Tag Archives: Phuongtrinhnghiemnguyen

PHƯƠNG TRÌNH NGHIỆM NGUYÊN DẠNG LUỸ THỪA

A. MỘT SỐ CHÚ Ý KHI GIẢI PHƯƠNG TRÌNH DẠNG LŨY THỪA
Nhận xét: Để giải phương trình nghiệm nguyên dạng lũy thừa ta chú ý một số phương pháp thường sử dụng

  • Sử dụng đồng dư để xét tính chẵn lẻ, hay modun của nghiệm.
  • Phân tích thành thừa số.
  • Đánh giá bất đẳng thức.

Do sử dụng nhiều đồng dư, do đó ta chú ý một số tính chất về đồng dư sau Tính chất 3.2. Cho $a$ là một số nguyên tùy ý. Khi đó
(a) $a^2 \equiv 0,1(b\mod 3)$;
(b) $a^2 \equiv 0,1(b\mod 4)$
(c) $a^2 \equiv 0,1,4 (b\mod 8)$;
(d) $a^2 \equiv 0,1,4 (b\mod 5)$;
(e) $a^3 \equiv-1,0,1 (b\mod 7)$
(f) $a^3 \equiv-1,0,1(b\mod 9)$.

Tính chất 3.3. Cho $p$ là một số nguyên tố và $a, b, c, n$ là các số nguyên dương. Ta có
(a) $a^n \vdots p \Leftrightarrow a \vdots p$;
(b) Nếu $a b=p^n$ thì $\left\{\begin{array}{l}a=p^k \\\ b=p^{n-k}\end{array} \quad\right.$ với $k \in \mathbb{N}$ thỏa $0 \leq k \leq n$;
(c) Nếu a b=c^n và (a, b)=1 thì $a=s^n \text { và } b=r^n$ với $s, r \in \mathbb{N}$.

B MỘT SỐ VÍ DỤ
Ví dụ 3.29. Tìm các số nguyên $x, y$ thỏa mān $x^3+1=4 y^2$.

Hướng dẫn giải

Giả sử tồn tại các số nguyên $x, y$ thỏa mãn $x^3+1=4 y^2$. Ta có
$$
x^3=4 y^2-1=(2 y-1)(2 y+1) \text {. }
$$

Đặt $d=(2 y-1,2 y+1)$, ta có $d$ lẻ và $\left\{\begin{array}{l}d \mid 2 y-1 \\\ d \mid 2 y+1\end{array}\right.$.
Do đó $d \mid 2$, suy ra $d=1$ (vì $d$ lẻ). Như vậy $2 y-1$ và $2 y+1$ nguyên tố cùng nhau.
Kết hợp với (3.1) ta suy ra $2 y-1=a^3$ và $2 y+1=b^3$ với $a, b \in \mathbb{Z}$.
Dẫn đến $b^3-a^3=2$ hay $(b-a)\left(b^2+b a+a^2\right)=2$. Từ đó ta được $b=1$ và $a=-1$, suy ra $y=0$ và khi đó $x=-1$. Thử lại thỏa.
Vậy $(x, y)=(-1,0)$.

Ví dụ 3.30. Giải phương trình nghiệm nguyên $x^5+2023 x=5^y+2$.

Hướng dẫn giải

Giả sử tồn tại các số nguyên $x, y$ thỏa mãn $x^5+2023 x=5^y+2$.
Vì $5^y+2$ lẻ nên $x$ lẻ, do đó $x^5+2023 x=x\left(x^4+2023\right) \vdots 4$ (vì $x$ lẻ nên $x \equiv 1(\bmod 4)$.
Tuy nhiên $x^5+2023 x=5^y+2 \equiv 1^y+2 \equiv 3(\bmod 4)$ (Vô lí).

Vậy không tồn tại các số nguyên $x, y$ thỏa mãn $x^5+2023 x=5^y+2$.

Ví dụ 3.31. Tìm các số nguyên $x$ và $y$ sao cho $3^x-y^3=1$.

Hướng dẫn giải

Giả sử tồn tại các số nguyên $x$ và $y$ sao cho $3^x-y^3=1$. Nhận xét $x \geq 0$.
Ta có $3^x=y^3-1=(y+1)\left(y^2-y+1\right)$, suy ra $\left\{\begin{array}{l}y+1=3^t \\\ y^2-y+1=3^{x-t}\end{array} \quad(t \in \mathbb{N}, t \leq x)\right.$.
Khi đó $y=3^t-1$ và
$$
\left(3^t-1\right)^2-\left(3^t-1\right)+1=3^{x-t} \Leftrightarrow 3^{2 t}-3^{t+1}+3=3^{x-t} .
$$

  • Nếu $t=0$, từ (3.2) ta được $1=3^x$ hay $x=0$. Ngoài ra $y=3^0-1=2$.

Nếu $t \geq 1$, giả sử $x-t \geq 2$, khi đó $3^{x-t} \vdots 9$. Từ (3.2) ta có $3^{2 t} \vdots 9$ và $3^{t+1} \vdots 9$ (do $t \geq 1$ ), từ đó suy ra $3 \vdots 9$ (Vô lí).
Do đó $x-t \in{0,1}$.

  • Nếu $x-t=0$ thì $y^2-y+1=1 \Leftrightarrow y(y-1)=0 \Leftrightarrow\left[\begin{array}{l}y=0 \ y=1\end{array}\right.$.
    Với $y=0$ ta tìm được $x=0$ và với $y=1$ ta có $3^x=2$ (Vô lí).
  • Nếu $x-t=1$ thì $y^2-y+1=3 \Leftrightarrow y^2-y-2=0 \Rightarrow y=2$.
    Khi đó $3^x=2^3+1=9$, dẫn đến $x=2$.

Vậy $(x, y)=(0,0)$ hoặc $(x, y)=(2,1)$.

Ví dụ 3.32. Tìm các số nguyên dương $x$ và $y$ sao cho
$$
9^x-7^x=2^y .
$$

Hướng dẫn giải

Giả sử tồn tại các số nguyên dương $x, y$ sao cho $9^x-7^x=2^y$.
Nếu $x$ lẻ thì
$$
9^x-7^x \equiv 1^x-(-1)^x \equiv 2(\bmod 8) .
$$

Do đó $2^y \equiv 2(\bmod 8)$, suy ra $y=1$. Khi đó $9^x-7^x=2 \Rightarrow x=1$.
Nếu $x$ chẵn, đặt $x=2 k\left(k \in \mathbb{N}^*\right)$, ta được
$$
2^y=9^{2 k}-7^{2 k}=\left(9^k-7^k\right)\left(9^k+7^k\right) .
$$

Suy ra
$$
\left\{\begin{array}{l}
9^k-7^k=2^t \\
9^k+7^k=2^{y-t}
\end{array}\right.
$$
với $t \in \mathbb{N}^*$ và $t \leq y$.
– Nếu $k$ lẻ, khi đó $2^t \equiv 9^k-7^k \equiv 2(\bmod 8)$, do đó $t=2$ và $k=1$.
Dẫn đến $x=2$ và $2^y=81-49=32 \Rightarrow y=5$.
– Nếu $k$ chẵn, ta có
$$
9^k+7^k \equiv 1^k+(-1)^k \equiv 2(\bmod 8) .
$$

Do đó $2^{y-t} \equiv 2(\bmod 8)$, suy ra $y-t=1$. Như vậy $9^k+7^k=2$ (Vồ lí).
Vậy $(x, y)=(1,1)$ hoặc $(x, y)=(2,5)$.

