ĐA THỨC BẤT KHẢ QUY
(Thầy Vương Trung Dũng giáo viên trường PTNK TP Hồ Chí Minh)
1. Giới thiệu sơ lược
Đa thức bất khả qui là một vấn đề kinh điển trong đa thức nói riêng và trong toán học nói chung. Các bài toán về đa thức bất khả qui cũng thường xuyên xuất hiện trong các kì thi Olympic về toán. Người ta quan tâm nhiều nhất về tính bất khả qui của một đa thức trên vành $\mathbb{Z}[x]$ và $\mathbb{Q}[x]$. Có nhiều cách để kiểm tra tính bất khả qui của một đa thức loại này chẳng hạn như dùng trực tiếp định nghĩa hoặc dùng các tiêu chuẩn như tiêu chuẩn Eisenstein, tiêu chuẩn Perron, tiêu chuẩn Cohn, tiêu chuẩn Dumas… tuy nhiên bài viết này chỉ đề cập đến hai phương pháp thường được sử dụng nhất là sử dụng trực tiếp định nghĩa và tiêu chuẩn Eisenstein và các dạng mở rộng của nó cùng với đó là một kĩ thuật tối quan trọng là rút gọn theo một modulo nguyên tố $p$. Các tiêu chuẩn khác hi vọng sẽ có dịp trình bày trong một bài viết khác.
Trong tài liệu này ta qui ước $\mathbb{Z}_p=\mathbb{Z}/p\mathbb{Z}$ và $\mathbb{K}$ là một trong các tập $\mathbb{Z},\ \mathbb{Q},\ \mathbb{R}, \ \mathbb{Z}_p$. Khi đó, $ \mathbb{K}[x]$ (tương ứng $ \mathbb{K}[x,y]$) là các vành đa thức một biến (tương ứng 2 biến) có hệ số trong $ \mathbb{K}$.
Định nghĩa 1.1: Đa thức $P(x)$ trong vành $\mathbb{K}[x]$ được gọi là khả qui trên $\mathbb{K}$ nếu $P(x)=f(x).g(x)$ trong đó $f(x), g(x)$ là các đa thức không khả nghịch trong $\mathbb{K}[x]$. Đa thức $P(x)$ được gọi là bất khả qui nếu $P(x)$ không khả nghịch và không khả qui.
Nói riêng, khi $\mathbb{K}$ là một trường thì một đa thức $P(x) \in \mathbb{K}[x]$ có bậc dương được gọi là khả qui trên $\mathbb{K}$ nếu có thể phân tích được thành tích hai đa thức có bậc dương trong $\mathbb{K}[x]$, ngược lại $P(x)$ được gọi là bất khả qui trên $\mathbb{K}$.
Định lí Gauss 1.1: Các vành đa thức
- $\mathbb{R}[x], \ \mathbb{C}[x],\ \mathbb{Q}[x], \ \mathbb{Z}_p[x]$
- $\mathbb{Z}[x], \ \mathbb{Z}[x,y], \ \mathbb{Q}[x,y]…$
là có sự phân tích duy nhất thành các nhân tử bất khả qui và sự phân tích này là duy nhất. Nói riêng các khái niệm về đa thức bất khả qui, ước chung lớn nhất, bội chung nhỏ nhất vẫn còn đúng trên các vành này.
Lưu ý: Trong trường hợp $1$ ở trên là các đa thức có hệ số trên trường nên trên đó thuật toán Euclid hay định lí Bezout vẫn còn đúng nhưng trường hợp $2$ thì không.
2. Tính bất khả qui trên $\mathbb{C}[x]$ và $\mathbb{R}[x]$
Định lí 2.1: Mọi đa thức có bậc lớn hơn 1 đều khả qui trên $\mathbb{C}[x]$.
Định lí 2.2: Mọi đa thức có hệ số thực bậc lớn hơn 2 đều khả qui trên $\mathbb{R}[x]$. Nói riêng một đa thức là bất khả qui trên $\mathbb{R}[x]$ khi và chỉ khi nó là đa thức bậc nhất hoặc bậc 2 vô nghiệm.
