Tag Archives: HinhHoc8

Bài tập tứ giác

Bài 1. Tính tổng các góc ngoài của tứ giác (tại mỗi đỉnh của tứ giác chỉ chọn một góc ngoài).

Giải
  Cho tứ giác $ABCD$.

  • Ta có $\angle{A_1} + \angle{B_1} + \angle{C_1} + \angle{D_1} = 360^\circ$,
    cần tính $\angle{A_2} + \angle{B_2} + \angle{C_2} + \angle{D_2}$.
  • $\angle{A_2} + \angle{B_2} + \angle{C_2} + \angle{D_2}$
  • $= (180^\circ – \angle{A_1}) + (180^\circ – \angle{B_1}) + (180^\circ – \angle{C_1}) + (180^\circ – \angle{D_1})$
  • $= 720^\circ – (\angle{A_1} + \angle{B_1} + \angle{C_1} + \angle{D_1}) = 720^\circ – 360^\circ = 360^\circ$.
  • Vậy tổng các góc ngoài của tứ giác bằng $360^\circ$.

 

Bài 2. Tứ giác $ABCD$ có $AB = BC$, $CD = DA$.
a) Chứng minh rằng $BD$ là đường trung trực của $AC$.
b) Cho biết $\angle{B} = 100^\circ$, $\angle{D} = 70^\circ$, tính $\angle{A}$ và $\angle{C}$.

Giải

a) $BA = BC$ và $DA = DC$ nên $BD$ là đường trung trực của $AC$.
b)

  • $\triangle{ABD} = \triangle{CBD}$ (c.c.c)
  • $\Rightarrow \angle{BAD} = \angle{BCD}$.
  • Ta lại có
    $\angle{BAD} + \angle{BCD} = 360^\circ – \angle{B} – \angle{D}$
  • $= 360^\circ – 100^\circ – 70^\circ = 190^\circ$.
  • Do đó $\angle{A} = \angle{C} = 190^\circ : 2 = 95^\circ$.

Bài 3. Tính các góc của tứ giác $ABCD$, biết rằng :
$\angle{A} : \angle{B} : \angle{C} : \angle{D} = 1 : 2 : 3 : 4$.

Giải
  • Theo tính chất dãy tỉ số bằng nhau và tổng các góc của tứ giác :
    $\dfrac{\angle{A}}{1} = \dfrac{\angle{B}}{2} = \dfrac{\angle{C}}{3} = \dfrac{\angle{D}}{4} = \dfrac{\angle{A} + \angle{B} + angle{C} + \angle{D}}{1 + 2 + 3 +4} = \dfrac{360^\circ}{10} = 36^\circ$
  • Do đó, $\angle{A} = 36^\circ, \angle{B} = 72^\circ, \angle{C} = 108^\circ, \angle{D} = 144^\circ$.

Bài 4. Tứ giác $ABCD$ có $\angle{A} = 65^\circ$, $\angle{B} = 117^\circ$, $\angle{C} = 71^\circ$. Tính số đo góc ngoài tại đỉnh $D$.

Giải

Tính góc $D$ của tứ giác $ABCD$, được $107^\circ$.

Góc ngoài tại đỉnh $D$ bằng $73^\circ$.

Bài 5. Chứng minh rằng tất cả các góc của một tứ giác không thể đều là góc nhọn, hoặc không thể đều là góc tù.

Giải

Giả sử bốn góc của một tứ giác là bốn góc nhọn thì tổng bốn góc của tứ giác nhỏ hơn $360^\circ$, trái với tính chất về tổng các góc của tứ giác bằng $360^\circ$. Vậy bốn góc của tứ giác không thể đều là góc nhọn. Học sinh tự chứng minh bốn góc của tứ giác không thể đều là góc tù.

Bài 6. Cho tứ giác $ABCD$. Chứng minh rằng tổng hai góc ngoài tại các đỉnh $A$ và $C$ bằng tổng hai góc trong tại các đỉnh $B và D$.