Ví dụ 3.33. Tìm tất cả các số nguyên tố $p$ sao cho luôn tồn tại các số nguyên dương $n, x, y$ thỏa mãn
$$
p^n=x^3+y^3 .
$$

Hướng dẫn giải

Đặt $x=p^t x_1$ và $y=p^s y_1\left(x_1, y_1, s, t \in \mathbb{N}\right.$ và $\left.x_1, y_1 \neq p\right)$.
Ta có
$$
p^n=p^{3 t} x_1^3+p^{3 s} y_1^3>p^{3 t} \Rightarrow n>3 t .
$$

Không mất tính tổng quát, giả sử $t \geq s$.
Nếu $t>s$ thì $p^{n-3 s}=p^{3(t-s)} x_1^3+y_1^3 \vdots p \Rightarrow y_1^3 \vdots p$ (Vô lí).
Vậy $t=s$, do đó $p^{n-3 t}=x_1^3+y_1^3=\left(x_1+y_1\right)\left(x_1^2-x_1 y_1+y_1^2\right)$.

  • Nếu $x_1^2-x_1 y_1+y_1^2=1$ thì $x_1=y_1=1$.
    Khi đó $p^{n-3 t}=2 \Rightarrow\left\{\begin{array}{l}p=2 \\\ n-3 t=1\end{array} \Rightarrow\left\{\begin{array}{l}p=2 \\\ n=3 t+1\end{array}\right.\right.$.
    Lúc này ta được $x=y=2^t$. Thử lại thỏa.
  • Nếu $x_1^2-x_1 y_1+y_1^2>1$, ta được
    $$
    \left\{\begin{array}{l}
    x_1+y_1=p^k \\\
    x_1^2-x_1 y_1+y_1^2=p^{n-3 t-k}
    \end{array}\right.
    $$
    với $k \geq 1, n-3 t-k \geq 1$.

Do đó $\left(x_1+y_1\right)^2-\left(x_1^2-x_1 y_1+y_1^2\right)=3 x_1 y_1 \vdots p \Rightarrow 3 \vdots p \Rightarrow p=3$.

Ngoài ra, nếu $n-3 t-k \geq 2$ thì $x_1^2-x_1 y_1+y_1^2=\left(x_1+y_1\right)^2-3 x_1 y_1 \vdots 3^2$, mà $\left(x_1+y_1\right)^2 \vdots 3^2$ nên $3 x_1 y_1 \vdots 3^2 \Rightarrow x_1 y_1 \vdots 3$ (Vô lí).
Vậy $n-3 t-k=1$ hay $x_1^2-x_1 y_1+y_1^2=3$. Không mất tính tổng quát, giả sử $x_1 \geq y_1$ thì ta được $x_1=2$ và $y_1=1$.
Từ đây ta được $n-3 t=2 \Leftrightarrow n=3 t+2$ và $x=2 \cdot 3^t$ và $y=3^t$.
Thử lại thỏa.
Vậy $p=2$ và $p=3$ là các số nguyên tố cần tìm.

Ví dụ 3.34. Tìm nghiệm tự nhiên của phương trình
$$
\left(2^x+1\right)\left(2^x+2\right)\left(2^x+3\right)\left(2^x+4\right)-5^y=11879 .
$$

Hướng dẫn giải

Giả sử tồn tại các số tự nhiên $x, y$ thỏa mãn
$$
\left(2^x+1\right)\left(2^x+2\right)\left(2^x+3\right)\left(2^x+4\right)-5^y=11879 .
$$

Ta có
$$
\begin{aligned}
\left(2^x+1\right)\left(2^x+2\right)\left(2^x+3\right)\left(2^x+4\right) & =\left(4^x+5 \cdot 2^x+4\right)\left(4^x+5 \cdot 2^x+6\right) = \left(4^x+5 \cdot 2^x+5\right)^2-1 .
\end{aligned}
$$

Do đó $\left(4^x+5 \cdot 2^x+5\right)^2-1-5^y=11879 \Leftrightarrow\left(4^x+5 \cdot 2^x+5\right)^2-5^y=11880$.
Nếu $y \geq 1$ thì ta suy ra $4^x+5 \cdot 2^x+5 \vdots 5 \Rightarrow 4^x \vdots 5$. (Vô lí)
Do đó $y=0$, khi đó
$$
\left(4^x+5 \cdot 2^x+5\right)^2=11881 \Rightarrow 4^x+5 \cdot 2^x+5=109 \Leftrightarrow 4^x+5 \cdot 2^x-104=0 .
$$

Suy ra $2^x=8 \Rightarrow x=3$.
Vậy $x=3$ và $y=0$.

Ví dụ 3.35. Cho $M=a^2+3 a+1$ với $a$ là số nguyên dương.
(a) Chứng minh rằng mọi ước của $M$ đều là số lẻ.
(b) Tìm các giá trị của $a$ để $M$ là lũy thừa của 5 .

Hướng dẫn giải

(a) Ta có $a^2+3 a+1=a(a+3)+1$ là số lẻ. Do đó mọi ước của $M$ đều là số lẻ.
(b) Giả sử tồn tại $n \in \mathbb{N}^*$ thỏa mãn $a^2+3 a+1=5^n$. Khi đó
$$
a^2+3 a-4=5^n-5 \Leftrightarrow(a+4)(a-1)=5\left(5^{n-1}-1\right) .
$$

Nếu $n>1$ thì $5^{n-1}-1>0$.
Ta lại có $(a+4)(a-1) \vdots 5$ và $a+4-(a-1)=5$ nên $\left\{\begin{array}{l}a+4 \vdots 5 \\\ a-1 \vdots 5\end{array}\right.$.
Do đó $(a+4)(a-1) \vdots 25 \Rightarrow 5\left(5^{n-1}-1\right) \vdots 25 \Rightarrow 5^{n-1}-1 \vdots 5$. (Vô lí)
Vậy $n=1$ hay $a^2+3 a+1=5 \Rightarrow a=1$.
Thử lại thỏa, vậy $M$ là lũy thừa của 5 khi và chỉ khi $a=1$.

Ví dụ 3.36. Tìm số tự nhiên $n$ sao cho $8^n+47$ là số nguyên tố.

Hướng dẫn giải

  • Xét $n=2 k(k \in \mathbb{N})$, khi đó
    $$
    p^n \equiv 8^n+47 \equiv(-1)^{2 k}+47 \equiv 48 \equiv 0(\bmod 3) .
    $$

Do đó $p$ ! 3 nên $p$ không là số nguyên tố (Vô lí).

  • Xét $n=4 k+1\left(k \in \mathbb{N}^*\right)$, khi đó
    $$
    p \equiv\left(8^4\right)^k \cdot 8+47 \equiv 8+47 \equiv 55 \equiv 0(\bmod 5) .
    $$

Do đó $p \vdots: 5$ nên $p$ không là số nguyên tố (Vô lí).

