1.Cách giải
Khi giải phương trình, chúng ta thường tìm cách biến đổi (dùng quy tắc chuyển vế hay quy tắc nhân) để đưa phương trình đó về dạng biết cách giải (đơn giản nhất là dạng $ax+b=0$ hay $ax=-b$).
2.Chú ý
- Trong một vài trường hợp, ta còn có những cách biến đổi khác đơn giản hơn (ngoài việc bỏ dấu ngoặc và quy đồng mẫu).
- Qúa trình giải có thể dẫn đến các trường hợp đặc biệt là hệ số của ẩn bằng $0$. Khi đó, phương trình có thể vô nghiệm hoặc nghiệm đúng với mọi $x$.
3. Ví dụ: Giải các phương trình sau:
a) $ 2(x-3)=12 $
b) $ x-(8+x)=4 $
c) $ \dfrac{7x-1}{6}+2x=$ \dfrac{16-x}{5} $
d) $ (x+3)^2=x^2+4x $
4. Bài tập
Bài 1. Giải các phương trình sau:
a) $ 4x+20=0 $
b) $ 2x-3=3(x-1)+x+2 $
c) $ (x-1)(x+3)=x^2+4 $
d) $ x-(x+2)(x-3)=4-x^2 $.
Bài 2. Giải các phương trình ẩn $ x $ sau:
a) $ \dfrac{x+2}{5}=3 $
b) $ \dfrac{3x-2}{7}=4 $
c) $\dfrac{x-2}{3}=1 $
d) $ \dfrac{x}{2}=x+5 $.
Bài 3. Giải các phương trình sau:
a) $ (x-1)^2+(x+3)^2=2(x-2)(x+1)+38 $
b) $ 5(x^2-2x-1)+2(3x-2)=5(x+1)^2 $
c) $(x-3)^3-2(x-1)=x(x-2)^2-5x^2 $
d) $ x(x+3)^2-3x=(x+2)^3+1 $.
Bài 4. Tìm giá trị của $ m $ sao cho phương trình:
a) $ 12-2(1-x)^2=4(x-m)-(x-3)(2x+5) $ có nghiệm $ x=3. $
b) $ (9x+1)(x-2m)=(3x+2)(3x-5) $ có nghiệm $ x=1. $