PHÂN THỨC ĐẠI SỐ – P.2

 CÁC PHÉP TÍNH VỀ PHÂN THỨC

 

Muốn cộng các phân thức, ta quy đồng mẫu thức, cộng các tử thức với nhau, giữ nguyên mẫu thức chung, rồi rút gọn phân thức vừa tìm được.

Muốn trừ đi một phân thức, ta lấy phân thức bị trừ cộng với phân thức đối của phân thức trừ.

Muốn nhân các phân thức, ta nhân các tử thức với nhau, các mẫu thức với nhau, rồi rút gọn phân thức vừa tìm được. Muốn chia cho một phân thức khác 0 , ta lấy phân thức bị chia nhân với phân thức nghịch đảo của phân thức chia.

Ví dụ 1.

Cho $\mathrm{a}+\mathrm{b}+\mathrm{c}=0$ và $\mathrm{a}, \mathrm{b}, \mathrm{c}$ đều khạ́c 0 . Rút gọn biểu thức

$A=\frac{a b}{a^2+b^2-c^2}+\frac{b c}{b^2+c^2-a^2}+\frac{c a}{c^2+a^2-b^2} \text {. }$

Giải : Từ $\mathrm{a}+\mathrm{b}+\mathrm{c}=0$ suy ra $\mathrm{a}+\mathrm{b}=-\mathrm{c}$.

Bình phương hai vế, ta được $\mathrm{a}^2+\mathrm{b}^2+2 \mathrm{ab}=\mathrm{c}^2$ nên $\mathrm{a}^2+\mathrm{b}^2-\mathrm{c}^2=-2 \mathrm{ab}$.

Tương tự, $\mathrm{b}^2+\mathrm{c}^2-\mathrm{a}^2=-2 \mathrm{bc}$ và $\mathrm{c}^2+\mathrm{a}^2-\mathrm{b}^2=-2 \mathrm{ca}$.

Do đó $\mathrm{A}=\frac{\mathrm{ab}}{-2 \mathrm{ab}}+\frac{\mathrm{bc}}{-2 \mathrm{bc}}+\frac{\mathrm{ca}}{-2 \mathrm{ca}}=-\frac{1}{2}-\frac{1}{2}-\frac{1}{2}=-\frac{3}{2}$.

Ví dụ 2. Rút gọn biểu thức

$A=\frac{1}{1-x}+\frac{1}{1+x}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8} .$

Giải : Do đặc điểm của bài toán, ta không quy đồng mẫu tất cả các phân thức mà cộng lần lượt từng phân thức.

$A =\frac{2}{1-x^2}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8} $

$=\frac{4}{1-x^4}+\frac{4}{1+x^4}+\frac{8}{1+x^8}=\frac{8}{1-x^8}+\frac{8}{1+x^8}=\frac{16}{1-x^{16}}$

Ví dụ 3. Rút gọn biểu thức

$\mathrm{B}=\frac{3}{(1.2)^2}+\frac{5}{(2.3)^2}+\ldots+\frac{2 n+1}{[n(n+1)]^2}$

Giải : Đương nhiên không thể quy đồng mẫu tất cả các phân thức. Ta tìm cách tách mỗi phân thức thành hiệu của hai phân thức rồi dùng phương pháp khử liên tiếp. Ta có :

$\frac{2 \mathrm{k}+1}{\mathrm{k}^2(\mathrm{k}+1)^2}=\frac{(\mathrm{k}+1)^2-\mathrm{k}^2}{\mathrm{k}^2(\mathrm{k}+1)^2}=\frac{1}{\mathrm{k}^2}-\frac{1}{(\mathrm{k}+1)^2}$

Do đó : $\quad \mathrm{B}=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\ldots+\frac{1}{\mathrm{n}^2}-\frac{1}{(\mathrm{n}+1)^2}=$

$=1-\frac{1}{(n+1)^2}=\frac{n(n+2)}{(n+1)^2}$

Ví dụ 4. Xác định các ‘số a, b, c sao cho

$\frac{1}{\left(x^2+1\right)(x-1)}=\frac{a x+b}{x^2+1}+\frac{c}{x-1} \text {. }\quad\quad(1)$

Giải : Thực hiện phép cộng ở vế phải của (1) :