  • Nếu $n=4 k+3\left(k \in \mathbb{N}^*\right)$, khi đó
    $$
    p \equiv\left(8^4\right)^k \cdot 8^3+47 \equiv 8^3+47 \equiv 559 \equiv 0(\bmod 13) .
    $$

Do đó $p$ : 13 nên $p$ không là số nguyên tố (Vô lí).
Vậy không tồn tại số tự nhiên $n$ để $8^n+47$ là số nguyên tố.

Ví dụ 3.37. Cho phương trình $2^x+5^y=k^2$ ( $x, y, k$ là các số nguyên dương).
(a) Chứng minh rằng phương trình trên vô nghiệm khi $y$ chẵn.
(b) Tìm $k$ để phương trình có nghiệm.
(Đề thi tuyển sinh vào lớp 10 chuyên toán PTNK 2022)

Hướng dẫn giải

(a) Giả sử tồn tại $y \in \mathbb{N}^*$ chẵn để phương trình trên có nghiệm.

  • Với $x=1$ thì $2+5^y=k^2 \equiv 2(\bmod 5)$.
    Điều này vô lý vì $k^2 \equiv 0,1,4(\bmod 5)$ với mọi $k \in \mathbb{N}$.
  • Với $x>1$, do $y$ chẵn nên ta đặt $y=2 m(m \in \mathbb{N})$.
    Khi đó
    $$
    2^x+5^{2 m}=k^2 \Leftrightarrow 2^x=\left(k-5^m\right)\left(k+5^m\right) \Rightarrow\left\{\begin{array}{l}
    k-5^m=2^t \\\
    k+5^m=2^{x-t}
    \end{array} \quad(t \geq 0) .\right.
    $$

Vì $k+5^m>k-5^m$ nên $x-t>t$, suy ra $k=2^{t-1}+2^{x-t-1}$.
Ta thấy nếu $t=0$ thì $k=\dfrac{1}{2}+2^{x-1} \notin \mathbb{N}$. Do đó $t \geq 1$.

Mặt khác $k$ lẻ và $t-1<x-t-1$ nên $2^{t-1}=1 \Rightarrow t=1$. Khi đó $k-5^m=2 \Leftrightarrow k=2+5^m$. Thay vào $2^x+5^{2 m}=k^2$, ta được
$$
2^x+5^{2 m}=\left(2+5^m\right)^2 \Leftrightarrow 2^x=4+2 \cdot 5^m .
$$

Vì $x>1$ nên $2^x \vdots 4$, suy ra $2 \cdot 5^m \vdots 4$ (Vô lí).
Vậy phương trình vô nghiệm khi $y$ chẵn.
(b) Giả sử phương trình có nghiệm, khi đó $y$ lẻ.

  • Nếu $x=4 z+1(z \in \mathbb{N})$ thì
    $$
    k^2 \equiv 2^x+5^y \equiv 2^{4 z} \cdot 2+5^y \equiv 2(\bmod 5) .
    $$

Điều này vô lý vì $k^2 \equiv 0,1,4(\bmod 5)$ với mọi $k \in \mathbb{N}$.

  • Nếu $x=4 z+3(z \in \mathbb{N})$ thì
    $$
    k^2 \equiv 2^{4 z} \cdot 2^3+5^y \equiv 8 \equiv 3(\bmod 5) \text { (Vô lí). }
    $$

Vậy $x$ chẵn, đặt $x=2 t\left(t \in \mathbb{N}^*\right)$.
Ta có
$$
2^x+5^y=k^2 \Leftrightarrow 5^y=\left(k-2^t\right)\left(k+2^t\right) \Rightarrow\left\{\begin{array}{l}
k-2^t=5^s \\\
k+2^t=5^{y-s}
\end{array} \quad(s \in \mathbb{N}) .\right.
$$

Nếu $s>0$ thì $5^{y-s}-5^s \vdots 5$ nên $2^{t+1} \vdots 5$ (vô lý). Do đó $s=0$.

Khi đó $\left\{\begin{array}{l}k=1+2^t \\\ k=5^y-2^t\end{array}\right.$. Suy ra $1+2^t=5^y-2^t \Rightarrow 5^y-1=2^{t+1}$.
Nếu $t>1$ thì $2^{t+1} \vdots 8$. Dặt $y=2 l+1$, khi đó
$$
2^{t+1}=5^y-1=25^l \cdot 5-1 \equiv 5-1 \equiv 4(\bmod 8) \text{vô lý}
$$

Vậy $t=1$, suy ra $k=3$. Với $k=3$, ta tìm được $x=2$ và $y=1$.
Vậy phương trình có nghiệm khi và chỉ khi $k=3$.

Ví dụ 3.38. Cho $k$ là số nguyên dương và $a=3 k^2+3 k+1$.
(a) Chứng minh rằng $2 a$ và $a^2$ là tổng của ba số chính phương.
(b) Chứng minh rằng nếu $a$ là uớc của số nguyên $b$ và $b$ bằng tổng của ba số chính phương thì bất kì lũy thừa với số mũ nguyên dương nào của $b$ cũng là tổng của ba số chính phương.

Hướng dẫn giải

(a) Ta có
$$
\begin{aligned}
2 a=6 k^2+6 k+2 & =k^2+\left(k^2+2 k+1\right)+\left(4 k^2+4 k+1\right) = k^2+(k+1)^2+(2 k+1)^2
\end{aligned}
$$
$$
\begin{aligned}
a^2 & =\left(3 k^2+3 k-1+2\right)^2=9 k^4+18 k^3+15 k^2+6 k+1 = \left(4 k^4+12 k^3+13 k^2+6 k+1\right)+\left(4 k^4+4 k^3+k^2\right)+\left(k^4+2 k^3+k^2\right) = \left(2 k^2+3 k+1\right)^2+\left(2 k^2+k\right)^2+\left(k^2+k\right)^2
\end{aligned}
$$
(b) Đặt $a^2=a_1^3+a_2^3+a_3^3$ với $a_1, a_2, a_3 \in \mathbb{Z}$.
Đặt $b=c a$ với $c$ là số nguyên dương, do $b$ bẳng tổng của ba số chính phương nên $b=b_1^2+b_2^2+b_3^2$ với $b_1, b_2, b_3$ là các số nguyên.
Xét số nguyên dương $n$ bất kì, khi đó

  • Nếu $n=2 k\left(k \in \mathbb{Z}^{+}\right)$thì
    $$
    \begin{aligned}
    b^n & =c^{2 k} a^{2 k}=\left(c^k a^{k-1}\right)^2 a^2 = \left(c^k a^{k-1}\right)^2\left(a_1^2+a_2^2+a_3^2\right) = \left(c^k a^{k-1} a_1\right)^2+\left(c^k a^{k-1} a_2\right)^2+\left(c^k a^{k-1} a_3\right)^2
    \end{aligned}
    $$
  • Nếu $n=2 k+1(k \in \mathbb{Z})$ thì
    $$
    b^n=\left(b^k\right)^2 \cdot b=\left(b^k\right)^2\left(b_1^2+b_2^2+b_3^2\right)=\left(b^k b_1\right)^2+\left(b^k b_2\right)^2+\left(b^k b_3\right)^2
    $$

Hoàn tất chứng minh.


