Tag Archives: DongQuy

Ba đường thẳng đồng quy.

Bài toán. (PoP 1.11) Cho tam giác $ABC$ nhọn. Đường tròn đường kính $AB$ cắt đường cao $CD$ tại hai điểm $M$ và $N$, $M$ nằm ngoài tam giác; đường tròn đường kính $AC$ cắt đường cao $BE$ tại hai điểm $P$ và $Q$, $Q$ nằm ngoài tam giác.

  1. Chứng minh 4 điểm $M, N, P, Q$ cùng thuộc một đường tròn.
  2. Chứng minh $MP, NQ$ và $BC$ đồng quy.
Gợi ý

1.

  • Gọi $H$ là trực tâm tam giác $ABC$ và $AF$ là đường cao thì $HM.HN = HA.HF = HP.HQ$, suy ra $M, N, P, Q$ cùng thuộc đường tròn.

2.

  • Ta có $AN^2 = AH.AF = AE.AC = AQ^2$, tương tự $AM = AP$. Suy ra $A$ là tâm của $(MNPQ)$.
  • Gọi $V$ là giao điểm của $MP$ và $QN$.
  • Ta có $\angle PFN = \angle PFA +\angle AFN = \angle AQP + \angle AMN = 180^o – \angle BAC – \angle PAN$.
  • Mặt khác $\angle PVN = 180^o – \angle VMQ – \angle VQM = 180^o – \angle PMN – \angle PQN – \angle HMQ – \angle HQM = 180^o – \angle PAN – \angle BAC$.
  • Do đó $\angle PVN = \angle PFN$, suy ra $FVNP$ nội tiếp.
  • Khi đó $\angle VFN = \angle VPN = \angle MQN = \dfrac{1}{2} \angle MAN = \angle MAB = 90^o – \angle AMN = 90^o – \angle APN = 90^o – \angle AFN = \angle NFC$.
  • Do đó $F, K, C$ thẳng hàng.

Định lý Menelaus

Định lý Menelaus. Cho tam giác $ABC$ và ba điểm $A’,B’,C’ $trên các đường thẳng chứa các cạnh $BC,CA,AB$ sao cho: hoặc cả ba điểm $A’,B’,C’ $ đều nằm trên phần kéo dài của ba cạnh, hoặc một trong ba điểm đó nằm trên phần kéo dài của một cạnh còn hai điểm kia nằm trên hai cạnh của tam giác. Điều kiện cần và đủ để $A’,B’,C’ $ thẳng hàng là ta có hệ thức:
\begin{align}
\dfrac{AB’}{B’C} . \dfrac{CA’}{A’B} . \dfrac{BC’}{C’A} =1
\end{align}

Chứng minh

Ta phải chứng minh rằng (với điều kiện đã cho về các điểm $A’,B’,C’$):
$A’,B’,C’$ thẳng hàng $\Leftrightarrow$ (1)

Điều kiện cần. $A’,B’,C’$ thẳng hàng $\Rightarrow (1) $
Ta xét trường hợp hai điểm $(B’,C’)$ nằm trên hai cạnh của tam giác, còn $A’$ nằm trên phần kéo dài của$BC$.

  • Từ $B$, kẻ đường thẳng song song với $AC$, cắt đường thẳng $A’B’$ tại $M$.
    Ta có:
  • $\dfrac{CA’}{A’B}= \dfrac{B’C}{BM}$
  • $\dfrac{BC’}{C’A} = \dfrac{BM}{AB’}$
  • Nhân vế với hai đẳng thức trên:
    $$\dfrac{CA’}{A’B}.\dfrac{BC’}{C’A} = \dfrac{B’C}{AB’}$$
    Hay: $$\dfrac{AB’}{B’C}.\dfrac{CA’}{A’B}.\dfrac{BC’}{C’A}=1$$

Điều kiện đủ.  $(1) \Rightarrow A’,B’,C’$ thẳng hàng.
Giả sử $B’,C’$ nằm trên hai cạnh của tam giác, còn $A’$ nằm trên phần kéo dài của $BC$, và có hệ thức (1).

  • Nếu$C’$ không ở trên đường thẳng $A’B’$, và $A’B’$ cắt $AB$ tại $C”$ thì, theo điều kiện cần, ta có:
  • $\dfrac{AB’}{B’C}.\dfrac{CA’}{A’b}.\dfrac{BC”}{C”A}=1$ (2).
    Từ (1) và (2) suy ra:
  • $\dfrac{BC’}{C’A}=\dfrac{BC'”}{C”A}$
  • Vậy $C” \equiv C’$ (do $C”$ đều nằm trong đoạn thẳng $AB$), và ba điểm $A’,B’,C’$ thẳng hàng.
  • Trường hợp cả ba điểm $A’,B’,C’$ đều nằm trên phần kéo dài của ba cạnh của tam giác chứng minh tương tự.

Chú ý : Hệ thức (a) trong định lí Menelaus cũng là hệ thức trong định lí Ceva; nhưng do sự khác nhau trong giả thiết về vị trí của các điểm $A’,B’, C’$ mà ta có ba điểm thẳng hàng hay ba đường thẳng đồng quy (song song).

Ví dụ 1. Cho tam giác $ABC$, có $M, N$ là các điểm thuộc cạnh $AB, AC$ sao cho $AM = MB, AN = 2NC$. $MN$ cắt đường thẳng $BC$ tại $P$. Chứng minh $CP = CB$.

