Đường thẳng Euler

Định lý. Trong một tam giác thì trọng tâm, trực tâm và tâm đường tròn ngoại tiếp cùng nằm trên một đường thẳng.

(Đường thẳng qua 3 điểm này được gọi là đường thẳng Euler của tam giác)

Chứng minh định lý.

Cách 1. (THCS) Cho tam giác $ABC$, gọi $H, G, O$ lần lượt là trực tâm, trọng tâm và tâm đường tròn ngoại tiếp tam giác $ABC$. Ta chứng minh $H, G, O$ thẳng hàng.

Gọi $M$ là trung điểm $BC$ và $D$ là đối xứng của $A$ qua $O$. Ta có $HBDC$ là hình bình hành.

Do đó $M$ là trung điểm $BC$ cũng là trung điểm $HD$.

Tam giác $AHD$ có $AM$ là trung tuyến và $AG = 2GM$ nên $G$ là trọng tâm.

Cách 2 (Vectơ) 

Cho tam giác $ABC$ có trực tâm $H$, tâm ngoại tiếp là $O$, $G$ là trọng tâm tam giác. Gọi $M$ là trung điểm $BC$ và $D$ là chân đường cao từ $A$.
Ta cần chứng minh $\overrightarrow{OH} = \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}$. Thật vậy đặt $\overrightarrow{v} = \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} -\overrightarrow{OH}$.
Thực hiện phép chiếu vectơ $\overrightarrow{v}$ trên $BC$ ta có $\overrightarrow{v_{BC}} = \overrightarrow{MD} + \overrightarrow{MB} + \overrightarrow{MC} – \overrightarrow{MD} = \overrightarrow{0}$.
Tương tự hình chiếu của $\overrightarrow{v}$ trên $AC$ là $\overrightarrow{v_{AC}} = \overrightarrow{0}$.
Do đó $\overrightarrow{v} = \overrightarrow{0}$.
Khi đó $\overrightarrow{OH} = \overrightarrow{OA}+ \overrightarrow{OB}+ \overrightarrow{OC} = 3\overrightarrow{OG}$, do đó $O, H, G$ thẳng hàng và $OH = 3OG$.

Cách 3 (phép vị tự) Xét phép vị tự tâm $G$ thì số $k = \dfrac{-1}{2}$ thì tam giác $ABC$ biến thành tam giác $MNP$ với $M, N, P$ là trung điểm các cạnh $BC, AC, AB$.

Khi đó trực tâm tam giác $ABC$ biến thành trực tâm tam giác $MNP$, hay $H \mapsto O$.

Do đó $\overrightarrow{GO} = \dfrac{-1}{2} \overrightarrow{GH}$.

Hay $H, G, O$ thẳng hàng và $GH = 2GO$.

 

Bài tập liên quan

Bài 1. Cho tam giác $ABC$. Gọi $M, N, P$ lần lượt là trung điểm của các cạnh $BC, AC, AB$. Chứng minh rằng đường thẳng euler của các tam giác $ABC$ và $MNQ$ trùng nhau.

Bài 2. Cho tam giác $ABC$, các đường cao $AA’, BB’, CC’$ cắt nhau tại $H$. Chứng minh rằng đường thẳng euler của các tam giác $AB’C’, BA’C’, CA’B’$ đồng quy tại một điểm thuộc đường tròn ngoại tiếp của tam giác $A’B’C’$.

Bài 3. Cho tam giác $ABC$ có $AB^2 + AC^2 = 2BC^2$. Gọi $H$ là trực tâm và $M$ là trung điểm cạnh $BC$. Tia $MH$ cắt đường tròn ngoại tiếp tam giác tại $D$. Chứng minh $AD, BC$ và đường thẳng euler của tam giác $ABC$ đồng quy.

Bài 4. Cho tam giác $ABC$ nội tiếp đường tròn $(O)$ và ngoại tiếp đường tròn $(I)$. Gọi $A’, B’, C’$ lần lượt là giao điểm của $AI, BI, CI$ với $(O)$. Chứng minh rằng đường thẳng euler của tam giác $A’B’C’$ đi qua điểm $I$.

Bài 5. Cho tam giác $ABC$ nội tiếp đường tròn $(O)$. Đường tròn tâm $I$ nội tiếp tam giác $ABC$ và tiếp xúc với các cạnh $AB, AC$ tại $D, E$. Gọi $M, N$ lần lượt là giao điểm của $BI, CI$ với $DE$; $P$ là giao điểm của $BN$ và $CM$, $AI$ cắt $(O)$ tại $Q$. Chứng minh rằng $PQ$ là đường thẳng euler của tam giác $IBC$.

Bài 6. Cho hai đường tròn (O) và $(O’)$ cắt nhau tại A và B. Một đường thẳng qua A cắt (O) tại C và cắt (O’) tại D (A nằm giữa C và D). Chứng minh rằng đường thẳng euler của tam giác BCD luôn đi qua một điểm cố định.

Bài 7. Cho tam giác ABC có 3 đường cao AD,BE,CF đồng quy tại H. DE cắt đường tròn đường kính BH lần 2 tại K, DF cắt đường tròn đường kính CH lần 2 tại L. Chứng minh KL vuông góc với đường thẳng Euler của tam giác ABC

Bài 8. Cho tam giác $ABC$ có tâm đường tròn ngoại tiếp $O$. Gọi $T, U, V$ là tâm đường tròn ngoại tiếp các tam giác $BOC, COA, AOB$. Gọi $K$ là tâm đường tròn ngoại tiếp của tam giác $TUV$. Chứng minh $K$ thuộc đường thẳng euler của tam giác $ABC$.

Bài 9. Cho tam giác $ABC$, $D$ là điểm thuộc phân giác trong của góc $\angle BAC$. Đường tròn ngoại tiếp tam giác $ABD$ cắt $AC$ tại $E$, đường tròn ngoại tiếp tam giác $ACD$ cắt $AB$ tại $F$. Gọi $O$ là tâm đường tròn ngoại tiếp tam giác $ABC$. Chứng minh rằng $EF$ vuông góc với $OD$.