$\frac{(a x+b)(x-1)+c\left(x^2+1\right)}{\left(x^2+1\right)(x-1)}=\frac{a x^2-a x+b x-b+c x^2+c}{\left(x^2+1\right)(x-1)}=$

$=\frac{(a+c) x^2+(b-a) x+(c-b)}{\left(x^2+1\right)(x-1)} \text {. }$

Đồng nhất phân thức trên với phân thức $\frac{1}{\left(x^2+1\right)(x-1)}$, ta được :

$\left\{\begin{array} { l }{ \mathrm { a } + \mathrm { c } = 0 } \\ { \mathrm { b } – \mathrm { a } = 0 } \\ { \mathrm { c } – \mathrm { b } = 1 }\end{array} \Rightarrow \left\{\begin{array}{l}\mathrm{c}+\mathrm{b}=0 \\ \mathrm{c}-\mathrm{b}=1\end{array} \Rightarrow \mathrm{c}=\frac{1}{2} ; \mathrm{b}=-\frac{1}{2} .\right.\right.$

Do đó $a=-\frac{1}{2}$. Như vậy : $\frac{1}{\left(x^2+1\right)(x-1)}=\frac{-\frac{1}{2} x-\frac{1}{2}}{x^2+1}+\frac{\frac{1}{2}}{x-1}$.

Ví dụ 5. Cho $\quad A=\frac{1}{(x+y)^3}\left(\frac{1}{x^4}-\frac{1}{y^4}\right)$, $B=\frac{2}{(x+y)^4}\left(\frac{1}{x^3}-\frac{1}{y^3}\right), \quad C=\frac{2}{(x+y)^5}\left(\frac{1}{x^2}-\frac{1}{y^2}\right)$.

Thực hiện phép tính $\mathrm{A}+\mathrm{B}+\mathrm{C}$.

Giải : Ta có

$A =\frac{y^4-x^4}{x^4 y^4(x+y)^3}=\frac{\left(y^2+x^2\right)\left(y^2-x^2\right)}{x^4 y^4(x+y)^3}=\frac{\left(y^2+x^2\right)(y-x)}{x^4 y^4(x+y)^2} $

$B+C =\frac{2}{(x+y)^4}\left(\frac{1}{x^3}-\frac{1}{y^3}+\frac{1}{x+y} \cdot \frac{y^2-x^2}{x^2 y^2}\right) $

$=\frac{2}{(x+y)^4}\left(\frac{1}{x^3}-\frac{1}{y^3}+\frac{y-x}{x^2 y^2}\right)=\frac{2}{(x+y)^4} \cdot \frac{y^3-x^3+x y(y-x)}{x^3 y^3}$

$=\frac{2}{(x+y)^4} \cdot \frac{(y-x)\left(y^2+2 x y+x^2\right)}{x^3 y^3}=\frac{2(y-x)}{(x+y)^2 x^3 y^3}$

Do đó $A+B+C=\frac{\left(y^2+x^2\right)(y-x)}{x^4 y^4(x+y)^2}+\frac{2(y-x)}{x^3 y^3(x+y)^2}=$

$=\frac{\left(y^2+x^2\right)(y-x)+2 x y(y-x)}{x^4 y^4(x+y)^2}=\frac{(y-x)\left(y^2+x^2+2 x y\right)}{x^4 y^4(x+y)^2}=\frac{y-x}{x^4 y^4}$

 