Giải
  • Gọi $\angle{A_1}$ và $\angle{C_1}$ là các góc trong tại các đỉnh $A$ và $C$. Gọi $\angle{A_2}$ và $\angle{C_2}$ là các góc ngoài tại các đỉnh $A$ và $C$.
  • Ta có: $\angle{A_2} + \angle{C_2} = (180^\circ – \angle{A_1}) + (180^\circ – \angle{C_1})$
  • $= 360^\circ – \angle{A_1} – \angle{C_1}$ (1)
  • Ta lại có : $\angle{B} + \angle{D} = 360^\circ – \angle{A_1} – \angle{C_1}$ (2)
  • Từ (1) và (2) suy ra : $\angle{A_2} + \angle{C_2} = \angle{B} + \angle{D}$.

Bài 7. Tứ giác $ABCD$ có $\angle{A} = 110^\circ$, $\angle{B} = 100^\circ$. Các tia phân giác của các góc $C$ và $D$ cắt nhau ở $E$. Các đường phân giác của các góc ngoài tại các đỉnh $C$ và $D$ cắt nhau ở $F$. Tính $\angle{CED}$, $\angle{CFD}$.

Giải

Tứ giác $ABCD$ ta có
$\angle{C} + \angle{D} = 360^\circ – \angle{A} – \angle{B}
= 360^\circ – 110^\circ – 100^\circ = 150^\circ$
nên $\angle{C_1} + \angle{D_1} = \frac{angle{C_1} + \angle{D_1}} = \frac{150^\circ}{2} = 75^\circ.
\triangle{CED} có \angle{CED} = 180^\circ – (angle{C_1} + \angle{D_1})
= 180^\circ – 75^\circ = 105^\circ$
Vì $DE$ và $DF$ là các tia phân giác của hai góc kề bù nên $DE \perp DF$. Trong tự, $CE \perp CF$.
Xét tứ giác $CEDF$:
$\angle{F} = 360^\circ – \angle{E} – \angle{ECF} – \angle{EDF} = 360^\circ – 105^\circ – 90^\circ – 90^\circ = 75^\circ$.

Bài tập tự giải.

  1. Tứ giác $ABCD$ có $\angle{B} = \angle{A} + 10^\circ$, $\angle{C} = \angle{B} + 10^\circ$, $\angle{D} = \angle{C} + 10^\circ$. Khẳng định nào dưới đây là đúng ?
    (A) $\angle{A} = 65^\circ$ , (B) $\angle{B} = 85^\circ$ ; (C) $\angle{C} = 100^\circ$ ; (D) $\angle{D} = 90^\circ$.
  2. Tứ giác $ABCD$ có $\angle{C} = 60^\circ$, $\angle{D} = 80^\circ, \angle{A} – \angle{B} = 10^\circ$. Tính số đo các góc $A$ và $B$.
  3. Tứ giác $ABCD$ có chu vì 66cm. Tính độ dài $AC$, biết chu vi tam giác $ABC$ bằng 56cm, chu vi tam giác $ACD$ bằng 60cm.

Định lý Ceva (Junior)

I. Định lý Ceva và chứng minh định lý.

Định lý. Cho tam giác $ABC$ các điểm $A’, B’, C’$ thuộc đường thẳng $BC ,AC, AB$ sao cho 3 điểm đều thuộc cạnh của tam giác hoặc có 1 điểm thuộc cạnh 2 điểm thuộc kia trên phần kéo dài hai cạnh còn lại. Khi đó $AA’, BB’, CC’$ đồng quy hoặc song song khi và chỉ khi: $$\dfrac{A’B}{A’C}.\dfrac{B’C}{B’A}.\dfrac{C’A}{C’B} = 1 (*)$$

Chứng minh. 

a) Điều kiện cần. $AA’,BB’, CC’$ đồng quy hoặc song song suy ra (*).

Trường hợp 1: $AA’,BB’,CC’$ đồng quy tại điểm $P$.

 

Qua $A$ kẻ đường thẳng song song với $BC$ cắt $BB’, CC’$ lần lượt tại $M, N$. Ta có:

  • $\dfrac{AB’}{B’C’} = \dfrac{AM}{BC}$ (1)
  • $\dfrac{BC’}{AC’} = \dfrac{BC}{AN}$ (2)
  • Ta có $\dfrac{A’B}{AM} = \dfrac{PA’}{PA} = \dfrac{A’C}{AN}$, suy ra $\dfrac{A’B}{A’C} = \dfrac{AN}{AM}$ (3).
  • Nhân 3 đẳng thức lại ta có điều cần chứng minh.

