Quy tắc:
- Muốn cộng hai phân thức có cùng mẫu thức, ta giữ nguyên mẫu thức và cộng các tử thức.
- Muốn cộng hai phân thức không cùng mẫu, ta quy đồng mẫu thức rồi thực hiện phép cộng.
- Muốn trừ phân thức $\dfrac{A}{B}$ cho phân thức $\dfrac{C}{D}$, ta cộng $\dfrac{A}{B}$ với phân thức đối của $\dfrac{C}{D}$: $\dfrac{A}{B}-\dfrac{C}{D}=\dfrac{A}{B}+\left(-\dfrac{C}{D}\right).$
Ví dụ 1: $\dfrac{{5xy – 4y}}{{2{x^2}{y^3}}} + \dfrac{{3xy + 4y}}{{2{x^2}{y^3}}}$
Ví dụ 2: $\dfrac{{3{\rm{x}}}}{{5{\rm{x}} + 5y}} – \dfrac{x}{{10{\rm{x}} – 10y}}$
Ví dụ 3: $\dfrac{x-4}{4x-16} + \dfrac{4+x}{8-2x}$.
Ví dụ 4: $\dfrac{y+1}{2y-2} +\dfrac{-2y}{y^2-1}$
Bài tập
Bài 1. Thực hiện phép tính:
a) $\dfrac{{x – 5}}{5} + \dfrac{{1 – x}}{5}$
b) $\dfrac{{x – y}}{8} + \dfrac{{2y}}{8}$
c) $\dfrac{{{x^2} – x}}{{xy}} + \dfrac{{1 – 4{\rm{x}}}}{{xy}}$
d) $\dfrac{{5{\rm{x}}{y^2} – {x^2}y}}{{3{\rm{x}}y}} + \dfrac{{4{\rm{x}}{y^2} + {x^2}y}}{{3{\rm{x}}y}}$ .
Bài 2.Thực hiện phép tính:
a) $\dfrac{{2{\rm{x}} + 4}}{{10}} + \dfrac{{2 – x}}{{15}}$
b) $\dfrac{{3{\rm{x}}}}{{10}} + \dfrac{{2{\rm{x}} – 1}}{{15}} + \dfrac{{2 – x}}{{20}}$
c) $\dfrac{{x + 1}}{{2{\rm{x}} – 2}} + \dfrac{{{x^2} + 3}}{{2 – 2{{\rm{x}}^2}}}$
d) $\dfrac{{{x^2}}}{{{x^2} – 4{\rm{x}}}} + \dfrac{6}{{6 – 3{\rm{x}}}} + \dfrac{1}{{x + 2}}$.
Bài 3. Thực hiện phép tính:
a) $\dfrac{{4x + 1}}{2} – \dfrac{{3{\rm{x}} + 2}}{3}$
b) $\dfrac{{x + 3}}{x} – \dfrac{x}{{x – 3}} + \dfrac{9}{{{x^2} – 3{\rm{x}}}}$
c) $\dfrac{{x + 3}}{{{x^2} – 1}} – \dfrac{1}{{{x^2} + x}}$
d) $\dfrac{1}{{3{\rm{x}} – 2}} – \dfrac{4}{{3{\rm{x}} + 2}} – \dfrac{{ – 10{\rm{x}} + 8}}{{9{{\rm{x}}^2} – 4}}$
e) $\dfrac{3}{{2{{\rm{x}}^2} + 2{\rm{x}}}} + \dfrac{{2{\rm{x}} – 1}}{{{x^2} – 1}} – \dfrac{2}{x}$.
Bài 4. Thực hiện phép tính:
a) $\dfrac{{4{{\rm{a}}^2} – 3{\rm{a}} + 5}}{{{a^3} – 1}} – \dfrac{{1 – 2{\rm{a}}}}{{{a^2} + a + 1}} – \dfrac{6}{{a – 1}}$
b) $\dfrac{{5{{\rm{x}}^2} – {y^2}}}{{xy}} – \dfrac{{3{\rm{x}} – 2y}}{y}$
c) $\dfrac{{x + 9y}}{{{x^2} – 9{y^2}}} – \dfrac{{3y}}{{{x^2} + 3{\rm{x}}y}}$
d) $\dfrac{{3x + 2}}{{{x^2} – 2x + 1}} – \dfrac{6}{{{x^2} – 1}} – \dfrac{{3x – 2}}{{{x^2} + 2x + 1}}$
d) ${x^2} + 1 – \dfrac{{{x^4} + 1}}{{{x^2} + 1}}$.