BÀI TẬP

19. Thực hiện phép tính :
a) $\frac{x+3}{x+1}-\frac{2 x-1}{x-1}-\frac{x-3}{x^2-1}$
b) $\frac{1}{x(x+y)}+\frac{1}{y(x+y)}+\frac{1}{x(x-y)}+\frac{1}{y(y-x)}$.
10. Thực hiện phép tính :
a) $A=\frac{1}{(a-b)(a-c)}+\frac{1}{(b-a)(b-c)}+\frac{1}{(c-a)(c-b)}$;
b) $B=\frac{1}{a(a-b)(a-c)}+\frac{1}{b(b-a)(b-c)}+\frac{1}{c(c-a)(c-b)}$;
c) $\mathrm{C}=\frac{\mathrm{bc}}{(\mathrm{a}-\mathrm{b})(\mathrm{a}-\mathrm{c})}+\frac{\mathrm{ac}}{(\mathrm{b}-\mathrm{a})(\mathrm{b}-\mathrm{c})}+\frac{\mathrm{ab}}{(\mathrm{c}-\mathrm{a})(\mathrm{c}-\mathrm{b})}$;
d) $D=\frac{a^2}{(a-b)(a-c)}+\frac{b^2}{(b-a)(b-c)}+\frac{c^2}{(c-a)(c-b)}$.
11. Cho $\mathrm{a}, \mathrm{b}, \mathrm{c}$ là các số nguyên khác nhau đôi một. Chứng minh rằng biểu thức sau có giá trị là một số nguyên :
$P=\frac{a^3}{(a-b)(a-c)}+\frac{b^3}{(b-a)(b-c)}+\frac{c^3}{(c-a)(c-b)}$

12. Cho $3 y-x=6$. Tính giá trị của biểu thức

$A=\frac{x}{y-2}+\frac{2 x-3 y}{x-6}$

13. Tìm $\mathrm{x}, \mathrm{y}, \mathrm{z}$, biết rằng $\frac{\mathrm{x}^2}{2}+\frac{\mathrm{y}^2}{3}+\frac{\mathrm{z}^2}{4}=\frac{\mathrm{x}^2+\mathrm{y}^2+\mathrm{z}^2}{5}$.

14. Tìm $\mathrm{x}, \mathrm{y}$, biết rằng $\mathrm{x}^2+\mathrm{y}^2+\frac{1}{\mathrm{x}^2}+\frac{1}{\mathrm{y}^2}=4$.

15. Cho biết :

$\frac{1}{\mathrm{a}}+\frac{1}{\mathrm{~b}}+\frac{1}{\mathrm{c}}=2$

$\frac{1}{\mathrm{a}^2}+\frac{1}{\mathrm{~b}^2}+\frac{1}{\mathrm{c}^2}=2 .$

Chứng minh rằng $\mathrm{a}+\mathrm{b}+\mathrm{c}=\mathrm{abc}$.

16. Cho

$\frac{\mathrm{x}}{\mathrm{a}}+\frac{\mathrm{y}}{\mathrm{b}}+\frac{\mathrm{z}}{\mathrm{c}}=0$

và $\quad \frac{\mathrm{a}}{\mathrm{x}}+\frac{\mathrm{b}}{\mathrm{y}}+\frac{\mathrm{c}}{\mathrm{z}}=2$.

Tính giá trị của biểu thức : $\frac{\mathrm{a}^2}{\mathrm{x}^2}+\frac{\mathrm{b}^2}{\mathrm{y}^2}+\frac{\mathrm{c}^2}{\mathrm{z}^2}$.

17. Cho $(a+b+c)^2=a^2+b^2+c^2$ và $a, b, c$ khác 0 . Chứng minh rằng

$\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{a b c}$

18. Cho

$\frac{\mathrm{a}}{\mathrm{b}}+\frac{\mathrm{b}}{\mathrm{c}}+\frac{\mathrm{c}}{\mathrm{a}}=\frac{\mathrm{b}}{\mathrm{a}}+\frac{\mathrm{a}}{\mathrm{c}}+\frac{\mathrm{c}}{\mathrm{b}}$

Chứng minh rằng trong ba số $\mathrm{a}, \mathrm{b}, \mathrm{c}$, tồn tại hai số bằng nhau.

19. Tìm các giá trị nguyên của $\mathrm{x}$ để phân thức sau có giá trị là số nguyên :

a) $\mathrm{A}=\frac{2 \mathrm{x}^3-6 \mathrm{x}^2+\mathrm{x}-8}{\mathrm{x}-3}$

b) $\mathrm{B}=\frac{\mathrm{x}^4-2 \mathrm{x}^3-3 \mathrm{x}^2+8 \mathrm{x}-1}{\mathrm{x}^2-2 \mathrm{x}+1}$

c) $C=\frac{x^4+3 x^3+2 x^2+6 x-2}{x^2+2}$

20. Rút gọn biểu thức sau với $\mathrm{x}=\frac{\mathrm{a}}{3 \mathrm{a}+2}$ :

$A=\frac{x+3 a}{2-x}+\frac{x-3 a}{2+x}-\frac{2 a}{4-x^2}+a$

21. Rút gọn biểu thức :

$A=\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}+\frac{(a-b)^2+(b-c)^2+(c-a)^2}{(a-b)(b-c)(c-a)} .$

  1. Cho biết $\frac{a+b-c}{a b}-\frac{b+c-a}{b c}-\frac{a+c-b}{a c}=0$. Chứng minh rằng trong ba phân thức ở vế trái, có ít nhất một phân thức bằng 0 .