Trường hợp 2:

  • Ta có $\dfrac{CB’}{AB’} = \dfrac{BC}{BA’}$ (1)
  • $\dfrac{C’A}{C’B} = \dfrac{CA’}{BC}$  (2)
  • Từ (1) và (2), suy ra $\dfrac{A’B}{A’C}.\dfrac{CB’}{AB’}.\dfrac{C’A}{C’B} = 1$.

b) Điều kiện đủ: từ (*) suy ra $AA’,BB’,CC’$ đồng quy hoặc song song.

Ta xét trường hợp có điểm $A’$ thuộc cạnh $BC$ và $B’,C’$ nằm trên các phần kéo dài của hai cạnh kia.
Trường hợp 1. Nếu có hai trong ba đường thẳng $AA’,BB’,CC’$ song song với nhau, giả sử $AA’ \parallel BB’$, từ $C$ kẻ $CC” ||AA’$ cắt $AB$ kéo dài tại $C”$.

  • Theo điều kiện cần ta có $\dfrac{AB’}{B’C}.\dfrac{CA’}{A’B}.\dfrac{BC”}{C”A} = 1$.
  • Do đó $\dfrac{BC”}{C”A} = \dfrac{BC’}{C’A}$.
  • Vậy $C” \equiv C’$ (do $C’$ và $C”$ đều nằm ngoài đoạn $AB$)
    và $AA’||BB’||CC’$.

Trường hợp 2. Trong trường hợp không có hai đường thẳng nào trong ba đường thẳng nói trên song song,  ta chứng minh cả ba đường đồng quy.

  • Gọi $P$ là giao điểm của $AA’$ và $BB’$, cho $CP$ cắt $AB$ tại $C”$.
  • Tương tự như trên ta cũng có $\dfrac{BC”}{C”A} = \dfrac{BC’}{C’A}$.
  • Vậy $C” \equiv C$ (do $C$ và $C’$ cùng nằm ngoài đoạn $AB$).
  • Vậy $AA’,BB’, CC’$ đồng quy.

Trong trường hợp nếu $A’,B’,C’$ cùng thuộc cạnh thì ta chứng minh tương tự như trên ta cũng có $AA’,BB’,CC’$ đồng quy.

Chú ý. Ba đường thẳng xuất phát từ đỉnh của tam giác và đồng quy tại một điểm ta gọi là ba đường thẳng Ceva. Giao điểm của ba đường này được gọi là điểm Ceva.

II. Các ví dụ áp dụng.

Ví dụ 1. Chứng minh trong một tam giác các đường trung tuyến, các đường cao,các đường trung trực, các đường phân giác trong đồng quy.

Gợi ý
a. Tam giác $ABC$ có $M, N, P$ lần lượt là trung điểm của $BC, AC, AB$.
Khi đó ta có $\dfrac{MB}{MC}.\dfrac{NC}{NA}.\dfrac{PA}{PB} = 1.1.1 = 1$.
Suy ra $AM, BN, CP$ đồng quy.
b. Gọi $AX, BY, CZ$ là ba đường cao.
Ta có $\triangle ABY \backsim \triangle ACZ \Rightarrow \dfrac{AY}{AZ} = \dfrac{AB}{AC}$.
Tương tự $\dfrac{BZ}{BX} = \dfrac{AC}{BC}, \dfrac{CY}{CX} = \dfrac{BC}{AC}$.
Khi đó $\dfrac{AY}{AZ}.\dfrac{BZ}{BX}.\dfrac{CY}{CZ} = 1$ hay $\dfrac{CX}{BX}.\dfrac{YC}{YB}.\dfrac{ZB}{ZA} = 1$.
Suy ra $AX, BY, CZ$ đồng quy.
c. Các đường trung trực đồng quy.
Xét tam giác có đỉnh là trung điểm của các cạnh, khi đó các đường trung trực là các đường cao của tam giác này nên theo b. thì đồng quy.
d. Gọi $AD, BE, CF$ là các đường phân giác trong của tam giác $ABC$.
Khi đó $\dfrac{DB}{DC} = \dfrac{AB}{AC}, \dfrac{EC}{EA} = \dfrac{BC}{AB}$ và $\dfrac{PA}{PC} = \dfrac{AC}{BC}$.
Suy ra $\dfrac{DB}{DC}.\dfrac{EC}{EA}.\dfrac{PA}{PC} = 1$.
Suy ra $AD, BE, CF$ đồng quy.