C. CÁC BÀI TẬP RÈN LUYỆN

Bài 3.13. Tìm nghiệm nguyên dương của phương trình
$$
x^3+x^2+x+1=2011^y .
$$

Bài 3.14. Tìm tập nghiệm nguyên dương của phương trình
$$
8^x+15^y=17^z .
$$

Bài 3.15. Tìm các số nguyên dương $x, y, z>1$ thỏa mãn
$$
(x+1)^y-x^z=1 .
$$

Bài 3.16. Tìm nghiệm tự nhiên của phương trình $5^x-3^y=2$.

Bài 3.17. Tìm nghiệm nguyên dương của phương trình
$$
2^x \cdot 3^y+5^z=7^t .
$$

Bài 3.18. Cho các số nguyên dương $m, n \geq 2$. Tìm nghiệm nguyên dương của phương trình
$$
x^n+y^n=3^m .
$$

Bài 3.19. Cho $p$ là một số nguyên tố và $a, n$ là các số nguyên dương. Chứng minh rằng nếu $2^p+3^p=$ $a^n$ thì $n=1$.

Bài 3.20. Chứng minh rằng tích của ba số nguyên liên tiếp không thể là lũy thừa với số mũ lớn hơn 1 của một số nguyên.

Bài 3.21. Cho phương trình $3 x^2-y^2=23^n$ với $n$ là số tự nhiên.
(a) Chứng minh nếu $n$ chẵn thì phương trình đã cho không có nghiệm nguyên $(x, y)$.
(b) Chứng minh nếu $n$ lẻ thì phương trình đã cho có nghiệm nguyên $(x, y)$.

Bài 3.22.
(a) Cho $m$ là số nguyên. Chứng minh rằng nếu tồn tại các số nguyên $a, b, c$ khác 0 sao cho $a+b+c=0$ và $a b+b c+c a+4 m=0$ thì cũng tồn tại các số nguyên $a^{\prime}, b^{\prime}, c^{\prime}$ sao cho $a^{\prime}+b^{\prime}+c^{\prime}=0$ và $a^{\prime} b^{\prime}+b^{\prime} c^{\prime}+a^{\prime} c^{\prime}+m=0$.
(b) Với $k$ là số nguyên dương, chứng minh rằng không tồn tại các số nguyên $a, b, c$ khác 0 sao cho $a+b+c=0$ và $a b+b c+c a+2^k=0$.
(Đề thi tuyển sinh lớp 10 chuyên Toán PTNK 2015)

Phương trình nghiệm nguyên – Phương pháp sử dụng tính chất chia hết

1. Sử dụng tính chẵn, lẻ

Ví dụ 1: Tìm nghiệm nguyên của phương trình: $x^2 -2y^2 =5$ $(1)$.

Giải

Vì $x$, $y$ nguyên nên từ phương trình $(1)$ suy ra $x$ là số lẻ.

Thay $x=2k+1\ (k\in \mathbb{Z})$ vào $(1)$ ta được

$4k^2 +4k +1 -2y^2 =5 \Leftrightarrow 2(k^2 + k -1) = y^2 \Rightarrow y$ là số chẵn.

Đặt $y=2t\ (t\in \mathbb{Z})$ ta có $2(k^2 +k -1) = 4t^2 \Leftrightarrow k(k+1) = 2t^2 +1$ $(*)$

Vì $k(k+1)$ là số chẵn mà $2t^2 +1$ là số lẻ nên phương trình $(*)$ vô nghiệm.

Vậy phương trình $(1)$ vô nghiệm

Ví dụ 2: Tìm nghiệm nguyên của phương trình $(2x+5y+1)(2^{|x|} + x^2 +x +y) =105$ $(2)$.

(Trích đề thi HSG lớp 9 TP. Hà Tĩnh năm 2006 – 2007)

Giải

Ở bài này ta thấy vế trái là tích của hai số nguyên mà vế phải là số lẻ nên nó phải là tích của hai số nguyên lẻ nên ta có thể sử dụng tính chất chẵn lẻ như sau:

Vì $105$ là số lẻ nên $2x + 5y +1$, $2^{|x|} + x^2 +x +y$ là các số lẻ. Suy ra $y$ là số chẵn , mà $x^2 +x = x(x+1)$ là số chẵn nên $2^{|x|}$ là số lẻ suy ra $x=0$

Thay $x=0$ vào $(2)$ ta được $(5y+1)(y+1) = 105 \Leftrightarrow 5y^2 + 6y -104 =0\Leftrightarrow y=4$ (vì $y$ là số chẵn). Do đó $y=4$. Vậy phương trình có nghiệm nguyên là $(0;4)$.

Ví dụ 3: Giải phương trình nghiệm nguyên $|19x + 15y| + 1975 = |19y + 5x| + 2016^x$ $(3)$.

Giải

Biến đổi phương trình $(3)$ ta được:

$1975 – 2016^x = (|19y + 5x| + 19y + 5x) – (|19x + 5y| + 19x + 5y) + 14(x-y)$.

Vì $|a| +a$ là số chẵn với mọi giá trị nguyên của $a$ nên vế phải là số chẵn do đó $1975 – 2016^x$ phải là số chẵn suy ra $2016^x$ là số lẻ suy ra $x=0$.

Thay $x=0$ vào phương trình $(3)$ ta được $|5y| + 1975 = |19y| +1 \Leftrightarrow 14|y| = 1974 \Leftrightarrow y=141$ hoặc $y=-141$.

Vậy phương trình có hai nghiệm nguyên $(x;y)$ là $(0;141)$ và $(0;-141)$.

Ví dụ 4: Tìm nghiệm nguyên của phương trình $x + x^2 + x^3 = 4y^2 +4$ $(4)$.

Giải

Ta có: $(4) \Leftrightarrow 1+x+x^2 +x^3= 4y^2 +4y +1\Leftrightarrow (x+1)(x^2+1) = (2y+1)^2$ $(*)$

Dễ thấy $(2y +1)^2$ lẻ suy ra $x+1$ và $x^2 +1$ là hai số lẻ. Giả sử $(x+1, x^2 +1) = d$ suy ra $d$ lẻ.

Mặt khác $x+1 \ \vdots \ d \Rightarrow 1-x^2 \  \vdots \ d$, kết hợp với $x^2 +1 \  \vdots \ d$ ta có $1-x^2 + 1+x^2\   \vdots \ d \Rightarrow 2\  \vdots \  d\Rightarrow d=1$ (vì $d$ lẻ)

Vì $(x+1)(x^2 +1)$ là số chính phương (theo $(*)$) và $(x+1,x^2+1)=1$ nên $x+1$ và $x^2 +1$ đều là số chính phương.

Dễ thấy $x^2$ và $x^2 +1$ là 2 số tự nhiên liên tiếp mà đều là số chính phương nên $x=0$.

Khi đó theo $(4)$ thì $y=0$ hoặc $y=-1$.

Vậy nghiệm của phương trình là $(0;0)$ hoặc $(0;-1)$

Ví dụ 5: Chứng tỏ phương trình: $x^4 + y^4 + z^4 + t^4 + k^4 =2015$ không có nghiệm nguyên.