3. Tính bất khả qui trên $\mathbb{Z}[x]$ và $ \mathbb{Q}[x]$
Qua Định lí 2.1 và Định lí 2.2 ta thấy nếu $\mathbb{K}=\mathbb{C},\ \mathbb{R}$ thì tính bất khả quy là đơn giản nên ta quan tâm đến trường hợp $\mathbb{K}=\mathbb{Z}, \ \mathbb{Q}.$ Thật may mắn là bổ đề Gauss mà ta trình bày sau đây sẽ cho ta một sự tương ứng về tính bất khả qui của một đa thức hệ số nguyên trên $\mathbb{Z}[x]$ và $\mathbb{Q}[x]$.
Định nghĩa 3.1: Cho đa thức $P(x)=a_nx^n+a_{n-1}x^{n-1}+…+a_1x+a_0 \in \mathbb{Z}[x]$, đa thức $P$ được gọi là nguyên bản nếu $gcd(a_n,…,a_0)=1$
Mệnh đề 3.1: Tích của hai đa thức nguyên bản là một đa thức nguyên bản.
Mệnh đề 3.2: Mọi đa thức $P \in \mathbb{Q}[x]$ đều viết được dưới dạng $P=cP_0(x)$, trong đó $P_0$ là một đa thức nguyên bản và $c_0 \in \mathbb{Q}.$
Định lí 3.1 (Bổ đề Gauss): Một đa thức hệ số nguyên, có bậc dương bất khả qui trong $\mathbb{Q}[x]$ khi và chỉ khi nó bất khả qui trong $\mathbb{Z}[x]$.
Định lí 3.2: Cho $P(x)=a_nx^n+a_{n-1}x^{n-1}+…+a_1x+a_0 \in \mathbb{Z}[x]$. Giả sử $P$ có nghiệm hữu tỉ $x=\dfrac{p}{q}$ với $(p,q)=1$. Khi đó, $p$ là ước của $a_0$ còn $q$ là ước của $a_n.$ Nói riêng, mọi nghiệm hữu tỉ của một đa thức monic (đơn khởi, hệ số của bậc cao nhất bằng $\pm1$) với hệ số nguyên đều là nghiệm nguyên.
Đinh lí 3.3: Cho $P \in \mathbb{Q}[x]$ có bậc 2 hoặc 3. Khi đó, $P(x)$ là bất khả qui khi và khi khi $P(x)$ không có nghiệm hữu tỉ.
Lưu ý: Định lí trên vẫn còn đúng nếu ta thay $\mathbb{Q}$ bởi một trường $\mathbb{K}$ bất kì. Tức là, đa thức $f \in \mathbb{K}[x]$ với bậc bằng 2 hoặc 3 là bất khả qui nếu và chỉ nếu nó không có nghiệm trong $\mathbb{K}.$
Dưới đây là một số ví dụ
Ví dụ 3.1 (Định lí Schur): Cho các số nguyên phân biệt $a_1, a_2,…,a_n$. Khi đó đa thức
a) $f(x)=(x-a_1)(x-a_2)…(x-a_n)-1$ là bất khả qui trên $\mathbb{Q}[x]$.
b) $f(x)=(x-a_1)(x-a_2)…(x-a_n)+1$ là bất khả qui trên $\mathbb{Q}[x]$ ngoại trừ các trường hợp
- $(x-a)(x-a-2)+1=(x-a-1)^2$,
- $(x-a)(x-a-1)(x-a-2)(x-a-3)+1=[(x-a-1)(x-a-2)+1]^2.$
Ví dụ 3.2: Cho $a_1, a_2,…,a_n$ là các số nguyên dương phân biệt. Chứng minh rằng đa thức $$P(x)=(x-a_1)^2(x-a_2)^2…(x-a_n)^2+1$$ là bất khả qui trên $\mathbb{Z}.$
4. Rút gọn modulo $p$ nguyên tố
Kĩ thuật rút gọn modulo $p$ nguyên tố là một kĩ thuật tối quan trọng trong việc chứng minh một đa thức là bất khả qui trên $\mathbb{Z}$. Nó đưa các hệ số từ một trường vô hạn các phần tử về một trường hữu hạn các phần từ, từ đó các tính toán của ta có thể được đơn giản hơn.
