Hình Thoi

Định nghĩa. Hình thoi là tứ giác có bốn cạnh bằng nhau.

Tính chất: hình thoi có mọi tính chất của hình bình hành, ngoài ra còn có

  • Hai cạnh kề bằng nhau.
  • Đường chéo này là trung trực của đường chéo kia (chúng vuông góc với nhau tại trung điểm mỗi đường).
  • Hai đường chéo là các đường phân giác các góc hình thoi.

Dấu hiệu nhận biết hình thoi

  • Tứ giác có bốn cạnh bằng nhau.
  • Hình bình hành có hai cạnh kề bằng nhau.
  • Hình bình hành có một đường chéo là đường phân giác một góc hình thoi.
  • Hình bình hành có hai đường chéo vuông góc.

Ví dụ 1. Chứng minh rằng

  1. Các trung điểm của bốn cạnh một hình chữ nhật là các đỉnh của một hình thoi;
  2. Các trung điểm của bốn cạnh một hình thoi là các đỉnh của một hình chữ nhật.
Gợi ý

 

Ví dụ 2. Cho hình thoi $ABCD$ có đường chéo $BD$ bằng độ dài bốn cạnh hình thoi. Gọi $M$ là một điểm bất kỳ trên cạnh $AB$. Lấy điểm $N$ trên cạnh $BC$ sao cho $\angle MDN = 60^\circ$. Chứng minh tam giác $ DMN $ đều. Từ đó suy ra vị trí của điểm $M$ trên $AB$ để độ dài đoạn $MN$ lớn nhất, nhỏ nhất.

Gợi ý

Bài tập

Bài 1. Cho hình thoi $ {ABCD}$ có $ {AB = 6cm, \angle A = 120^\circ}$.

a) Tính $ {AC,BD}$.

b) Gọi $ {E}$ là điểm đối xứng của $ {A}$ qua $ {BC}$. Chứng minh $ {D,E,C}$ thẳng hàng. Tứ giác $ {ABED}$ là hình gì? Tại sao?Bài 2.

Bài 2. Chứng minh rằng

a) Giao điểm hai đường chéo của hình thoi là tâm đối xứng của hình thoi.

b) Hai đường chéo của một hình thoi là hai trục đối xứng của hình thoi.

Bài 3. Cho tứ giác $ {ABCD}$ có $ {AD = BC}$. Gọi $ {M,N,P,Q}$ lần lượt là trung điểm của $ {AB}$, $ {AC}$, $ {CD}$, và $ {BD}$.

a) Chứng minh rằng $ { MP \bot NQ }$.

b) Giả sử đường thẳng $ {MP}$ cắt các đường thẳng $ {AD}$, $ {BC}$ lần lượt tại $ {E}$ và $ {F}$. Chứng minh $ { \angle DEP = \angle CFP }$.

Bài 4. Cho hình bình hành $ { ABCD }$. Đường phân góc góc $ { ADC }$ cắt các đường thẳng $ {AB}$, $ {BC}$ lần lượt tại $ {M}$ và $ {N}$. Đường thẳng qua $ {M}$ song song với $ {AD}$ cắt đường thẳng $ {CD}$ tại $ {P}$, đường thẳng qua $ {N}$ song song với $ {AB}$ cắt đường thẳng $ {AD}$ tại $ {Q}$. Chứng minh $ { AP \parallel CQ }$.

Bài 5. Cho hình thoi $ { ABCD }$ tâm $ {O}$ với góc $ {A}$ tù. Gọi $ {H}$, $ {K}$ lần lượt là hình chiếu của $ {A}$ xuống $ {CB}$, $ {CD}$. Giả sử $ {HK = AC/2}$.

a) Chứng minh tam giác $ { HOK }$ đều.

b) Tính các góc của hình thoi $ {ABCD}$.

Bài 6. Cho hình thoi $ { ABCD }$ tâm $ {O}$ với góc $ {B}$ tù. Trong tam giác $ { ABD }$, hai đường cao $ { BM, DP }$ cắt nhau tại $ {H}$; trong tam giác $ {BCD}$, hai đường cao $ {BN}$, $ {DQ}$ cắt nhau tại $ {K}$. Tứ giác $ {BKDH}$ là hình gì? Tại sao?

Bài 7. Cho hình thoi $ {ABCD}$ cạnh $ {a}$ và $ {\angle B = 120^\circ}$. Một đường thẳng thay đổi cắt các cạnh $ {BA, BC}$ tại $ {M}$ và $ {N}$ sao cho $ {BM + BN = a}$.

a) Tính các góc của tam giác $ {MND}$.

b) Chứng minh rằng trung điểm của $ {MN}$ luôn thuộc một đường thẳng cố định.

Bài 8. Cho tam giác đều $ {ABC}$ đường cao $ {AD}$ và trực tâm $ {H}$. Từ điểm $ {M}$ bất kỳ trên cạnh $ {BC}$ kẻ $ {ME \bot AB}$, $ {MF \bot AC}$. Gọi $ {I}$ là trung điểm $ {AM}$.

a) Chứng minh tứ giác $ {DEIF}$ là hình thoi.

b) Chứng minh rằng các đường thẳng $ { MH }$, $ {ID}$, $ {EF}$ đồng quy. [gợi ý]

Leave a Reply

Your email address will not be published. Required fields are marked *