Tag Archives: biendoibieuthuc

Chuyên đề: Biến đổi biểu thức

RÚT GỌN BIẾN ĐỔI BIỂU THỨC CHỨA CĂN THỨC

Chuyên đề này đề cập tới các bài toán rút gọn biểu thức, chứng minh các đẳng thức, tính toán biểu thức,…Đây là chuyên đề quan trọng, rèn luyện kĩ năng biến đổi đại số cho các em, là kĩ năng ta sẽ dùng sau này.

Kiến thức là toàn bộ chương căn bậc hai, các hằng đẳng thức và kĩ năng biến đổi đã học ở lớp 8.

Các bạn có thể xem trước các bài cơ bản ở đây.

Dạng 1. Tính toán rút gọn

Ví dụ 1. Đặt $x = \sqrt{2}+\sqrt{3}$.
a) Chứng minh rằng $x^4 – 10x^2 + 1 = 0$.
b) Tìm giá trị của biểu thức $P(x) = (x^6 – 11x^4 + 11x^2 + 1)^{2019}$.

Lời giải

 

 

 

 

 

 

 

Ví dụ 2.  Cho $x$ thỏa $x \geq 2$. Rút gọn biểu thức $$A = \dfrac{{{x^3} – 3x + \left( {{x^2} – 1} \right)\sqrt {{x^2} – 4} – 2}}{{{x^3} – 3x + \left( {{x^2} – 1} \right)\sqrt {{x^2} – 4} + 2}}$$

Lời giải

Ví dụ 3.

a) Chứng minh rằng với mọi số nguyên dương n ta có: $$1 + \dfrac{1}{{{n^2}}} + \dfrac{1}{{{{\left( {n + 1} \right)}^2}}} = {\left( {1 + \dfrac{1}{n} – \dfrac{1}{{n + 1}}} \right)^2}$$
b) Tính tổng $$S = \sqrt {1 + \dfrac{1}{{{1^2}}} + \dfrac{1}{{{2^2}}}} + \sqrt {1 + \dfrac{1}{{{2^2}}} + \dfrac{1}{{{3^2}}}} + \cdots + \sqrt {1 + \dfrac{1}{{{{2021}^2}}} + \dfrac{1}{{{{2022}^2}}}} $$

Lời giải

Ví dụ 4. Rút gọn biểu thức: $$A = \dfrac{1}{{2\sqrt 1 + 1\sqrt 2 }} + \dfrac{1}{{3\sqrt 2 + 2\sqrt 3 }} + \cdots + \dfrac{1}{{2019\sqrt {2018} + 2018\sqrt {2019} }}$$

Lời giải

Dạng 1. Chứng minh đẳng thức

Ví dụ 5. Cho $a, b \ge 0, a^2>b$. Chứng minh $$\sqrt{a+\sqrt{b}}=\sqrt{\dfrac{a+\sqrt{a^2-b}}{2}}+\sqrt{\dfrac{a-\sqrt{a^2-b}}{2}}$$ và $$\sqrt{a-\sqrt{b}}=\sqrt{\dfrac{a+\sqrt{a^2-b}}{2}}-\sqrt{\dfrac{a-\sqrt{a^2-b}}{2}}$$

Lời giải

Ví dụ 6. Cho $a, b >0, c \neq 0$. Chứng minh rằng:
$$ \dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c} = 0 \Leftrightarrow \sqrt {a + b} = \sqrt {a + c} + \sqrt {b + c} $$

Lời giải

Ví dụ 7. Cho $xy + \sqrt {\left( {1 + {x^2}} \right)\left( {1 + {y^2}} \right)} = a > 1$. Tính $S = x\sqrt {1 + {y^2}} + y\sqrt {1 + {x^2}} $.

Lời giải

Ví dụ 8. Đặt $a_n = \sqrt[4]{2} + \sqrt[n]{4}, n = 2, 3…$. Chứng minh rằng $$ \dfrac{1}{a_5}+\dfrac{1}{a_6}+\dfrac{1}{a_{12}}+\dfrac{1}{a_{20}} = \sqrt[4]{8} $$

Lời giải

Ví dụ 9.  Chứng minh rằng nếu $\sqrt[3]{a} + \sqrt[3]{b} + \sqrt[3]{c} = \sqrt[3]{{a + b + c}}$ thì với mọi số nguyên dương lẻ n ta có $\sqrt[n]{a} + \sqrt[n]{b} + \sqrt[n]{c} = \sqrt[n]{{a + b + c}}$.

Lời giải

Dạng 3. Hữu tỉ và vô tỉ

Ví dụ 10. 

a) Chứng minh rằng $\sqrt{2}$ là số vô tỉ.

b) Cho $n$ và số tự nhiên và $m$ là số tự nhiên thỏa $n^2 < m < (n+1)^2$. Chứng minh $\sqrt{m}$ là một số vô tỉ.

Lời giải

Ví dụ 11. Chứng minh số
$A=\sqrt[3]{7+5\sqrt{2}}+\sqrt[3]{7-5\sqrt{2}}$ là một số nguyên.

