Phương trình tích

1. Kiến thức cần nhớ

Tính chất:  $ A(x) \cdot B(x) = 0 \Leftrightarrow \left[
\begin{array}{l}
A(x) = 0 \hfill \cr
B(x) = 0
\end{array} \right. $

Phương pháp: Các bước giải phương trình tích như sau:

  • Bước 1: Đưa phương trình đã cho về dạng tổng quát $ A(x) \cdot B(x) = 0 $ bằng cách chuyển tất cả các hạng tử của phương trình về vế trái, khi đó vế phải bằng $0$. Phân tích đa thức ở vế trái thành nhân tử.
  • Bước 2: Giải phương trình và kết luận.

2. Ví dụ

Ví dụ 1: Giải các phương trình sau:

a/ $ (4x+8)(3x-6) = 0 $
b/ $ (x-2)(4x-12) = 0 $

Giải

a/ $ (4x+8)(3x-6) = 0 $
$\Leftrightarrow \left[
\begin{array}{l}
4x+8 = 0 \\
3x-6 = 0
\end{array} \right.  \Leftrightarrow \left[
\begin{array}{l}
x = -2 \\
x = 2
\end{array} \right. $
Vậy $ S= \{-2;  2\} $

b/ $ (x-2)(4x-12) = 0 $
$ \Leftrightarrow \left[
\begin{array}{l}
x-2 = 0 \\
4x-12 = 0
\end{array} \right.  \Leftrightarrow \left[
\begin{array}{l}
x = 2 \\
x= 3
\end{array} \right. $
Vậy $ S= \{2; 3 \} $

Ví dụ 2: Giải các phương trình sau:

a/ $ (2x-6)(x+21)(12-3x) = 0 $
b/ $ (2x+7)(x-5)(5x-1) = 0 $

Giải

a/ $ (2x-6)(x+21)(12-3x) = 0 $
$ \Leftrightarrow \left[
\begin{array}{l}
2x-6 = 0 \\
x+21 = 0 \\
12-3x = 0
\end{array} \right.  \Leftrightarrow \left[
\begin{array}{l}
x = 3 \\
x=  -21 \\
x = 4
\end{array} \right. $
Vậy $ S= \{3;  -21;  4 \} $

b/ $ (2x+7)(x-5)(5x-1) = 0 $
$ \Leftrightarrow \left[
\begin{array}{l}
2x+7=0 \\
x-5=0 \\
5x-1 = 0
\end{array} \right.
\Leftrightarrow \left[
\begin{array}{l}
x = \dfrac{-7}{2} \\
x=5 \\
x=\dfrac{1}{5}
\end{array} \right. $
Vậy $ S= \left \{\dfrac{-7}{2}; 5 ; \dfrac{1}{5} \right \} $

3. Bài tập tự luyện

Bài 1: Giải các phương trình sau:

a/ $ (x+2)(x-3) = 0 $
b/ $ (2x+1)(2-3x) = 0 $
c/ $ (5x-4)(4x+6) = 0 $
d/ $(4 x+2)\left(x^{2}+1\right)=0$
e/ $(2 x+7)(x-5)(5 x+1)=0$
f/ $(x-1)(2 x+7)\left(x^{2}+2\right)=0$

Bài 2: Giải các phương trình sau:

a/ $(4 x-10)(24+5 x)=0$
b/ $ (x-5)(3-2x)(3x+4) = 0 $
c/ $ (2x+1)(x^2+2) = 0 $
d/ $ 2x(x-3)+5(x-3) = 0 $
e/ $ (x^2-4)(5x-4)(x^3+1) =0 $
f/ $(3 x-2)(4 x+5)=0$

Bài 3: Giải các phương trình sau:

a/ $(5 x+2)(x-7)=0$
b/ $15(x+9)(x-3)(x+21)=0$
c/ $\left(x^{2}+1\right)\left(x^{2}-4 x+4\right)=0$
d/ $(3 x-2)\left[\dfrac{2(x+3)}{7}-\dfrac{4 x-3}{5}\right]=0$

Leave a Reply

Your email address will not be published. Required fields are marked *