Ví dụ 2. Cho tam giác $ABC$, đường tròn nội tiếp tam giác tiếp xúc với các cạnh $BC, AC, AB$ lần lượt tại $D, E, F$. Chứng minh rằng $AD, BE, CF$ đồng quy. (tại một điểm được gọi là điểm Gergonne).

Gợi ý

Ta có $AE = AF, BD = BF, CD = CE$. Suy ra $\dfrac{BD}{CD}.\dfrac{CE}{AE}.\dfrac{AF}{BF} = 1$.
Theo định lý Ceva ta có $AD, BE, CF$ đồng quy.

Ví dụ 3. Cho tam giác $ABC$, các đường tròn bàng tiếp góc $A, B, C$ tiếp xúc với các cạnh $BC, AC, AB$ tại $D, E, F$. Chứng minh $AD, BE, CF$ đồng quy.

Gợi ý

Đặt $AB = c, AC = b, BC = a, p = \dfrac{a+b+c}{2}$.
Gọi $K, L$ là tiếp điểm của đường tròn bàng tiếp góc $A$ với $AB, AC$.
Khi đó $AK = AL, BK = BD, CL = CD$.
Suy ra $2AK = AK + AL = AB + BK +AC+CL = AB + BD+ AC + CD = AB +AC+BC = 2p$
Suy ra $AK = AL = p$ và $BF = BD = BK = AK – AB = p-c$.
Tương tự ta có $AE = AF = p-a, CD = CE = p-c$.
Khi đó $\dfrac{DB}{DC}.\dfrac{EC}{EA}.\dfrac{AF}{BF} = \dfrac{p-b}{p-c}.\dfrac{p-c}{p-a}.\dfrac{p-a}{p-b} = 1$.
Áp dụng định lý Ceva ta có $AD, BE, CF$ đồng quy.

Ví dụ 4. Cho tam giác $ABC$ vuông. Về phía ngoài tam giác $ABC$ dựng các hình vuông $ABDE$ và $ACFG$.
Chứng minh rằng các đường thẳng $BF, CD$ cắt nhau tại một điểm nằm trên đường cao của tam giác $ABC$.

Gợi ý
  • Gọi $L$ là giao điểm của $CD$ và $AB$; $K$ là giao điểm của $BF$ và $AC$.
    Ta có $\dfrac{LA}{LB} = \dfrac{AC}{BD} = \dfrac{AC}{AB}$.
    Ta có $\dfrac{KC}{KA} = \dfrac{CF}{AB} = \dfrac{AC}{AB}$.
  • Và $AB^2 = BC.BC, AC^2 = CH.BC \Rightarrow \dfrac{BH}{CH} = \dfrac{AB^2}{AC^2}$.
    Khi đó $\dfrac{BH}{CH}.\dfrac{CK}{AK}.\dfrac{AL}{BL} = 1$.
  • Vậy theo định lý Ceva $AH, CD, BF$ đồng quy.

Ví dụ 5. Cho tam giác $ABC$ nhọn, đường cao $AH$. $D$ là một điểm trên đoạn $AH$. $BD$ cắt $AC$ tại $E$, $CD$ cắt $AB$ tại $F$. Chứng minh $\angle EHA = \angle FHA$.

Gợi ý
  • Gọi $K, L$ lần lượt là giao điểm của $HE, HF$ với đường thẳng qua $A$ song song với $BC$. Ta chứng minh $HKL$ cân tại $H$ hay cần chứng minh $AK = AL$.
  • Áp dụng định lý Ceva cho các đường $AH, BE, CF$ ta có: $\dfrac{HB}{HC}.\dfrac{EC}{EA}.\dfrac{AF}{BF} = 1$ (1)
    Mà $\dfrac{CE}{AE} = \dfrac{CH}{AK}$ và $\dfrac{AF}{BF} = \dfrac{AL}{BH}$ (2).
    Từ (1) và (2) ta có $AL = AK$.
  • Tam giác $HKL$ có trung tuyến $HA$ vừa là đường cao nên cân tại $H$, suy ra $\angle EHA = \angle FHA$.