23. Xác định các số a, b, c sao cho :

a) $\frac{1}{x\left(x^2+1\right)}=\frac{a}{x}+\frac{b x+c}{x^2+1}$

b) $\frac{1}{x^2-4}=\frac{a}{x-2}+\frac{b}{x+2}$

c) $\frac{1}{(x+1)^2(x+2)}=\frac{a}{x+1}+\frac{b}{(x+1)^2}+\frac{c}{x+2}$.

24. Rút gọn biểu thức

$\mathrm{B}=(\mathrm{ab}+\mathrm{bc}+\mathrm{ca})\left(\frac{1}{\mathrm{a}}+\frac{1}{\mathrm{~b}}+\frac{1}{\mathrm{c}}\right)-\mathrm{abc}\left(\frac{1}{\mathrm{a}^2}+\frac{1}{\mathrm{~b}^2}+\frac{1}{\mathrm{c}^2}\right)$

25. Cho $\mathrm{a}, \mathrm{b}, \mathrm{c}$ khác nhau đôi một và $\frac{1}{\mathrm{a}}+\frac{1}{\mathrm{~b}}+\frac{1}{\mathrm{c}}=0$. Rút gọn các biểu thức :

a) $M=\frac{1}{a^2+2 b c}+\frac{1}{b^2+2 a c}+\frac{1}{c^2+2 a b}$

b) $\mathrm{N}=\frac{\mathrm{bc}}{\mathrm{a}^2+2 \mathrm{bc}}+\frac{\mathrm{ca}}{\mathrm{b}^2+2 \mathrm{ac}}+\frac{\mathrm{ab}}{\mathrm{c}^2+2 \mathrm{ab}}$;

c) $\mathrm{P}=\frac{\mathrm{a}^2}{\mathrm{a}^2+2 \mathrm{bc}}+\frac{\mathrm{b}^2}{\mathrm{~b}^2+2 \mathrm{ac}}+\frac{\mathrm{c}^2}{\mathrm{c}^2+2 \mathrm{ab}}$.

26. Cho các số $a, b, c$ khác nhau đôi một và $\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}$. Tính giá trị của biểu thức

$\mathrm{M}=\left(1+\frac{\mathrm{a}}{\mathrm{b}}\right)\left(1+\frac{\mathrm{b}}{\mathrm{c}}\right)\left(1+\frac{\mathrm{c}}{\mathrm{a}}\right)$

27*. Cho $\mathrm{a}^3+\mathrm{b}^3+\mathrm{c}^3=3 \mathrm{abc}$ và $\mathrm{a}+\mathrm{b}+\mathrm{c} \neq 0$. Tính giá trị của biểu thức :

$N=\frac{a^2+b^2+c^2}{(a+b+c)^2}$

28. Rút gọn các biểu thức :

a) $A=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right) \ldots\left(1-\frac{1}{n^2}\right)$;

b) $\mathrm{B}=\frac{1^2}{2^2-1} \cdot \frac{3^2}{4^2-1} \cdot \frac{5^2}{6^2-1} \cdot \cdots \cdot \frac{(2 n+1)^2}{(2 n+2)^2-1} .$

29. Rút gọn các biểu thức :

a) $\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\ldots+\frac{1}{(n-1) n}$;

b) $\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\ldots+\frac{1}{(3 n+2)(3 n+5)}$;

c) $\frac{1}{1.2 .3}+\frac{1}{2.3 .4}+\frac{1}{3.4 .5}+\ldots+\frac{1}{(n-1) n(n+1)}$.

30. Chứng minh rằng với mọi số tự nhiên $\mathrm{n} \geq 1$ :

a) $\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+\ldots+\frac{1}{(2 n)^2}<\frac{1}{2}$

b) $\frac{1}{3^2}+\frac{1}{5^2}+\frac{1}{7^2}+\ldots+\frac{1}{(2 n+1)^2}<\frac{1}{4}$.