Định nghĩa 4.1: Cho $P(x)= \sum \limits_{i=0}^n a_ix_i \in \mathbb{Z}[x], a_n \ne 0$ và $p$ là số nguyên tố. Giả sử $p$ không phải là ước của $gcd(a_1,a_2,…,a_n)$. Ta kí hiệu $\overline{P}$ là đa thức nhận được từ $P$ bằng cách rút gọn các hệ số theo modulo $p$ (lúc này $P(x) \in \mathbb{Z}_p[x]$). Khi đó ta gọi $\overline{P}$ là \textit{đa thức rút gọn theo modulo} $p$ của $P.$
Từ định nghĩa trên ta có sự kiện sau là hiển nhiên $$\overline{P+Q}=\overline{P}+\overline{Q}$$
$$\overline{PQ}=\overline{P}. \ \overline{Q}$$
Định nghĩa 4.2: Nếu đa thức rút gọn modulo $p$ của P bất khả qui thì ta nói đa thức $P$ bất khả qui $mod \ p.$
Định lí 4.1: Với mỗi $P(x) \in \mathbb{Z}[x]$, tồn tại các đa thức $P_1(x), P_2(x), …, P_k(x) \in \mathbb{Z}_p[x]$ sao cho $$\overline{P}(x)=P_1(x).P_2(x)…P_k(x),$$
sự phân tích này là duy nhất theo modulo $p$.
Định lí 4.2: Cho $P(x)= \sum \limits_{i=0}^n a_ix_i \in \mathbb{Z}[x], a_n \ne 0$ và $p$ không là ước của $a_n$. Khi đó, nếu $P(x)$ là bất khả qui $mod \ p$ thì $P(x)$ là bất khả qui. Điều ngược lại của định lí nói chung không đúng.
Ngược lại dễ thấy đa thức $P(x)=x^4+1$ bất khả qui trên $\mathbb{Z}[x]$ nhưng khả qui modulo $p$ với mọi số nguyên tố $p$.
Ví dụ 4.1: Chứng minh đa thức $P(x)=x^5+4x^4+2x^3+5x^2-7$ là bất khả qui.
Ta có thể liệt kê ra các đa thức bất khả qui modulo 2 trong một số trường hợp bậc nhỏ như sau
- Trường hợp $n=1$ gồm các đa thức: $x, x+1$.
- Trường hợp $n=2$ chỉ gồm một đa thức: $1+x+x^2$.
- Trường hợp $n=3$ gồm các đa thức: $1+x+x^3, 1+x^2+x^3$.
- Trường hợp $n=4$ gồm các đa thức: $1+x+x^4, 1+x+x^2+x^3+x^4$.
- Trường hợp $n=5$ gồm các đa thức:
$1+x+x^2+x^4+x^5$,
$1+x+x^3+x^4+x^5$,
$1+x^2+x^3+x^4+x^5$,
$1+x+x^2+x^3+x^5$,
$1+x^3+x^5, 1+x^2+x^5.$
5. Tiêu chuẩn Eisenstein và một số dạng mở rộng
Khi kiểm tra đa tính bất khả qui của một đa thức trên $\mathbb{Z}[x]$ tiêu chuẩn Eisenstein cung cấp cho ta một công cụ hiệu quả.
Định lí 5.1 (Tiêu chuẩn Eisenstein): Cho đa thức $P(x)= \sum \limits_{i=0}^na_ix^i \in \mathbb{Z}[x], a_n \ne 0$. Khi đó nếu tồn tại số nguyên tố $p$ thỏa đồng thời các điều kiện
- $p$ không là ước của $a_n$;
- $p$ là ước của $a_i$ với mọi $i\in \{1,2,…,n-1\}$;
- $p^2$ không là ước của $a_0.$
Khi đó $P(x)$ là đa thức bất khả qui trên $\mathbb{Q}[x].$
Ví dụ 5.1: Chứng minh đa thức $P(x)=x^4-x^2+2x+1$ bất khả qui trên $\mathbb{Z}$.