Giải

Nếu $x$ là số chẵn thì $x^4 \  \vdots \ 16$.

Nếu $x$ là số lẻ thì $x^2 : 8$ dư $1$ nên $x^4 = (8k+1)^2 : 16$ dư $1$.

Như vậy mỗi số $x^4$, $y^4$, $z^4$, $t^4$, $k^4$ chia cho $16$ dư $1$ hoặc $0$ nên $x^4+y^4+z^4+t^4+k^4$ chia cho $16$ có số dư không lớn hơn $5$ còn vế phải $2015$ chia cho $16$ dư $15$.

Vậy phương trình không có nghiệm nguyên.

2. Sử dụng tính chất chia hết

Ví dụ 6: Chứng minh rằng không tồn tại các số nguyên $x$; $y$; $z$ thỏa mãn

$$x^{3}+y^{3}+z^{3}=x+y+z+2017\ (6)$$

Giải

$(6) \Leftrightarrow\left(x^{3}-x\right)+\left(y^{3}-y\right)+\left(z^{3}-z\right)=2017$ . Vì $x^{3}-x=(x-1) x(x+1)$  là tích của $3$ số nguyên liên tiếp nên chia hết cho $6$, tương tự $y^3 -y$, $z^3 -z$ cũng chia hết cho $6$ nên vế trái chia hết cho $6$ mà $2017$ không chia hết cho $6$ nên phương trình $(6)$ vô nghiệm.

Vậy không tồn tại các số nguyên $x$; $y$; $z$ thỏa mãn $x^{3}+y^{3}+z^{3}=x+y+z+2017$

Ví dụ 7: Tìm nghiệm nguyên của phương trình: $x^2y -5x^2 -xy -x +y -1=0$ $(7)$

(Trích đề thi HSG lớp $9$ huyện Can Lộc, Hà Tĩnh)

Giải

Đây là phương trình $2$ ẩn mà bậc đối với $y$ là bậc nhất nên ta dễ dàng biểu thị $y$ theo $x$ và ta có cách giải như sau:

$(7) \Leftrightarrow y=\dfrac{5 x^{2}+x+1}{x^{2}-x+1}\left( \text{do } x^{2}-x+1>0\right) \Rightarrow y=5+\dfrac{6 x-4}{x^{2}-x+1}$

Ta có $y \in \mathbb{Z}   \Leftrightarrow(6 x-4)\ \vdots \ \left(x^{2}-x+1\right) $

$\Leftrightarrow 2(3 x-2) \vdots\left(x^{2}-x+1\right) $

$\Leftrightarrow\left[\begin{array}{l} 2 \ \vdots \ \left(x^{2}-x+1\right) \\ 3 x-2 \ \vdots \ \left(x^{2}-x+1\right) \end{array}\right.$

(vì $x^{2}-x+1=x(x-1)+1$ là số lẻ).

  • TH1: $2:\left(x^{2}-x+1\right)$
    $\Leftrightarrow x^{2}-x+1=\pm 1$ (vì $.x^{2}-x+1$ lẻ)

$\Leftrightarrow x=0 ; x=1$ (thỏa mãn $x$ nguyên).

$+$ Với $x=0 \Rightarrow y=1$
$+$ Với $x=1 \Rightarrow y=7$

  • TH2: $(3 x-2):\left(x^{2}-x+1\right)\ (*)$
    $\Rightarrow x(3 x-2)\ \vdots \ \left(x^{2}-x+1\right)$
    $\Rightarrow\left(3 x^{2}-2 x\right)\ \vdots \ \left(x^{2}-x+1\right)$
    $\Rightarrow\left(3 x^{2}-3 x+3+x-3\right)\ \vdots \ \left(x^{2}-x+1\right)$
    $\Rightarrow(x-3) \vdots\left(x^{2}-x+1\right)$
    $\Rightarrow(3 x-9) \vdots\left(x^{2}-x+1\right) \ (**)$

Từ $(*)$ và $(**)$ ta được $7 \vdots\left(x^{2}-x+1\right)\Rightarrow x^2 -x+1$ bằng một trong các giá trị $-7$; $7$; $1$; $-1$.

Từ đây ta được các nghiệm: $(3;7)$, $(0;1)$, $(1;7)$.

Thử lại ta thấy phương trình $(7)$ có các nghiệm nguyên $(x;y)$ là $(3;7)$, $(0;1)$, $(1;7)$.

Ví dụ 8: Tồn tại hay không một số nguyên $n$ thỏa mãn $n^3 + 2015n=2014^{2016} +1$?

Giải

Giả sử tồn tại số nguyên $n$ thỏa mãn phương trình $n^3 + 2015n=2014^{2016} +1$, suy ra:

$$n^3 -n +2016n = 2014^{2016}+1$$

$\Leftrightarrow (n-1)n(n+1)+2016n=2014^{2016}+1$

Do $(n-1)n(n+1)$ là tích của ba số nguyên liên tiếp  nên chia hết cho $3$ và $2016\, \vdots \, 3$ nên $n^3-n+2016n \, \vdots \, 3$ hay $n^3 + 2015\, \vdots \, 3$.

Mặt khác $2014$ chia $3$ dư $1$ nên $2014^{2016}$ chia $3$ dư $1\Rightarrow 2014^{2016}$ chia $3$ dư $1\Rightarrow 2014^{2016}+1$ chia $3$ dư $2$

Từ đó ta thấy điều mâu thuẫn. Vậy không tồn tại số nguyên $n$ thỏa mãn phương trình.

Ví dụ 9: Tồn tại hay không hai số nguyên dương $a$ và $b$ thỏa mãn $a^3 + b^3 =2013$?

Giải

Giả sử tồn tại hai số nguyên dương $a$ và $b$ thỏa mãn $a^3 + b^3 =2013$.

Ta có: $(a+b)^{3}=a^{3}+b^{3}+3 a b(a+b)$
Vì $a^{3}+b^{3}=2013\, \vdots\, 3 \Rightarrow a^{3}+b^{3}+3 a b(a+b)\, \vdots\, 3$
$\Leftrightarrow(a+b)^{3}\, \vdots\, 3 \Rightarrow a+b \, \vdots\, 3 \Rightarrow(a+b)^{3}\, \vdots\, 9$
$\Rightarrow 2013=a^{3}+b^{3}=(a+b)^{3}-3 a b(a+b)\, \vdots \, 9$ (vô lý).
Vậy không tồn tại hai số nguyên dương $a$ và $b$ thỏa mãn $a^3 + b^3 =2013$,

Ví dụ 10: Giải phương trình nghiệm nguyên $x^2(x-y)=5(y-1)$ $(10)$

Giải

Ta có $(10) \Leftrightarrow x^{2}(x-y)=5(y-x)+5(x-1) \Leftrightarrow\left(x^{2}+5\right)(x-y)=5(x-1) .$
Suy ra $5(x-1)\,  \vdots\, \left(x^{2}+5\right) \Rightarrow 5\left(x^{2}+5\right)-5 x(x-1)-5(x-1)\,  \vdots\, \left(x^{2}+5\right)$ hay $30\,  \vdots\,\left(x^{2}+5\right)$
$\Rightarrow\left(x^{2}+5\right) \in\{5 ; 6 ; 10 ; 15 ; 30\}$ và $x$ là số nguyên
$\Rightarrow x \in\{0 ; \pm 1 ; \pm 5\}$.