31. Chứng minh rằng với mọi số tự nhiện $\mathrm{n} \geq 2$ :

$A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\ldots+\frac{1}{n^2}<\frac{2}{3} .$

32. Chứng minh rằng với mọi số tự nhiên $\mathrm{n} \geq 3$ :

$\mathrm{B}=\frac{1}{3^3}+\frac{1}{4^3}+\frac{1}{5^3}+\ldots+\frac{1}{\mathrm{n}^3}<\frac{1}{12} $

33. Chứng minh rằng với mọi số tự nhiên $\mathrm{n} \geq 1$ :

$A=\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right) \cdots\left(1+\frac{1}{n(n+2)}\right)<2$

34. Chứng minh rằng với mọi số tự nhiên $\mathrm{n} \geq 2$ :

$\mathrm{B}=\left(1-\frac{2}{6}\right)\left(1-\frac{2}{12}\right)\left(1-\frac{2}{20}\right) \ldots\left(1-\frac{2}{\mathrm{n}(\mathrm{n}+1)}\right)>\frac{1}{3} \text {. }$

35. Rút gọn biểu thức

$A=\frac{3^2-1}{5^2-1} \cdot \frac{7^2-1}{9^2-1} \cdot \frac{11^2-1}{13^2-1} \cdot \ldots \frac{43^2-1}{45^2-1} .$

36*. Chứng minh rằng :

a) $\mathrm{A}=\frac{2^3+1}{2^3-1} \cdot \frac{3^3+1}{3^3-1} \cdot \frac{4^3+1}{4^3-1} \cdot \ldots \cdot \frac{9^3+1}{9^3-1}<\frac{3}{2}$.

b) $\mathrm{B}=\frac{2^3-1}{2^3+1} \cdot \frac{3^3-1}{3^3+1} \cdot \ldots \cdot \frac{\mathrm{n}^3-1}{\mathrm{n}^3+1}>\frac{2}{3}$.

37*. Rút gọn biểu thức

$P=\frac{\left(1^4+4\right)\left(5^4+4\right)\left(9^4+4\right) \ldots\left(21^4+4\right)}{\left(3^4+4\right)\left(7^4+4\right)\left(11^4+4\right) \ldots\left(23^4+4\right)} .$

38. Rút gọn biểu thức

$M=\frac{1}{a^2-5 a+6}+\frac{1}{a^2-7 a+12}+\frac{1}{a^2-9 a+20}+\frac{1}{a^2-11 a+30}$

39. Rút gọn biểu thức

9.$\left(\frac{\mathrm{n}-1}{1}+\frac{\mathrm{n}-2}{2}+\frac{\mathrm{n}-3}{3}+\ldots+\frac{2}{\mathrm{n}-2}+\frac{1}{\mathrm{n}-1}\right):\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots+\frac{1}{\mathrm{n}}\right) .$

40. Rút gọn biểu thức

$\frac{A}{B}=\frac{\frac{1}{1(2 n-1)}+\frac{1}{3(2 n-3)}+\frac{1}{5(2 n-5)}+\ldots+\frac{1}{(2 n-3) \cdot 3}+\frac{1}{(2 n-1) .1}}{1+\frac{1}{3}+\frac{1}{5}+\ldots+\frac{1}{2 n-1}} .$

41. Cho

$a b c=1$

và $\quad \mathrm{a}+\mathrm{b}+\mathrm{c}=\frac{1}{\mathrm{a}}+\frac{1}{\mathrm{~b}}+\frac{1}{\mathrm{c}}$.

Chứng minh rằng trong ba số a, b, c, tồn tại một số bằng 1 .

42. Chứng minh rằng nếu $\mathrm{x}+\mathrm{y}+\mathrm{z}=\mathrm{a}$ và $\frac{1}{\dot{\mathrm{x}}}+\frac{1}{\mathrm{y}}+\frac{1}{\mathrm{z}}=\frac{1}{\mathrm{a}}$ thì tồn tại một trong ba số $\mathrm{x}, \mathrm{y}, \mathrm{z}$ bằng $\mathrm{a}$.