III. Bài tập rèn luyện

  1. Cho tam giác $ABC$ có $AA’, BB’, CC’$ là ba đường Ceva. Gọi $M, N, P$ lần lượt là trung điểm của $BC, AC, AB$ và $M’,N’,P’$ là trung điểm $AA’,BB’,CC’$. Chứng minh rằng $MM’, NN’, PP’$ đồng quy.
  2. Cho tam giác $ABC$ nhọn, phân giác $AD$. Gọi $E, F$ là hình chiếu của $D$ trên $AB, AC$. Chứng minh rằng $BF, CE$ cắt nhau tại một điểm thuộc đường cao hạ từ $A$ của tam giác $ABC$.
  3. Cho tam giác $ABC$ có trung tuyến $AM$. Trên cạnh $BC$ lấy điểm $M’$ sao cho $\angle M’AB = \angle MAC$; các điểm $N’, P’$ được xác định tương tự. Chứng minh $AM’, BN’, CP’$ đồng quy.
  4. Cho tam giác $ABC$. Hai điểm $D, D’$ đối xứng nhau qua trung điểm của $BC$; các cặp điểm $E, E’$, $F, F’$ được xác định tương tự. Chứng minh rằng $AD, BE, CF$
    đồng quy khi và chỉ khi $AD’, BE’, CF’$ đồng quy.
  5. Cho tam giác $ABC$ và 3 đường Ceva $AA’,BB’,CC’$. Đường tròn ngoại tiếp tam giác $A’B’C’$ cắt các cạnh $BC, AC, AB$ lần lượt tại $A”, B”, C”$. Chứng minh rằng $AA”, BB”, CC”$ đồng quy.
  6. Cho tam giác $ABC$. Một đường tròn qua 2 điểm $A, B$ cắt các cạnh $AC, BC$ tại $D, E$. $DE$ cắt AB tại $F$, $BD$ cắt $CF$ tại $M$. Chứng minh $MF = MC$ khi và chỉ khi $MD.MB = MC^2$.

Hình vuông

Định nghĩa. Hình vuông là tứ giác có bốn cạnh bằng nhau và bốn góc bằng nhau.

Tính chất. Hình vuông có mọi tính chất của hình thoi và hình chữ nhật.

Dấu hiệu nhận biết hình vuông:

  • Hình chữ nhật có hai cạnh kề bằng nhau.
  • Hình chữ nhật có một đường chéo là phân giác một góc.
  • Hình chữ nhật có hai đường chéo vuông góc.
  • Hình thoi có một góc vuông.
  • Hình thoi có hai đường chéo bằng nhau.

Bài tập rèn luyện

Bài 1.  Cho tam giác $ABC$ vuông tại $A$, phân giác trong góc $A$ cắt $BC$ tại $D$. Gọi $E$, $F$ là hình chiếu của $D$ trên các đường thẳng $AB$ và $AC$.

a) Tứ giác $AEDF$ là hình gì? Tại sao?
b) Vẽ đường cao $AH$ của tam giác $ABC$. Tính $\angle EHF$.
c) Đường trung trực cạnh $BC$ cắt $AD$ tại $M$. Tính $\angle CBM$.

Bài 2. Cho tam giác vuông $ABC$ vuông góc tại $A$. Dựng về phía ngoài tam giác các hình vuông $ABDE$ và $ACFG$. Gọi $K$ là giao điểm các tia $DE$ và $FG$; $M$ là trung điểm của $EG$.

a) Chứng minh ba điểm $K$, $M$, $A$ thẳng hàng.
b) Chứng minh $MA \bot BC$
c) Chứng minh các đường thẳng $DC$, $FB$, $AM$ đồng qui.