Thử lại ta được nghiệm nguyên của phương trình là $(0 ; 1); (1 ; 1); (-5 ;-4)$.

Ví dụ 11: Chứng minh phương trình: $x^2 -2^y =2015$ $(11)$ không có nghiệm nguyên.

Giải

$(11) \Leftrightarrow x^{2}=2015+2^y$.
Ta sẽ chứng minh $A=2015+2^{y}$ không phải là số chinh phương với mọi số nguyên $y$.

Thật vậy thay $y$ bằng $0 ; 1; 2$ thì $A$ lần lượt nhận các giá trị là $2016 ; 2017; 2019$ đều không phải là số chính phương. Với $y \geq 3$ thi $2^{y}$ chia hết cho $8$ , còn $2015$ chia $8$ dư $7$ nên $A$ chia $8$ dư $7$ mà số chính phương lẻ chia $8$ chỉ có thể dư $1$ do đó $A$ không phải là số chính phương.

Vậy phương trình  $(11)$ không có nghiệm nguyên.

Ví dụ 12: Tìm các số nguyên dương $a$, $b$ sao cho

$\dfrac{4}{a}+\sqrt[3]{4-b}=\sqrt[3]{4+4 \sqrt{b+b}}+\sqrt[3]{4-4 \sqrt{b}+b}$ $(12)$

Giải

Đặt $\sqrt[3]{2+\sqrt{b}}=x ; \sqrt[3]{2-\sqrt{b}}=y$.

Vì $b>0$ nên $x>0$. Ta có $xy = \sqrt[3]{2+\sqrt{b}} \cdot \sqrt[3]{2-\sqrt{b}}=\sqrt[3]{4-b}$; $x^3 + y^3 =4$

Do đó phương trình $(12)$ trở thành:
$\dfrac{x^{3}+y^{3}}{a}+x y=x^{2}+y^{2} \Leftrightarrow \dfrac{x^{2}+y^{3}}{a}=x^{2}+y^{2}-x y$
$\Leftrightarrow \dfrac{(x+y)\left(x^{2}+y^{2}-x y\right)}{a}=x^{2}+y^{2}-x y$
mà $x^{2}+y^{2}-x y=\dfrac{3}{4} x^{2}+\left(\dfrac{x}{2}-y\right)^{2}>0$

suy ra $x+y=a \Rightarrow \sqrt[3]{2+\sqrt{b}}+\sqrt[3]{2-\sqrt{b}}=a$ $(*)$
$\Rightarrow 4+3 \sqrt[3]{4-b} \cdot a=a^{3}$ $(**)$
$\Leftrightarrow 4-b=\left(\dfrac{a^{3}-4}{3 a}\right)^{3}$
Vì $b$ là số nguyên nên $a^{3}-4\, \vdots \, 3 a \Rightarrow a^{3}-4 \, \vdots \, a$ $\Rightarrow 4 \vdots a \Rightarrow a \in\{1 ; 2 ; 4\}$
Với $a=1 \Rightarrow b=5$.

Với $a=2$ hoặc $a=4$ thì $b$ không phải là số nguyên dưong.

Thử lại: Với $a=1$; $b=5$ ta có $(**)$ đúng tức là
$x^{3}+y^{3}+3 x y a=a^{3} \Leftrightarrow a^{3}-x^{3}-y^{3}-3 x y a=0$
$\Leftrightarrow(a-x-y)\left[(a+x)^{2}+(a+y)^{2}+(x-y)^{2}\right]=0 .$
Do $x>0 ; a>0$ nên $x+a>0 \Rightarrow(a+x)^{2}+(a+y)^{2}+(x-y)^{2}>0 \Rightarrow a-x-y=0$ hay $a=x+y$,
tức là $(*)$ đúng.

Vậy $(a, b)=(1 ; 5)$ là cặp số nguyên dương duy nhất thỏa mãn phương trình $(12)$.

Ví dụ 13: Tìm số tự nhiên $n$ thỏa mãn $361\left(n^{3}+5 n+1\right)=85\left(n^{4}+6 n^{2}+n+5\right)$  $(13)$

Giải

Ta có $(13) \Leftrightarrow \dfrac{n^{3}+5 n+1}{n^{4}+6 n^{2}+n+5}=\dfrac{85}{361}$.
Ta sẽ chứng minh $\dfrac{n^{3}+5 n+1}{n^{4}+6 n^{2}+n+5}$ la phân số tối giản với mọi giá trị $n \in \mathbb{N}$.
Thật vậy, đặt $d=\left(n^{3}+5 n+1 ; n^{4}+6 n^{2}+n+5\right)$.
Suy ra $n^{4}+6 n^{2}+n+5-n\left(n^{3}+5 n+1\right)\,  \vdots \, d$ hay $n^{2}+5\, \vdots\,  d$.

Từ đó $\left(n^{3}+5 n+1\right)-n\left(n^{2}+5\right)$ \,  \vdots \, d hay $1\,\vdots \, d \Rightarrow d=1$.

Vậy phân số $\dfrac{n^{3}+5 n+1}{n^{4}+6 n^{2}+n+5}$ là phân số tối giản.

Mặt khác phân số $\dfrac{85}{361}$ cũng là phân số tối giản mà dạng tối giản của một phân số là duy nhất nên ta có

$\left\{\begin{array}{l}n^{3}+5 n+1=85 \\ n^{4}+6 n^{2}+n+5=361\end{array}\right.$
$\Rightarrow\left(n^{4}+6 n^{2}+n+5\right)-n\left(n^{3}+5 n+1\right)=361-85 n$
$\Leftrightarrow n^{2}+85 n-356=0 \Leftrightarrow(n-4)(n+89)=0$
Vi $n \in \mathbb{N}$ nên $n=4$.

Vậy số tự nhiên cần tìm là $n=4$.

Ví dụ 14: Tìm tất cả các số nguyên dương $m$, $n$ thỏa mãn $3^{m}=n^{2}+2 n-8$ $(14)$

Giải

Ta có $(14) \Leftrightarrow 3^{m}=(n+4)(n-2)$.

Đặt $n+4=3^{x} ; n-2=3^y$ với $x, y$ là số tự nhiên và $x+y=m$, khi đó $3^{x}-3^{y}=6$ hay $3^{y}\left(3^{x-y}-1\right)=6$.

Vì $3^y$ chỉ có ước là lũy thừa của $3$; $3^{x-y}-1$ không chia hết cho $3$ và $6=3.2$ nên $3^{y}=3$ và $3^{x-y}-1=2$ hay $y=1$ và $x=2$.

Từ đó $m=x+y=3$ và $n=3^{y}+2=5$.

Ví dụ 15: Tìm các số nguyên dương $x$, $y$ thỏa $ x^{2}-y !=2015$

Giải

Nếu $y>5$ thì $y !\, \vdots \, 9 \Rightarrow y !+2015$ chia $9$ dư $8$ mà $x^{2}$ chia $9$ chi có thể nhận các số dư là $0 ; 1 ; 4 ; 7$ nên trong trường hợp này không tồn tại nghiệm.

