Từ đây suy ra $I, J, O$ thẳng hàng hay $I J$ luôn đi qua điểm $O$ cố định.

Ngày thi thứ hai

Bài 5. Cho dãy số $\left(x_n\right)$ bởi $x_0=1, x_1=2014$ và $x_{n+1}=\sqrt[3]{x_n x_{n-1}^2} \forall n \in \mathbb{N}^*$.

(a) Chứng minh rằng dãy số $\left(x_n\right)$ có giới hạn hữu hạn và tìm giới hạn đó.

(b) Với mỗi $n \geq 2$, hãy tìm số nguyên dương $k$ nhỏ nhất sao cho $a=x_n^k$ là một số nguyên. Chứng minh rằng khi đó $a$ không thể viết được dưới dạng tổng các lũy thừa bậc ba của hai số tự nhiên.

Lời giải. (a) Đặt $u_n=\log _{2014}\left(x_n\right)$ thì ta thu được dãy $\left(u_n\right)$ như sau

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\left\{\begin{array}{c}u_0=0, u_1=1 \\ u_{n+1}=\frac{1}{3} u_n+\frac{2}{3} u_{n-1}\end{array}\right.$

Từ đó tìm được

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad u_n=\frac{3}{5}-\frac{3}{5} \cdot\left(\frac{-2}{3}\right)^n$

Suy ra $\lim _{n \rightarrow+\infty} u_n=\frac{3}{5}$ nên ta có được

$\quad\quad\quad\quad\quad\quad\quad\quad \lim _{n \rightarrow+\infty} x_n=\lim _{n \rightarrow+\infty}\left(2014^{u_n}\right)=2014^{3 / 5}$

(b) Ta thấy rằng để có $\left(x_n\right)^k$ là một số nguyên thì $\frac{3 k\left(3^n-(-2)^n\right)}{5 \cdot 3^n} \in \mathbb{Z}$ nguyên. Ta xét các trường hợp

  1. Nếu $n$ lẻ thì $3^n-(-2)^n=3^n+2^n: 5$. Vì $\operatorname{gcd}\left(\frac{3^n+2^n}{5}, 3^n\right)=1$ nên ta được $3^n \mid 3 k$ nên $k$ nhỏ nhất thỏa mãn điều này là $k=3^{n-1}$.
  2. Nếu $n$ chẵn thì $3^n-2^n \equiv(-2)^n-2^n=0(\bmod 5)$ và tương tự, ta cũng tìm được $k=3^{n-1}$.

Do đó số $k$ nhỏ nhất cần tìm là $k=3^{n-1}$. Tiếp theo, ta sẽ chứng minh rằng phương trình sau không có nghiệm tự nhiên

$\quad\quad\quad\quad\quad\quad\quad a^3+b^3=2014^n \Leftrightarrow(a+b)\left(a^2-a b+b^2\right)=2014^n$

Gọi $n_0$ số nguyên dương nhỏ nhất sao cho tồn tại $a, b \in \mathbb{Z}^{+}$để $a^3+b^3=2014^{n_0}$. Dễ thấy $n_0=1$ không thỏa mãn nên ta chỉ xét $n_0 \geq 2$. Ta xét các trường hợp

  1. Nếu $\operatorname{gcd}\left(a+b, a^2-a b+b^2\right)=1$ thì dễ thấy $(a-b)^2 \geq 1$. Khi đó

$\quad\quad\quad\quad\quad\quad\quad\quad\quad a^2-a b+b^2 \geq a+b>\sqrt{a^2-a b+b^2} .$

Vì $2014=2 \cdot 19 \cdot 53$ nên chỉ có thể xảy ra

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad a+b=19^{n_0}, a^2-a b+b^2=106^{n_0} .$

Ngoài ra $(a+b)^2 \leq 4\left(a^2-a b+b^2\right)$ nên ta phải có $361^{n_0} \leq 4 \cdot 106^{n_0}$. Đánh giá này sai khi $n_0 \geq 2$ nên trường hợp này không thỏa mãn.

$2$. Nếu $\operatorname{gcd}\left(a+b, a^2-a b+b^2\right)>1$ thì chẳng hạn $a+b=2^x u, a^2-a b+b^2=2^y v$ với $\quad\quad\quad\quad\quad\quad\quad\quad\operatorname{gcd}(u, 2)=\operatorname{gcd}(v, 2)=1 .$

Các trường hợp còn lại chứng minh tương tự. Ngoài ra

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad u v=1007^{n_0}, x+y=n_0 .$

Chú ý rằng $(a+b)^2-\left(a^2-a b+b^2\right)=3 a b$ nên $3 a b$ cũng chẵn, tức là cả hai số $a, b$ đều chẵn (vì nếu không thì $a^3+b^3$ lẻ).