Gợi ý
  • Áp dụng định lý Menelaus cho tam giác $ABC$ với 3 điểm $M, N, P$ thẳng hàng ta có: $$\dfrac{MA}{MB}.\dfrac{PB}{PC}.\dfrac{NC}{NA} = 1$$
  • Mà $MA = MB, NA = 2NC$, suy ra $\dfrac{PB}{PC} = 2$, suy ra $PB = PC$.

Ví dụ 2. Chứng minh rằng trong một tam giác, chân các đường phân giác trong của hai góc và chân của đường phân giác ngoài của góc thứ ba là điểm thẳng hàng.

Gợi ý
  • Giả sử các đường phân giác trong góc $B, C$ là $BE, CF$ và phân giác ngoài góc $A$ là $AD$. Khi đó $D$ nằm ngoài đoạn $BC$, $E, F$ thuộc các đoạn $AC, AB$.
  • Khi đó ta có $\dfrac{DB}{DC} = \dfrac{AB}{AC}, \dfrac{EC}{EA} = \dfrac{BC}{AB}, \dfrac{FA}{FB} = \dfrac{AC}{BC}$.
  • Suy ra $\dfrac{DB}{DC}.\dfrac{EC}{EA}.\dfrac{FA}{FB} = \dfrac{AB}{AC}.\dfrac{BC}{AB}.\dfrac{AC}{BC} = 1$.
  • Theo định lý Menelaus thì $D, E, F$ thẳng hàng.

Ví dụ 3. Cho tam giác $ABC$ nội tiếp đường tròn $(O)$, tiếp tuyến tại $A$ của $(O)$ cắt đường thẳng $BC$ tại $D$, tiếp tuyến tại $B$ cắt $AC$ tại $E$, tiếp tuyến tại $C$ cắt $AB$ tại $F$. Chứng minh rằng $D, E, F$ thẳng hàng.

Gợi ý

  • Ta có $\triangle DAB \backsim \triangle DCA$, suy ra $\dfrac{DB}{DA} = \dfrac{DA}{DC} = \dfrac{AB}{AC}$.
  • Suy ra $\dfrac{DB}{DC} = \dfrac{DB}{DA} \cdot \dfrac{DA}{DC} = \dfrac{AB^2}{AC^2}$.
  • Tương tự ta có $\dfrac{EC}{EA} = \dfrac{AC^2}{BC^2}, \dfrac{FA}{FB} = \dfrac{BC^2}{AB^2}$.
  • Khi đó $\dfrac{DB}{DC}\cdot \dfrac{EC}{EA} \cdot \dfrac{FA}{FB} = 1$.

Bài tập.

  1. Cho tam giác $ABC$, trên các cạnh $BC, AC$ lấy các điểm $M,N$ thỏa $BM = 2CM, CN = 3CA$, đường thẳng $MN$ cắt đường thẳng $AB$ tại $P$. Tính $\dfrac{PA}{PB}$.
  2. Chứng minh rằng chân 3 đường phân giác ngoài của một tam giác thì thẳng hàng.
  3. Cho tam giác $ABC$, đường tròn nội tiếp tam giác tiếp xúc với các cạnh $BC, AC, AB$ tại $D, E, F$. Đường thẳng $EF$ cắt $BC$ tại $P$. Chứng minh $\dfrac{PB}{PC} = \dfrac{DB}{DC}$.
  4. Cho một tứ giác $ABCD$ ngoại tiếp một đường tròn tại các điểm $M,N,P,Q$ theo thứ tự trên các cạnh $AB,BC,CD,DA$. Chứng minh rằng $PN, QM$ và đường chéo $BD$ đồng quy.
  5. Trên trung tuyến $AD$ của một tam giác $ABC$, cho một điểm $K$ sao cho $AK = 3KD$; $BK$ cắt $AC$ tại $P$. Tính tỉ số diện tích của tam giác $ABP$ và $BCP$.
  6. Cho một tam giác $ABC$, một điểm $K$ trên $AB$ sao cho $\dfrac{AK}{KB}$=$\dfrac{1}{2}$, một điểm $L$ trên $BC$ sao cho $\dfrac{CL}{LB}$=$\dfrac{2}{1}$. Gọi $Q$ là giao điểm của các đường thẳng $AL$ và $CK$. Tìm diện tích tam giác $ABC$ nếu biết diện tích của tam giác $BQC$ bằng 1 (đơn vị diện tích).
  7. (*) Cho tam giác $ABC$, đường tròn tâm $I$ nội tiếp tam giác tiếp xúc với các cạnh $BC, AC, AB$ lần lượt tại $D, E, F$. Chứng minh rằng tâm đường tròn ngoại tiếp các tam giác $IAD, IBE, ICF$ thẳng hàng.
  8. (*) Cho tứ giác $ABCD$. Các đường thẳng $AD, BC$ cắt nhau tại $P$, $AB, CD$ cắt nhau tại $Q$; $AC, BD$ cắt nhau tại $I$, $PI$ cắt $BC$ tại $K$. Chứng minh $\dfrac{QC}{QD} = \dfrac{KC}{KD}$.
  9. (*) (Đường thẳng Gauss) Cho tứ giác $ABCD$. Các đường thẳng $AD, BC$ cắt nhau tại $P$, $AB, CD$ cắt nhau tại $Q$. Chứng minh trung điểm các đoạn thẳng $AC, BD, PQ$ thẳng hàng.