Bài 3. Cho hình vuông $ABCD$ có cạnh $a$. Trên các cạnh $BC, CD$ lấy các điểm $M, N$ sao cho $\widehat {MAN} = 45^\circ$. Đường thẳng qua $A$ vuông góc với $AM$ cắt $CD$ tại điểm $E$.

a) Chứng minh $DE = BM$.
b) Tính khoảng cách từ $A$ đến $MN$.
c) Chứng minh chu vi $CMN$ có độ dài không đổi.

Bài 4. Cho tam giác $ABC$ vuông tại $A$ có $AC = 3AB$. Trên $AC$ lấy $M,N$ sao cho $AM = MN = NC$. Chứng minh $\widehat {AMB} =\widehat {ANB} + \widehat{ ACB}$.

Bài 5. Cho hình vuông $ABCD$, $E$ là một điểm bất kỳ trên cạnh $AB$. Vẽ hình vuông $ DEFG $. Chứng minh $DB \bot DF$ [gợi ý].

Bài 6. Cho hai hình vuông cạnh nhau $ABCD$ và $DEFG$ (điểm $E$ thuộc cạnh $CD$). Đường thẳng $GE$ cắt $BC$ tại $H$. Kẻ $CM$ song song với $HG$ ($M$ thuộc $FG$). Chứng minh rằng (a) $AH = HM$, (b) $\angle AHM = 90^\circ$ [gợi ý].

Hình vuông

Đề bài. Cho hai hình vuông cạnh nhau $ABCD$ và $DEFG$ (điểm $E$ thuộc cạnh $CD$). Đường thẳng $GE$ cắt $BC$ tại $H$. Kẻ $CM$ song song với $HG$ ($M$ thuộc $FG$). Chứng minh rằng (a) $AH = HM$, (b) $\angle AHM = 90^\circ$.

Source: gogeometry.com

Gợi ý.

Hình vuông, thẳng hàng

Đề bài. Cho hình vuông $ABCD$, $E$ là một điểm bất kỳ trên cạnh $AB$. Vẽ hình vuông $ DEFG $. Chứng minh $DB \bot DF$.

Gợi ý. Gọi $I$ là giao điểm của $EF$ với $BC$. Từ $ \triangle DCG = \triangle DAE $ suy ra $ \angle DGC = \angle EIB $. Gọi $I’,B’$ lần lượt là giao điểm của $GC$ với $EF$ và $AB$. Vì $EF$ song song $DG$ nên $ \angle EI’B’ = \angle \angle DGC = \angle EIB $, suy ra $I’B’$ song song với $IB$, hay $CB’$ song song $CB$ (vô lý), do đó $I’$ phải trùng $I$ và $B’$ trùng $B$, ta có được ba điểm $B, C, G$ thẳng hàng.

Gọi $J$ là tâm hình vuông $DEFG$, suy ra $J$ là trung điểm hai đường chéo $EG$ và $DF$. Do tam giác $EBG$ vuông tại $B$ (nhờ $B,C,G$ thẳng hàng (cmt)), nên $BI = \frac{1}{2} EG$, suy ra $BI = \frac{1}{2} DF$, suy ra tam giác $DBF$ vuông tại $B$ (đpcm).

Hình Thoi

Định nghĩa. Hình thoi là tứ giác có bốn cạnh bằng nhau.

Tính chất: hình thoi có mọi tính chất của hình bình hành, ngoài ra còn có

  • Hai cạnh kề bằng nhau.
  • Đường chéo này là trung trực của đường chéo kia (chúng vuông góc với nhau tại trung điểm mỗi đường).
  • Hai đường chéo là các đường phân giác các góc hình thoi.

Dấu hiệu nhận biết hình thoi

  • Tứ giác có bốn cạnh bằng nhau.
  • Hình bình hành có hai cạnh kề bằng nhau.
  • Hình bình hành có một đường chéo là đường phân giác một góc hình thoi.
  • Hình bình hành có hai đường chéo vuông góc.