Định lí 5.2 (Dạng mở rộng thứ nhất của tiêu chuẩn Eisenstein):
Cho $f(x)=a_nx^n+a_{n-1}x^{n-1}+…+a_1x+a_0 \in \mathbb{Z}[x]$. Giả sử tồn tại số nguyên tố $p$ thỏa mãn với một số tự nhiên $k \le n$ nào đó mà
- p không là ước của $a_k$;
- $p$ là ước của $a_0, …, a_{k-1}$;
- $p^2$ không là ước của $a_0$.
Thế thì $f(x)$ có một nhân tử bất khả qui bậc $ \ge k$ ( và do đó nếu không bất khả qui sẽ có một nhân tử bậc $\le n-k$)
Chứng minh: Bạn đọc có thể tự chứng minh như trong trường hợp nguyên bản của định lí.
Ví dụ 5.2: Chứng minh đa thức $f(x)=x^{101}+101x^{100}+102$ là bất khả qui.
Định lí 5.3 (Dạng mở rộng thứ hai của tiêu chuẩn Eisenstein):
Cho $f(x)=a_nx^n+a_{n-1}x^{n-1}+…+a_1x+a_0 \in \mathbb{Z}[x]$. Giả sử tồn tại số nguyên tố $p$ thỏa mãn với một số tự nhiên $k \le n$ nào đó mà
- p không là ước của $a_n$;
- $p$ là ước của $a_0, …, a_{n-1}$;
- $p^2$ không là ước của $a_k$.
Thế thì, hoặc $f(x)$ là bất khả qui, hoặc $f$ có một nhân tử bất khả qui bậc $ \le k.$
Tương tự như trên, chứng minh được dành cho bạn đọc.
6. Các bài toán áp dụng
Bài tập 6.1 (IMO 1993): Cho số tự nhiên $n>1$. Chứng minh đa thức $f(x)=x^n+5x^{n-1}+3$ là bất khả qui trên $\mathbb{Z}[x]$.
Bài tập 6.2 (China TST 1994): Cho số tự nhiên $n \ge 3$ và hai số nguyên tố $p, q$ phân biệt. Tìm tất cả các số nguyên $a$ sao cho đa thức $P(x)=x^n+ax^{n-1}+pq$ bất khả qui trên $\mathbb{Z}.$
Bài tập 6.3 (Rumani TST 1998): Chứng minh rằng đa thức $P(x)=(x^2+x)^{2^n}+1$ là bất khả qui với mọi số tự nhiên $n$.
Một số bài toán tương tự như sau:
Bài 1: Với $n \ge 1$ là số tự nhiên, chứng minh các đa thức sau là bất khả qui trên $\mathbb{Z}$
a) $P(x)=(x^3+x)^{2^n}-3$
b) $P(x)=(x^2+ax)^{2^n}+1$ với $ a \in \mathbb{Z}$
Bài 2: Cho $p$ là một số nguyên tố có dạng $4k+3$. Chứng minh rằng với mọi số nguyên dương $n$ đa thức $P(x)=(x^2+1)^n+p$ bất khả qui trên $\mathbb{Z}[x]$.
Bài 3: Cho $p$ là một số nguyên tố và $a$ là một số nguyên không chia hết cho $p$. Chứng minh đa thức $P(x)=x^p-x+a$ bất khả qui trên $\mathbb{Z}[x].$
Bài tập 6.4 (Japan 99): Chứng minh rằng đa thức $f(x)=(x^2+1^2)(x^2+2^2)…(x^2+n^2)+1$ là bất khả qui trên $\mathbb{Z}$
Ta có bài toán tổng quát hơn là: Cho $p$ là một số nguyên tố. Chứng minh rằng với mỗi số tự nhiên $n$ đa thức $$P(x)=(x^p+1^2)(x^p+2^2)…(x^p+n^2)+1$$ bất khả qui trên $\mathbb{Z}[x].$
Bài tập 6.5: Cho $m, n, a$ là các số nguyên dương và số nguyên tố $p$ thỏa mãn $p<a-1$. Chứng minh rằng đa thức $P(x)=x^m(x-a)^n+p$ bất khả qui trên $\mathbb{Z}$.