Từ đây dễ dàng chứng minh được $3 v_2(a)=3 v_2(b)=n_0$, ta đưa về $x^{\prime 3}+y^{\prime 3}=$ $1007^{n_0}$. Cứ như thế, ta được 2014 $|a, 2014| b$ nên phương trình sau cũng có nghiệm nguyên dương

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad \left(\frac{a}{2014}\right)^3+\left(\frac{b}{2014}\right)^3=2014^{n_0-3} .$

Điều này mâu thuẫn với các chọn $n_0$ nên phương trình trên vô nghiệm. Các trường hợp còn lại tương tự.

Ta có điều phải chứng minh.

Bài 6. Cho $X$ là tập hợp gồm 19 phần tử.

(a) Chứng minh rằng tồn tại ít nhất 2600 tập con 7 phần tử của $X$ sao cho với hai tập con $A, B$ bất kỳ trong số 2600 tập con đó, ta có $|A \cap B| \leq 5$.

(b) Xét một họ $\Omega$ gồm $k$ tập con có 7 phần tử của $X$. Một tập $A \subset X$ được gọi là một cận trên của $\Omega$ nếu như $|A|=8$ và tồn tại một tập con $F$ của họ $\Omega$ sao cho $F \subset A$. Gọi $d$ là số tập con cận trên của họ $\Omega$. Chứng minh rằng $d \geq \frac{3}{2} k$.

Lời giải. (a) Không mất tính tổng quát, ta có thể giả sử $X$ là tập hợp 19 số nguyên dương đầu tiên. Gọi $X(k)$ là tập hợp tất cả các tập con có 7 phần tử của $X$ và tổng các phần tử của nó chia 19 dư $k$.

Khi đó, dễ thấy rằng $|X(0)|+|X(1)|+\cdots+|X(18)|$ chính là số tập con có 7 phần tử tùy ý của $X$ và là $C_{19}^7$.

Ta thấy rằng hai tập hợp $A, B \in X(k)$ tùy ý đều thỏa mãn đề bài.

Thật vậy,

Giả sử $|A \cap B|=6$ (không thể có $|A \cap B|=7$ vì khi đó hai tập hợp trùng nhau).

Đặt $A=[a_1, a_2, a_3, a_4, a_5, a_6, x]$, $B=[a_1, a_2, a_3, a_4, a_5, a_6, y]$ thì

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad \sum_{i=1}^6 a_i+x \equiv \sum_{i=1}^6 a_i+y \equiv k \quad(\bmod 19)$

nên $x \equiv y(\bmod 19)$. Suy ra $x=y$, mâu thuẫn. Đến đây, dễ thấy rằng

Ta có điều phải chứng minh.

(b) Xét một tập hợp $F$ thuộc họ $\Omega$. Vì $|X \backslash F|=19-7=12$ nên có tất cả 12 tập hợp $A \subset X$ với $|A|=8$ và $F \subset A$.

Ngược lại, ứng với một tập hợp $A$ là một cận trên của họ $\Omega$, có không quá 8 tập $F$ trong họ $\Omega$ sao cho $F \subset A$. Do đó $d \geq \frac{12}{8} k$ hay $d \geq \frac{3}{2} k$.

Đẳng thức xảy ra khi họ $\Omega$ là tập hợp tất cả các tập con có 7 phần tử của $X$.

Bài 7. Cho tam giác $A B C$ không cân. Gọi $I$ là trung điểm $B C$. Đường tròn (I) tâm $I$ đi qua $A$ cắt $A B, A C$ lần lượt tại $M, N$. Giả sử $M I, N I$ cắt $(I)$ tại $P, Q$. Gọi $K$ là giao điểm của $P Q$ với tiếp tuyến tại $A$ của $(I)$. Chứng minh rằng $K$ thuộc đường thẳng $B C$.

Lời giải. Không mất tính tổng quát, giả sử $A B<A C$.

Kẻ đường kính $A J$ của đường tròn $(I)$. Khi đó, dễ thấy tứ giác $A B J C$ và $A N J Q$ là các hình bình hành nên $J B|A C, J Q| A N$ dẫn đến $J, Q, B$ thẳng hàng. Tương tự $J, P, C$ thẳng hàng.

Gọi $H$ là hình chiếu của $A$ lên $B C$ thì tứ giác $A Q B H$ nội tiếp.

Suy ra

$\quad\quad\quad\quad\quad\quad \angle Q H B=\angle Q A B=\angle Q A M=\angle Q P M=\angle Q P I$

nên tứ giác $P Q H I$ cũng nội tiếp. Gọi $(O)$ là đường tròn ngoại tiếp tam giác $A B C$ thì dễ thấy đường tròn $(A H I)$ tiếp xúc với $(O)$ tại $A$.