43. Các biểu thức $\mathrm{x}+\mathrm{y}+\mathrm{z}$ và $\frac{1}{\mathrm{x}}+\frac{1}{\mathrm{y}}+\frac{1}{\mathrm{z}}$ có thể cùng có giá trị bằng 0 được hay không ?

44. Tính giá trị của biểu thức $\mathrm{M}=\frac{1}{\mathrm{x}+2}+\frac{1}{\mathrm{y}+2}+\frac{1}{\mathrm{z}+2}$, biết rằng $2 a=b y+c z, 2 b=a x+c z, 2 c=a x+b y$ và $a+b+c \neq 0$.

45. a) Cho abc $=2$. Rút gọn biểu thức

$M=\frac{a}{a b+a+2}+\frac{b}{b c+b+1}+\frac{2 c}{a c+2 c+2} .$

b) Cho abc $=1$. Rút gọn biểu thức

$\mathrm{N}=\frac{\mathrm{a}}{\mathrm{ab}+\mathrm{a}+1}+\frac{\mathrm{b}}{\mathrm{bc}+\mathrm{b}+1}+\frac{\mathrm{c}}{\mathrm{ac}+\mathrm{c}+1} .$

46. Cho $\frac{\mathrm{a}}{\mathrm{c}}=\frac{\mathrm{a}-\mathrm{b}}{\mathrm{b}-\mathrm{c}}, \mathrm{a} \neq 0, \mathrm{c} \neq 0, \mathrm{a}-\mathrm{b} \neq 0, \mathrm{~b}-\mathrm{c} \neq 0$. Chứng minh rằng

$\frac{1}{a}+\frac{1}{a-b}=\frac{1}{b-c}-\frac{1}{c}$

47. Cho $\mathrm{a}+\mathrm{b}+\mathrm{c}=0(\mathrm{a} \neq 0, \mathrm{~b} \neq 0, \mathrm{c} \neq 0)$. Rút gọn các biểu thức :

a) $\mathrm{A}=\frac{\mathrm{a}^2}{\mathrm{bc}}+\frac{\mathrm{b}^2}{\mathrm{ca}}+\frac{\mathrm{c}^2}{\mathrm{ab}}$

b) $\mathrm{B}=\frac{\mathrm{a}^2}{\mathrm{a}^2-\mathrm{b}^2-\mathrm{c}^2}+\frac{\mathrm{b}^2}{\mathrm{~b}^2-\mathrm{c}^2-\mathrm{a}^2}+\frac{\mathrm{c}^2}{\mathrm{c}^2-\mathrm{a}^2-\mathrm{b}^2}$.

48*. Tính giá trị của biểu thức sau, biết rằng $\mathrm{a}+\mathrm{b}+\mathrm{c}=0$ :

$A=\left(\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b}\right)\left(\frac{c}{a-b}+\frac{a}{b-c}+\frac{b}{c-a}\right) \text {. }$

49. Chứng minh rằng nếu $\left(\mathrm{a}^2-\mathrm{bc}\right)(\mathrm{b}-\mathrm{abc})=\left(\mathrm{b}^2-\mathrm{ac}\right)(\mathrm{a}-\mathrm{abc})$ và các số $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{a}-\mathrm{b}$ khác 0 thì $\frac{1}{\mathrm{a}}+\frac{1}{\mathrm{~b}}+\frac{1}{\mathrm{c}}=\mathrm{a}+\mathrm{b}+\mathrm{c}$.

50*. Cho $a+b+c=0, x+y+z=0, \frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0$. Chứng minh rằng

$a x^2+b y^2+c z^2=0 .$

51. Cho $\frac{x y+1}{y}=\frac{y z+1}{z}=\frac{x z+1}{x}$. Chứng minh rằng $x=y=z$ hoặc $x^2 y^2 z^2=1$.

52. Cho $\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=1$. Chứng minh rằng $\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0$.

