Đề bài. Cho tam giác $ABC$ nội tiếp đường tròn (O), vẽ đường kính $AD$. Đường thẳng $d$ vuông góc với $AD$ cắt $CD, BD$ tại $E$ và $F$. Chứng minh 4 điểm $B, C, E, F$ cùng thuộc một đường tròn.
Bài giảng Tứ giác nội tiếp
Đề bài. Cho tam giác $ABC$ nội tiếp đường tròn (O), vẽ đường kính $AD$. Đường thẳng $d$ vuông góc với $AD$ cắt $CD, BD$ tại $E$ và $F$. Chứng minh 4 điểm $B, C, E, F$ cùng thuộc một đường tròn.
Bài giảng Tứ giác nội tiếp
Đề bài. Cho tam giác $ABC$ vuông tại $A$, đường cao $AH$ và trung tuyến $BM$. Gọi $D$ là hình chiếu vuông góc vuông góc của $A$ trên $BM$. Chứng minh tứ giác $HDMC$ nội tiếp.
Bài giảng Tứ giác nội tiếp
Đề bài. Cho tam giác $ABC$ nhọn, đường cao $AH$. Gọi $D, E$ là hình chiếu vuông góc của $H $ trên $AB$ và $AC$. Chứng minh rằng: (a) $AD.AB = AE.AC$. (b) Tứ giác $BDEC$ là tứ giác nội tiếp.
Bài giảng Tứ giác nội tiếp
Đề bài. Cho đường tròn tâm $O$ và điểm $A$ nằm ngoài đường tròn. Từ $A$ dựng các tiếp tuyến $AB, AC$ đến $(O)$ với $B, C$ là các tiếp điểm. $OA$ cắt $BC$ tại $H$. (a) Chứng minh rằng tứ giác $OBAC$ nội tiếp. (b) Một đường thẳng qua $A$ cắt $(O)$ tại $D$ và $E$ sao cho $E$ nằm giữa $A$ và $D$. Chứng minh rằng $O, H, D, E$ cùng thuộc một đường tròn.
Chú ý. Tứ giác $ABCD$ có hai cạnh bên $AD, BC$ cắt nhau tại P, hai đường chéo cắt nhau tại $Q$. Khi đó $ABCD$ nội tiếp khi và chỉ khi:
Bài giảng Tứ giác nội tiếp
Đề bài. Cho tam giác $ABC$ nhọn. Các đường cao $AD, BE$ và $CF$ cắt nhau tại $H$. Cho tam giác $ABC$ nhọn. Các đường cao $AD, BE$ và $CF$ cắt nhau tại $H$. (a) Chứng minh các tứ giác $AEHF$, $BDHE$ là tứ giác nội tiếp. (b) Chứng minh các tứ giác $BFEC$, $AEDC$ là tứ giác nội tiếp.