Bài tập 6.6 (Rumani 1999): Cho số nguyên $a$ và số nguyên dương $n$ và $p$ là một số nguyên tố thoả $p>|a|+1$. Chứng minh rằng đa thức $P(x)=x^n+ax+p$ bất khả qui trên $\mathbb{Z}[x]$.
Bài tập 6.7: Cho $p, q$ là hai số nguyên tố lẻ sao cho $q$ không là ước của $p-1$ và gọi $a_1, a_2,…,a_n$ là các số nguyên phân biệt sao cho $q|(a_i-a_j)$ với mọi cặp $(i,j)$. Chứng minh rằng $$P(x)=(x-a_1)(x-a_2)…(x-a_n)-p$$ là bất khả qui trên $\mathbb{Z}[x]$ với mọi $n \ge 2.$
Bài tập 6.8: Tìm tất cả các cặp số nguyên dương $(m,n)$ sao cho đa thức $$P(x,y)=(x+y)^2(mxy+n)+1$$ khả qui trên $\mathbb{Z}[x,y]$. Khi đó hãy phân tích $f$ thành các nhân tử bất khả qui.
7. Bài tập tự luyện
Bài 1: Với $n \ge 2$ là một số nguyên và $r=\sqrt[n]{2}$. Chứng minh rằng không tồn tại các số hữu tỷ $a_0, a_1,…,a_{n-1}$ không đồng thời bằng $0$ sao cho $$ a_0+a_1r+a_2r^2+…+a_{n-1}r^{n-1}=0 $$
Bài 2: Tìm số nguyên dương $n$ nhỏ nhất sao cho đa thức $P(x)=x^{n-4}+4n$ có thể phân tích được thành tích của 4 đa thức hệ số nguyên và không là đa thức hằng.
Bài 3: Cho $P(x), Q(x)$ là hai đa thức đơn khởi, bất khả quy trên trường số hữu tỷ. Giả sử $P, Q$ có hai nghiệm tương ứng là $\alpha, \beta$ sao cho $\alpha +\beta$ là số hữu tỷ. Chứng minh $P^2(x)-Q^2(x)$ có nghiệm hữu tỷ.
Bài 4: Chứng minh đa thức $P(x)=(1+x+x^2+…+x^n)^2-x^n$ khả qui trên $\mathbb{Z}[x].$
Bài 5: Chứng minh rằng đa thức $P(x)=x^n+4$ khả qui trên $\mathbb{Z}$ khi và chỉ khi $n$ là bội của $4.$
Bài 6 (IMO Longlist 1989): Cho $n \ge 4$ và các số nguyên phân biệt $a_1,a_2,…,a_n$. Chứng minh đa thức $$P(x)=(x-a_1)(x-a_2)…(x-a_n)-2$$ bất khả qui trên $\mathbb{Q}[x].$
Bài 7 (VMO 2014): Cho $n$ là số nguyên dương. Chứng minh rằng đa thức $P(x)=(x^2-7x+6)^n+13$ không thể biểu diễn được thành tích của $n+1$ đa thức khác hằng với hệ số nguyên.
Bài 8: Chứng minh rằng đa thức $x^n-x-1$ bất khả qui trên $\mathbb{Q}[x]$, với mọi $n \ge 2.$
Bài 9: Cho $n>m>1$ là hai số nguyên lẻ. Chứng minh đa thức $P(x)=x^n+x^m+x+1$ bất khả qui trên $\mathbb{Z}[x]$.
Bài 10: Cho $p$ là số nguyên tố. Chứng minh rằng đa thức $$P(x)=x^{p-1}+2x^{p-2}+…+(p-1)x+p$$ bất khả qui trên $\mathbb{Z}$.
Bài 11: Cho đa thức $P(x)=a_nx^n+a_{n-1}x^{n-1}+…+a_1x+a_0 \in \mathbb{Z}[x], (a_n \ne 0, n \ge 2)$. Chứng minh rằng tồn tại vô số số nguyên tố $k$ sao cho đa thức $P(x)+k$ bất khả qui.
Bài 12: Tìm tất cả các số nguyên $n$ sao cho đa thức $P(x)=x^5-nx-n-2$ là khả qui trên $\mathbb{Z}[x]$.