Xét $y$ lần lượt bằng $0 ; 1 ; 2 ; 3 ; 4 ; 5$ đều không có giá trị $x$ thỏa mãn.
Vậy phương trình $(15)$ vô nghiệm.

Ví dụ 16: Tìm tất cả các số tự nhiên $m;n$ để $P=3^{3m^2+6n-61}+4$ là số nguyên tố.
(Trích đề thi HSG TP. Hà Tĩnh, năm hoc $2015-2016$)

Giải

Nhận xét:  Để tìm các số tự nhiên $m, n$ sao cho $P$ là số nguyên tố thì ta có thể chứng minh $P$ chia hết cho
một số nguyên tố $n$ nào đó và khi đó $P=n$

Đặt $3m^2+6n-61=3k+2\ (k\in \mathbb{N})$.

Ta có $P=3^{3 k-2}+4=9.27^{k}+4$

Vì $27\equiv 1 (\bmod 13)$ nên $27^{k}\equiv 1 (\bmod 13)\Rightarrow 9.27^{k} \equiv 9 (\bmod 13) \Rightarrow 9.27^{k}+4 \equiv 13(\bmod 13)$
hay $P\, \vdots\, 13$, mà $P$ là số nguyên tố nên $P=13$, điều này xảy ra khi và chỉ khi $k=0 .$

Suy ra $3 m^{2}+6 n-61=2 \Leftrightarrow m^{2}+2 n=21$
Vì $m ; n$ là các số tự nhiên nên chỉ có 2 cặp số $(m ; n)$ thỏa mãn là $(1 ; 10)$ và $(3 ; 6)$.

Ví dụ 17: Tìm nghiệm nguyên của phương trình $x^{11}+y^{11}=11 z$ $(17)$

Giải

$(17)$ có nghiệm nguyên khi $x^{11}+y^{11}\, \vdots \, 11$.

Vì $11$ là số nguyên tố, theo định lý nhỏ Fermat ta có: $x^{11}- x\, \vdots\, 11$ và $y^{11}-y\, \vdots\, 11 .$

Ta viết $(17)$ dưới dạng: $\left(x^{11}-x\right)+\left(y^{11}-y\right)+(x+y)=11 z$ suy ra $x+y\,  \vdots\,  11$.

Đặt $x+y=11 k ; x=t$ $(k, t \in \mathbb{Z}) .$ Ta có công thức nghiệm: $x=t$, $y=11 k-t$ và $\left[t^{11}+(11 k-t)^{11}\right] \, \vdots\, 11$.

Bài tập rèn luyện.

Bài 1. Giải các phương trình sau trong tập nguyên dương:
a) $ 2x^2+3xy-2y^2=7 $.
b) $ x^3-xy=6x-5y-8 $
c) $ x^3-y^3=91 $.

Bài 2. Tìm các số nguyên $x$, $y$ sao cho:

a) $3^x-y^3=1$;
b) $1+x+x^2+x^3=2^y$;
c) $1+x+x^2+x^3=2003^y$.

Bài 3. Tìm các số nguyên tố $x$, $y$, $z$ thỏa mãn: $x^y+1=z$

Bài 4. Tìm các số nguyên dương $x, y,z$ thỏa $y$ nguyên tố và $y, 3$ không là ước của $z$ thỏa $x^3-y^3=z^2$.

Bài 5. Chứng tỏ rằng các phương trình sau không có nghiệm nguyên

a) $2x^2 +y^2 =1999$.

b) $7x^2 -5y^2 =3$.

c) $x^4 + y^4 + (x+y)^4=4004$.

Bài 6. Tìm nghiệm nguyên của mỗi phương trình sau:

a) $17x^2 +26y^2 = 846$.

b) $3x^2 -3xy =7x -y -21$.

c) $x^3 + 3367 =2^y$.

d) $2^x -3^y =7$.

e) $x! + y! =10z+9$.

f) $|x-y|+|y-z|+|z-x|=2017$.

g) $x^3 +y^3 +z^4 =2003$.

Bài 7. Tồn tại hay không $4$ số nguyên liên tiếp $a$, $b$, $c$, $d$ thỏa mãn $a^3 + b^2 +c+d=491$.

Bài 8. Cho đa thức $f(x)$ có các hệ số nguyên. Biết rằng $f(1)\cdot f(2)=45$. Chứng tỏ đa thức $f(x)$ không có nghiệm nguyên.

Phương trình nghiệm nguyên – Phương pháp đồng dư thức

1. Phương pháp đồng dư thức

Ví dụ 1: Giải phương trình $ x^3 +21y^3+5=0 $

Giải

Ta có với mọi $x$ thì $ x^3\equiv 0, 1, -1 \ (\mod 7) \Rightarrow x^3 +21y^2+5\equiv 5,6,4\ (\mod 7) $

Do đó phương trình vô nghiệm.

Ví dụ 2: Giải phương trình trong tập số tự nhiên: $6^x = y^2+y-2 $

Giải

Với mọi số nguyên $x$ thì $ 6^x \equiv 1\ (mod\ 5) $

Mặt khác, $ y^2+y-2 = (y-1)(y+2) \equiv 0,3,4\ (mod\ 5) \Rightarrow $ phương trình vô nghiệm.

Ví dụ 3: Tìm nghiệm nguyên dương của phương trình $7^x – 9^y = 4$

Giải

Ta có $9^y \equiv 1 (\mod 4)$ suy ra $7^x \equiv (-1)^x (\mod 4)$ suy ra $x$ chẵn. $x = 2k$.

Ta có $7^{2k} – 3^{2y} = 4 \Leftrightarrow (7^k-2)(7^k+2) = 3^{2y}$.

Dễ thấy $(7^k-2, 7^k+2) = 1$ suy ra $7^k-2 = 1, 7^k+2 = 3^{2y}$ vô nghiệm.

Ví dụ 4: Tìm $x, y, z$ nguyên dương và $z \geq 2$ thỏa $3^x + 5^x = y^z$

Giải

+ Nếu $x = 1$ ta có $y^z = 8$ thì $y = 2, z=3$.

+ Nếu $x$ chẵn. $3^x + 5^x \equiv 2( \mod 4)$, suy ra $y$ chẵn và $y^z \equiv 2(\mod 4)$, suy ra $z = 1$. (vô lý).

+ Nếu $x$ lẻ, $x > 1$. Khi đó $LHS=3^x + 5^x = (3+5)(3^{x-1}-3^{x-2}\cdot 5 +\cdots +5^{x-1})$.

Ta có $3^{x-1}-3^{x-2}\cdot 5 +\cdots +5^{x-1}$ có $x$ số hạng lẻ, nên tổng là lẻ.

Do đó $LHS$ chia hết cho 8, nhưng ko chia hết cho 16, kết hợp $z > 1$ ta được $z=3$.

Ta có: $5^6 \equiv 1 (\mod 9)$ suy ra $5^x \equiv 5\  (\mod 9)$ nếu $x \equiv 1\ (\mod 6)$;

 $5^x \equiv -1\  (\mod 9)$ khi $x \equiv 3 \ (\mod 6)$;

 $5^x \equiv 2 \ (\mod 9)$ khi $x \equiv 5\ (\mod 6)$.