Xét ba đường tròn $(O),(A H I),(P Q H I)$ thì

  • Trục đẳng phương của $(O),(A H I)$ là tiếp tuyến của $(O)$ tại $A$.
  • Trục đẳng phương của $(O),(P Q H I)$ là $P Q$.
  • Trục đẳng phương của $(P Q H I),(A H I)$ là $H I$.

Do đó, $K$ chính là tâm đẳng phương của ba đường tròn nên $K \in H I$ hay $K, B, C$ thẳng hàng.

Bài 8. Tìm số nguyên dương $n$ lớn nhất thỏa mãn các điều kiện sau:

$\quad (i)$ n không chia hết cho 3 .

$\quad (ii)$ Bảng vuông $n \times n$ không thể được phủ kín bằng 1 quân tetramino $1 \times 4$ và các quân trimino $1 \times 3$. Trong phép phủ, các quân tetramino và trimino được phép quay dọc nhưng không được phép chườm lên nhau hoặc nằm ra ngoài bảng vuông.

Lời giải. Ta sẽ chứng minh $n=5$ là giá trị lớn nhất cần tìm.

Ta nhận thấy rằng nếu $n=3 k+1, k \geq 1$ thì ta luôn phủ được bảng vuông $n \times n$ bằng cách phủ hàng đầu tiên bằng 1 quân tetramino kích thước $1 \times 4$ (ta sẽ gọi tắt là tetramino) và $k-1$ quân trimino kích thước $1 \times 3$ (ta sẽ gọi tắt là trimino). Các cột còn lại có chiều dài $3 k$ có thể phủ được bằng các quân trimino (xoay dọc lại).

Ta chứng minh rằng nếu $n=3 k+2, k \geq 2$ thì bảng vuông $n \times n$ cũng phủ được. Cách phủ với $n=8$ được minh họa như sau

Dễ dàng thấy rằng với $k \geq 3$ thì ta có thể thu được cách phủ cho bảng vuông $n \times n$ bằng cách phủ phần hình vuông $8 \times 8$ ở góc trên bên trái như trên, phần còn lại gồm 1 hình chữ nhật kích thước $3(k-2) \times(3 k+2)$ và 1 hình chữ nhật kích thước $8 \times 3(k-2)$ phủ được bằng các quân trimino.

Bây giờ ta chứng minh bảng vuông $5 \times 5$ không thể phủ được bằng 1 quân tetramino và 7 quân trimino.

Trước hết ta chứng minh bổ đề: Nếu bảng vuông $5 \times 5$ có thể phủ được bằng một hình vuông $1 \times 1$, ta gọi là unomino và 8 quân trimino thì quân unomino $1 \times 1$ phải phủ ô trung tâm.

Thật vậy,

Ta đánh số các ô của bảng vuông $5 \times 5$ như hình vẽ

Ta thấy rằng một quân trimino luôn phủ đúng một ô mang số 1 , một ô mang số 2 và một ô mang số 3 . Vì số các số 2 bằng 9 , còn số các số 1 và 3 bằng 8 nên nếu phép phủ ở đề bài thực hiện được thì quân unomino phải phủ một ô mang số 2 .

Mặt khác, ta có thể đánh số bảng vuông $5 \times 5$ bằng một cách khác

Các tính chất nói ở trên vẫn đúng cho cách đánh số này, tuy nhiên ở đây số số 1 là 9 , còn số số 2 và 3 là 8 . Do đó, một lần nữa ta kết luận quân unomino phải phủ một ô mang số 1 .

Giao hai điều kiện cần nói trên lại, ta thấy với một cách phủ hợp lệ thì quân unomino phải phủ ô trung tâm.

Quay trở lại với vấn đề phủ bảng vuông $5 \times 5$ bằng 1 quân tetramino và 7 quân trimino. Nếu tồn tại một cách phủ như thế thì cắt quân tetramino thành 1 quân unomino và 1 quân trimino, ta thu được một phép phủ bảng vuông $5 \times 5$ bằng 1 quân unomino và 8 quân trimino.

Theo bổ đề thì quân unomino phải nằm ở ô trung tâm, nghĩa là một đầu của quân tetramino phải nằm ở ô trung tâm, mâu thuẫn (vì khi đó quân tetramino sẽ bị lòi ra ngoài bảng vuông).

Với những lý luận ở trên, ta kết luận $n=5$ là giá trị lớn nhất cần tìm.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Leave a Reply

Your email address will not be published. Required fields are marked *