Bài 13: Cho $p$ là một số nguyên tố và $n$ là một số nguyên nhỏ hơn 4. Chứng minh rằng nếu $a$ là một số nguyên không chia hết cho $p$ thì đa thức $P(x)=ax^n-px^2+px+p^2$ bất khả qui trên $\mathbb{Z}[x].$
Bài 14: Cho $p$ là số nguyên tố. Chứng minh rằng đa thức $P(x)=x^p+(p-1)!$ bất khả qui trên $\mathbb{Z}[x]$.
Bài 15: Tồn tại hay không đa thức $f \in \mathbb{Q}[x]$ sao cho $f(1) \ne -1$ và $x^nf(x)+1$ là khả qui với mọi $n \in \mathbb{N}$.
Bài 16: Cho $a$ là một số nguyên dương và $p \ge 2 $ là một số nguyên tố thỏa mãn $(a,p)=1$. Chứng minh rằng đa thức $P(x)=x^p-mx+a$ bất khả qui trên $\mathbb{Z}[x]$ với $m \equiv \ 1 \ (mod \ p)$.
Bài 17: Cho $p$ là một số nguyên tố lẻ. Chứng minh đa thức $P(x)= \sum \limits_{i=0}^{p-2}(p-1-i)x^i$ bất khả qui trên $\mathbb{Q}[x].$
Bài 18 (Rumani TST 2003): Cho $P(x) \in \mathbb{Z}[x]$ là một đa thức monic bất khả qui trên $\mathbb{Z}[x]$ sao cho $P(0)$ không là số chính phương. Chứng minh rằng $Q(x)=P(x^2)$ cũng bất khả qui trên $\mathbb{Z}[x].$
Bài 19 (China TST 2006): Cho số nguyên $n \ge 2$. Chứng minh rằng tồn tại đa thức $P(x)=x^n+a_{n-1}x^{n-1}+…+a_1x+a_0$ thỏa mãn
a) $a_0, a_1,…,a_{n-1}$ khác 0.
b) $P(x)$ bất khả qui.
c) Với mọi số nguyên $x$ thì $|P(x)|$ không là số nguyên tố.
Bài 20: Biết $f \in \mathbb{Z}[x]$ là một đa thức bất khả qui có bậc lẻ và lớn hơn 3. Giả sử rằng các nghiệm của $P$ đều có modun lớn hơn 1 và $f(0)$ không có ước chính phương. Chứng minh rằng đa thức $g(x)=f(x^3)$ cũng là đa thức bất khả qui.
Bài 21: Cho $f \in \mathbb{Z}[x]$ là một đa thức monic với bậc lớn hơn 1. Giả sử $f(x^n)$ bất khả qui trên $\mathbb{Z}[x]$ với mọi $n \ge 2$. Hỏi $f$ có bất khả qui trên $\mathbb{Z}[x]$ hay không?
Bài 22: Cho $1 \ne f \in \mathbb{Z}[x]$ sao cho có vô hạn số nguyên $a$ thỏa $f(x^2+ax)$ bất khả qui trên $\mathbb{Q}[x]$. Hỏi $f$ có bất khả qui trên $\mathbb{Q}[x]$ hay không?
Bài 23: Cho $f(x) \ne \pm x$ là một đa thức bất khả qui trên $\mathbb{Z}[x]$. Hỏi $f(x.y)$ có bất khả qui trên $\mathbb{Z}[x,y]$ hay không?
Tài liệu tham khảo
[1] Nguyễn Tiến Quang, NXB Giáo dục, Đại số đại cương [2] Đoàn Duy Cường, 2015, Bài giảng bồi dưỡng giáo viên chuyên toán năm [3] Nguyễn Chu Gia Vượng,2015, Đa thức bất khả qui [4] Exploration-Creativity 2012, Irreducible polynomials [5] Yufei Zhao, Integer polynomial [6] Dusan Djukic, Polynomials in one variable [7] Gabriel D.Carroll, Polynomials [8] Victor V.Prasolov, Polynomials [9] Titu Andresscu, Gabriel Dospinescu, Problems from the book [10] U298, Mathematical Reflections [11] https://artofproblemsolving.com/community/c89