Mặt khác $y^3 \equiv 0, 1, -1 (\mod 9)$. Do đó  $3^x + 5^x = y^3$ khi $ x \equiv 3 \ (\mod 6)$.

Lại có $3^x + 5^x \equiv 5 (\mod 7)$ khi $x \equiv 3 (\mod 6)$.

Do đó phương trình vô nghiệm.

Vậy nghiệm của phương trình là $(1,2,3)$.

2. Bài tập rèn luyện

Bài 1: Tìm nghiệm nguyên của các phương trình sau:

a) $2^x-3^y=1$;

b) $2^x-3^y=7$;

c) $2^x+3^y=z^2$;

d) $3^x+4^y=5^z$;

e) $3^x+4^y=7^z$.

Bài 2: (PTNK 2013) Cho $M = a^2 + 3a + 1$ với $a$ là số nguyên dương.

a) Chứng minh rằng mọi ước của $M$ đều là số lẻ.

b) Tìm $a$ sao cho $M$ chia hết cho 5. Với những giá trị nào của $a$ thì $M$ là lũy thừa của 5?

Bài 3: (PTNK 2009)

a) Chứng minh rằng không tồn tại số tự nhiên $a$ sao cho ${a^2} + a = {2010^{2009}}$

b) Chứng minh rằng không tồn tại số tự nhiên $a$ sao cho $a + {a^2} + {a^3} = {2009^{2010}}$

Phương trình nghiệm nguyên – Phương pháp biến đổi thành tích

1. Phương pháp biến đổi thành tích

Ví dụ 1: Giải phương trình nghiệm nguyên $2xy + 3x + 4y = 9$

Giải

Ta biến đổi thành $(x+2)(2y+3) = 15$.

Do đó $x+2 \in \{-15, -5, -3, -1, 1, 3, 5, 15\}$.

Giải ra được các nghiệm $(x;y)$ là: $(-17;-2), (-7;-3), (-5;-4), (-3;-9), (-1;6), (1;1), (3;0), (13;-1)$.

Ví dụ 2: Tìm nghiệm tự nhiên của phương trình $(xy-7)^2 = x^2 + y^2$

Giải

Biến đổi phương trình thành

$(xy-6)^2-(x+y)^2==-13$

$\Leftrightarrow (xy-x-y-6)(xy+x+y-6) = -13$.

  • TH1: $xy – x-y-6 = -13, xy+x+y-6 = 1$.
  • TH2: $xy-x-y-6 = -1, xy+x+y-6 = 13$.

Giải ra nghiệm $(x;y)$ là $(3;4), (4;3), (7;0), (0;7)$.

Ví dụ 3: Giải nghiệm nguyên dương của phương trình $x(y^2-p) + y(x^2-p) = 5p$ trong đó $p$ là số nguyên tố.

Giải

Biến đổi pt thành $(x+y)(xy-p) = 5p$.

  • TH1: $x+y = 5, xy – p = p$, giải ra được $(x;y,p)$ là $(1;4;2),(4;1;2), (2;3;3), (3;2;3)$.
  • TH2: $x+y = p, xy -p=5$, ta có $xy –  x-y = 5 \Leftrightarrow (x-1)(y-1) = 6$.

Giải ra được $(x;y;p)$ là $(3;4;7), (4;3;7)$.

  • TH3: $x+y=5p, xy-p = 1$, ta có $5xy -x-y = 5 \Leftrightarrow (5x-1)(5y-1) = 26$.

Không tìm được $x$, $y$ thỏa yêu cầu.

Vậy phương trình có 6 nghiệm.

Ví dụ 4: Giải phương trình trong tập các số nguyên dương $x + x^2 + x^3 = y+y^2$

Giải

Ta có phương trình viết lại  $x^3 = (y-x)(y+x+1)$.

Khi đó nếu $p$ là ước nguyên tố của $y-x, y+x+1$ thì $p = 1$(vô lí).

Do đó $(y-x, y+x+1) = 1$

Khi đó $y-x = a^3, y+x+1 = b^3$ và $ab=x$.

$\Rightarrow b^3-a^3 = 2ab+1$, vì $b \geq a+1$

$\Rightarrow b^3-a^3 = (b-a)(a^2+b^2+1) > 2ab+1$ phương trình vô nghiệm.

2. Bài tập rèn luyện

Bài 1: Giải các phương trình sau trong tập nguyên dương:

a) $ 2x^2+3xy-2y^2=7 $.

b) $ x^3-xy=6x-5y-8 $

c) $ x^3-y^3=91 $.

Bài 2: Giải phương trình nghiệm nguyên $\dfrac{1}{x}+\dfrac{1}{y} = \dfrac{1}{2020}$

Bài 3: Tìm các số nguyên $x$, $y$ sao cho:

a) $3^x-y^3=1$;

b) $1+x+x^2+x^3=2^y$;

c) $1+x+x^2+x^3=2003^y$.

Bài 4: Tìm các số nguyên tố $x$, $y$, $z$ thỏa mãn: $x^y+1=z$

Bài 5: Tìm các số nguyên dương $x, y,z$ thỏa $y$ nguyên tố và $y, 3$ không là ước của $z$ thỏa $x^3-y^3=z^2$.

Phương trình nghiệm nguyên – Phương pháp biến đổi thành tổng

1. Phương pháp biến đổi thành tổng

Ví dụ 1: Giải phương trình nghiệm nguyên: $x^2 – 6xy + 14y^2-10y – 16 = 0$

Giải

Phương trình tương đương với $(x-3y)^2 + 5(y-1)^2=21$

Khi đó $5(y-1)^2 \leq 21 \Rightarrow (y-1)^2 <5$.

  • Nếu $(y-1)^2 = 0 \Rightarrow y = 1, (x-3)^2 = 21$(vô lý)
  • Nếu $(y-1)^2 = 1 \Rightarrow (x-3y)^2 = 16$ giải ra được $(x;y)$ là $(4;0), (-4;0), (10;2), (2;2)$.
  • Nếu $(y-1)^2 = 4 \Rightarrow (x-3y)^2 = 1$, giải ra được $(x;y)$ là $(10;3), (8;3), (-2;-1), (-4;-1)$.

Vậy phương trình có 8 nghiệm.

Ví dụ 2: Giải phương trình nghiệm nguyên $2x^2- 2xy + 5y^2 = 41$

Giải

Ta có:  $(x-y)^2 + x^2 + 4y^2 = 41$.

$\Rightarrow 4y^2 < 41$ do đó $y \in \{0, 1, 2, 3, -1, -2, -3\}$

Vậy các cặp nghiệm $(x;y)$ là $(-1;-3), (-2;-3), (1;3)$ và $(2;3)$.

2. Bài tập rèn luyện

Bài 1: Giải các phương trình sau trong tập số nguyên:

a) $19x^2+28y^2=2001$.

b) $3x^2 + y^2 – 4y = 24$.

c) $2^x + 5y^2 = 38$.

d) $x^2 – 6xy+13y^2 = 100$.

Bài 2: Giải các phương trình trong tập số nguyên:

a) $2x^2 + 6y^2 + 7xy – x- y = 25$.

b) $x^2 -xy+y^2 = x+y$