53*. Cho $\frac{\mathrm{a}}{\mathrm{b}-\mathrm{c}}+\frac{\mathrm{b}}{\mathrm{c}-\mathrm{a}}+\frac{\mathrm{c}}{\mathrm{a}-\mathrm{b}}=0$. Chứng minh rằng

$\frac{a}{(b-c)^2}+\frac{b}{(c-a)^2}+\frac{c}{(a-b)^2}=0$

54. Cho $\mathrm{x}+\frac{1}{\mathrm{x}}=\mathrm{a}$. Tính các biểu thức sau theo $\mathrm{a}$ :

a) $x^2+\frac{1}{x^2}$

b) $x^3+\frac{1}{x^3}$

c) $x^4+\frac{1}{x^4}$

d) $x^5+\frac{1}{x^5}$

55. Cho $\left(x^2-\frac{1}{x^2}\right):\left(x^2+\frac{1}{x^2}\right)=a$. Tính biểu thức

$M=\left(x^4-\frac{1}{x^4}\right):\left(x^4+\frac{1}{x^4}\right) \text { theo } a$

  1. Cho $x^2-4 x+1=0$. Tính giá trị của biểu thức $A=\frac{x^4+x^2+1}{x^2}$.

57. Cho $\frac{x}{x^2-x+1}=a$. Tính $M=\frac{x^2}{x^4+x^2+1}$ theo $a$.

58. Cho $x=\frac{b^2+c^2-a^2}{2 b c}, y=\frac{a^2-(b-c)^2}{(b+c)^2-a^2}$.

Tính giá trị của biểu thức $\mathrm{x}+\mathrm{y}+\mathrm{xy}$.

59. Tìm hai số tự nhiên a và b sao cho :

a) $a-b=\frac{a}{b}$;

b) $a-b=\frac{a}{2 b}$

60. Cho hai số nguyên dương $\mathrm{a}$ và $\mathrm{b}$ trong đó $\mathrm{a}>\mathrm{b}$. Tìm số nguyên dương $\mathrm{c}$ khác b sao cho

$\frac{a^3+b^3}{a^3+c^3}=\frac{a+b}{a+c}$

61. Cho dãy số $a_1, a_2, a_3, \ldots$ sao cho :

$a_2=\frac{a_1-1}{a_1+1} ; a_3=\frac{a_2-1}{a_2+1} ; \ldots ; a_n=\frac{a_{n-1}-1}{a_{n-1}+1} .$

a) Chứng minh rằng $\mathrm{a}_1=\mathrm{a}_5$.

b) Xác định năm số đầu của dãy, biết rằng $\mathrm{a}_{101}=3$.

62. Tìm phân số $\frac{\mathrm{m}}{\mathrm{n}}$ khác 0 và số tự nhiên $\mathrm{k}$, biết rằng $\frac{\mathrm{m}}{\mathrm{n}}=\frac{\mathrm{m}+\mathrm{k}}{\mathrm{nk}}$.

63*. Cho hai số tự nhiên a và $\mathrm{b}(\mathrm{a}<\mathrm{b})$. Tìm tổng các phân số tối giản có mẫu bằng 7 , mỗi phân số lớn hơn a nhưng nhỏ hơn b.

64. a) Mức sản xuất của một xí nghiệp năm 2001 tăng a\% so với năm 2000, năm 2002 tăng b\% so với năm 2001. Mức sản xuất của xí nghiệp đó năm 2002 tăng so với năm 2000 là :

A) $(a+b) \%$;

B) $a b \%$

C) $\left(a+b+\frac{a+b}{100}\right) \%$

D) $\left(a+b+\frac{a b}{100}\right) \%$

$\mathrm{E})\left(\frac{\mathrm{a}+\mathrm{b}}{100}+\frac{\mathrm{ab}}{10000}\right) \%$

Hãy chọn câu trả lời đúng.

b) Một số a tăng m\%, sau đó lại giảm đi n\% ( $\mathrm{a}, \mathrm{m}, \mathrm{n}$ là các số dương) thì được số $b$. Tìm liên hệ giữa $m$ và $n$ để $b>a$.

65*. Chứng minh rằng các tổng sau không là số nguyên :

a) $\mathrm{A}=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots+\frac{1}{\mathrm{n}}(\mathrm{n} \in \mathrm{N}, \mathrm{n} \geq 2)$

b) $\mathrm{B}=\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\ldots+\frac{1}{2 \mathrm{n}+1}(\mathrm{n} \in \mathrm{N}, \mathrm{n} \geq 1)$.

 

Leave a Reply

Your email address will not be published. Required fields are marked *