Lời giải

Ví dụ 12. 

a) Chứng minh rằng nếu $a, b$ là các số hữu tỉ thỏa $a+b\sqrt{2} = 0$ thì $a = b= 0$.

b) Tìm các số $a, b$ hữu tỉ thỏa $\sqrt{a} +\sqrt{b} = \sqrt{2+\sqrt{3}}$.

 

Bài tập rèn luyện.

Bài 1. Với mọi $x \ge 2$. Chứng minh rằng $$\sqrt{\sqrt{x}+\sqrt{\dfrac{x^2-4}{x}}}+\sqrt{\sqrt{x}-\sqrt{\dfrac{x^2-4}{x}}}=\sqrt{\dfrac{2x+4}{\sqrt{x}}}$$

Bài 2. Rút gọn $A=\sqrt{\dfrac{1}{x^2+y^2}+\dfrac{1}{(x+y)^2}+\sqrt{\dfrac{1}{x^4}+\dfrac{1}{y^4}+\dfrac{1}{(x^2+y^2)^2}}}$

Bài 3. Cho $x,y<0$. Chứng minh $|\sqrt{xy}-\dfrac{x+y}{2}|+|\dfrac{x+y}{2}+\sqrt{xy}|=|x|+|y|.$
Bài 4. Cho các số $x,y,z>0$ và đôi một phân biệt. Chứng minh giá trị của $P$ không phụ thuôc vào $x,y,z$ với
$$P=\dfrac{x}{(\sqrt{x}-\sqrt{y})(\sqrt{x}-\sqrt{z})}+\dfrac{y}{(\sqrt{y}-\sqrt{z})(\sqrt{y}-\sqrt{x})}+\dfrac{z}{(\sqrt{z}-\sqrt{x})(\sqrt{z}-\sqrt{y})}.$$
Bài 5.  Cho $a=\sqrt{2}+\sqrt{7-\sqrt[3]{61+46\sqrt{5}}}+1$.

a) Chứng minh: $a^4-14a^2+9=0$.
b) Cho $f(x)=x^5+2x^4-14x^3-28x^2+9x+19$. Tính $f(a).$

Bài 6.  Cho $a=\sqrt[3]{38+17\sqrt{5}}+\sqrt[38]{38-17\sqrt{5}}$ và $f(x)=(x^3+3x+2018)^{2018}$. Tính $f(a).$
Bài 7.  Cho $x=1+\sqrt[3]{2}+\sqrt[3]{4}$. Tính $x^5-4x^4+x^3-x^2-2x+2018.$

Bài 8. Cho $f(n)=\dfrac{4n+\sqrt{4n^2-1}}{\sqrt{2n+1}+\sqrt{2n-1}}, n \in \mathbb{N}^*$. Tính $f(1)+f(2)+…+f(2018)$. %NTK

Bài 9.  Cho $f(n)=\dfrac{2n+1+\sqrt{n(n+1)}}{\sqrt{n}+\sqrt{n+1}}$. Tính $f(1)+f(2)+…+f(n).$ %NTK
Bài 10. Cho $x,y,z >0$ thoả $xyz=4$. Tính giá trị biểu thức $$A=\dfrac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+2}+\dfrac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\dfrac{2\sqrt{z}}{\sqrt{xz}+2\sqrt{z}+2}.$$

Bài 11.  Cho các số dương $x,y,z$ thoả $\begin{cases} x+y+z=2&\\\sqrt{x}+\sqrt{y}+\sqrt{z}=2 \end{cases}$. Tính $$A=\sqrt{(1+x)(1+y)(1+z)}\left(\dfrac{\sqrt{x}}{x+1}+\dfrac{\sqrt{y}}{y+1}+\dfrac{\sqrt{z}}{z+1}\right).$$

Bài 12.  Cho các số $abc \ne 0$ thoả $a+b+c=0$. Chứng minh $$\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}=\big|\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\big|$$

Bài 13.  Cho $a,b,c>0$ thoả $a\sqrt{1-b^2}+b\sqrt{1-c^2}+c \sqrt{1-a^2}=\dfrac{3}{2}.$\ Chứng minh $a^2+b^2+c^2=\dfrac{3}{2}.$
Bài 14.  Tìm tất cả các số thực $a,b,c$ thoả $\sqrt[3]{a-b}+\sqrt[3]{b-c}+\sqrt[3]{c-a}=0.$ %105-38
Bài 15. Cho các số $a_1, a_2,…,a_n$ thoả $a_1=1, a_{n+1}=\dfrac{\sqrt{3}+a_n}{1-\sqrt{3}a_n}$. Tính $a_{2020}$.
Bài 16.  Chứng minh rằng nếu $\sqrt{x^2+\sqrt[3]{x^4y^2}}+\sqrt{y^2+\sqrt[3]{x^2y^4}}=a$ thì $$\sqrt[3]{x^2}+\sqrt[3]{y^2}=\sqrt[3]{a^2} $$