Ví dụ 1. Chứng minh rằng

  1. Các trung điểm của bốn cạnh một hình chữ nhật là các đỉnh của một hình thoi;
  2. Các trung điểm của bốn cạnh một hình thoi là các đỉnh của một hình chữ nhật.
Gợi ý

 

Ví dụ 2. Cho hình thoi $ABCD$ có đường chéo $BD$ bằng độ dài bốn cạnh hình thoi. Gọi $M$ là một điểm bất kỳ trên cạnh $AB$. Lấy điểm $N$ trên cạnh $BC$ sao cho $\angle MDN = 60^\circ$. Chứng minh tam giác $ DMN $ đều. Từ đó suy ra vị trí của điểm $M$ trên $AB$ để độ dài đoạn $MN$ lớn nhất, nhỏ nhất.

Gợi ý

Bài tập

Bài 1. Cho hình thoi $ {ABCD}$ có $ {AB = 6cm, \angle A = 120^\circ}$.

a) Tính $ {AC,BD}$.

b) Gọi $ {E}$ là điểm đối xứng của $ {A}$ qua $ {BC}$. Chứng minh $ {D,E,C}$ thẳng hàng. Tứ giác $ {ABED}$ là hình gì? Tại sao?Bài 2.

Bài 2. Chứng minh rằng

a) Giao điểm hai đường chéo của hình thoi là tâm đối xứng của hình thoi.

b) Hai đường chéo của một hình thoi là hai trục đối xứng của hình thoi.

Bài 3. Cho tứ giác $ {ABCD}$ có $ {AD = BC}$. Gọi $ {M,N,P,Q}$ lần lượt là trung điểm của $ {AB}$, $ {AC}$, $ {CD}$, và $ {BD}$.

a) Chứng minh rằng $ { MP \bot NQ }$.

b) Giả sử đường thẳng $ {MP}$ cắt các đường thẳng $ {AD}$, $ {BC}$ lần lượt tại $ {E}$ và $ {F}$. Chứng minh $ { \angle DEP = \angle CFP }$.

Bài 4. Cho hình bình hành $ { ABCD }$. Đường phân góc góc $ { ADC }$ cắt các đường thẳng $ {AB}$, $ {BC}$ lần lượt tại $ {M}$ và $ {N}$. Đường thẳng qua $ {M}$ song song với $ {AD}$ cắt đường thẳng $ {CD}$ tại $ {P}$, đường thẳng qua $ {N}$ song song với $ {AB}$ cắt đường thẳng $ {AD}$ tại $ {Q}$. Chứng minh $ { AP \parallel CQ }$.

Bài 5. Cho hình thoi $ { ABCD }$ tâm $ {O}$ với góc $ {A}$ tù. Gọi $ {H}$, $ {K}$ lần lượt là hình chiếu của $ {A}$ xuống $ {CB}$, $ {CD}$. Giả sử $ {HK = AC/2}$.

a) Chứng minh tam giác $ { HOK }$ đều.

b) Tính các góc của hình thoi $ {ABCD}$.

Bài 6. Cho hình thoi $ { ABCD }$ tâm $ {O}$ với góc $ {B}$ tù. Trong tam giác $ { ABD }$, hai đường cao $ { BM, DP }$ cắt nhau tại $ {H}$; trong tam giác $ {BCD}$, hai đường cao $ {BN}$, $ {DQ}$ cắt nhau tại $ {K}$. Tứ giác $ {BKDH}$ là hình gì? Tại sao?

Bài 7. Cho hình thoi $ {ABCD}$ cạnh $ {a}$ và $ {\angle B = 120^\circ}$. Một đường thẳng thay đổi cắt các cạnh $ {BA, BC}$ tại $ {M}$ và $ {N}$ sao cho $ {BM + BN = a}$.

a) Tính các góc của tam giác $ {MND}$.

b) Chứng minh rằng trung điểm của $ {MN}$ luôn thuộc một đường thẳng cố định.

Bài 8. Cho tam giác đều $ {ABC}$ đường cao $ {AD}$ và trực tâm $ {H}$. Từ điểm $ {M}$ bất kỳ trên cạnh $ {BC}$ kẻ $ {ME \bot AB}$, $ {MF \bot AC}$. Gọi $ {I}$ là trung điểm $ {AM}$.

a) Chứng minh tứ giác $ {DEIF}$ là hình thoi.

b) Chứng minh rằng các đường thẳng $ { MH }$, $ {ID}$, $ {EF}$ đồng quy. [gợi ý]