I. ĐỀ thi vào lớp 10 TPHCM 2014
Bài 1. Giải các phương trình và hệ phương trình sau:
a) $x^2-7x+12 = 0$
b) $x^2-(\sqrt{2}+1)x+\sqrt{2} = 0$
c) $x^4-9x^2+20=0$
d) $3x-2y=4$ và $ 4x-3y=5. $
Bài 2.
a) Vẽ đồ thị (P) của hàm số $y = x^2$ và đường thẳng $(D):y=2x+3$ trên cùng một hệ trục tọa độ.
b) Tìm tọa độ giao điểm của (P) và (D) ở câu trên bằng phép tính.
Bài 3. Thu gọn các biểu thức sau:
a) $A = \frac{{5 + \sqrt 5 }}{{\sqrt 5 + 2}} + \frac{{\sqrt 5 }}{{\sqrt 5 – 1}} – \frac{{3\sqrt 5 }}{{3 + \sqrt 5 }}$
b) $B = \left( {\frac{x}{{x + 3\sqrt x }} + \frac{1}{{\sqrt x + 3}}} \right):\left( {1 – \frac{2}{{\sqrt x }} + \frac{6}{{x + 3\sqrt x }}} \right)$ với $x > 0$.
Bài 4. Cho phương trình $x^2-mx-1=0$ (1) ($x$ là ẩn).
a) Chứng minh phương trình (1) luôn có hai nghiệm trái dấu.
b) Gọi $x_1, x_2$ là các nghiệm của phương trình (1). Tính giá trị của biểu thức $P = \dfrac{x_1^2+x_1-1}{x_1} – \dfrac{x_2^2+x_2-1}{x_2}$.
Bài 5. Cho tam giác $ABC$ có ba góc nhọn, nội tiếp đường tròn tâm $O$ $(AB < AC)$. Các đường cao $AD$ và $CF$ của tam giác $ABC$ cắt nhau tại $H$.
a) Chứng minh tứ giác $BFHD$ nội tiếp. Suy ra $\angle AHC = 180^o – \angle ABC$.
b) Gọi $M$ là điểm bất kì trên cung nhỏ $BC$ của đường tròn $(O)$. ($M$ khác $B$ và $C$) và $N$ là điểm đối xứng của $M$ qua $AC$. Chứng minh tứ giác $AHCN$ nội tiếp.
c) Gọi $I$ là giao điểm của $AM$ và $HC$. $J$ là giao điểm của $AC$ và $HN$. Chứng minh $\angle AJI = \angle ANC$.
d) Chứng minh rằng $OA$ vuông góc với $IJ$.
II. ĐÁP ÁN
Bài 1.
a) $x^2 – 7x +12 =0$
$\Delta =1 $
Hai nghiệm của phương trình là $x_1 = 3$; $x_2 =4$
b) $x^2 – \left( \sqrt{2}+1 \right) + \sqrt{2} = 0 $
Phương trình có $a+b+c = 0$ nên hai nghiệm là $x_1=1$; $x_2 = \sqrt{2}$
c) $x^4 – 9x^2 +20 =0$
Đặt $t= x^2 \ge 0$
Phương trình trở thành: $t^2 -9t +20 =0$
$\Delta =1 $
$t_1 =4$ (nhận) và $t_2 =5$ (nhận)
Với $t=4 \Rightarrow x= \pm 2$; với $t=5 \Rightarrow x= \pm \sqrt{5}$
d) $3x-2y=4 (1) $ và $4x-3y =5 (2)$
$\Leftrightarrow 3x-2y=4 (1) $ và $x= 2 (3\cdot (1) – 2 \cdot (2))$
$\Leftrightarrow x=2$ và $y=1$.
Bài 2.
a) Đồ thị:
Lưu ý: $(P)$ đi qua $O(0;0)$, $( \pm 1 ;1)$, $\pm 2; 4 )$
$(D)$ đi qua $(-1;1)$, $(0;3)$
b) Phương trình hoành độ giao điểm của $(P)$ và $(D)$ là:
$x^2 = 2x+3 \Leftrightarrow x^2 -2x -3 =0$
$\Leftrightarrow x = -1$ và $x= 3$
$y(-1) = 1$; $y(3) =9 $
Vậy tọa độ giao điểm của $(P)$ và $(D)$ là $(-1;1)$, $(3;9)$.
Bài 3.
a) $A= \dfrac{5+ \sqrt{5}}{\sqrt{5}+2} + \dfrac{\sqrt{5}}{\sqrt{5}-1}- \dfrac{3\sqrt{5}}{3+ \sqrt{5}} $
$= \dfrac{\left( 5+ \sqrt{5} \right) \left( \sqrt{5}-2 \right) }{1} + \dfrac{\sqrt{5}\left( \sqrt{5}+1 \right) }{4} – \dfrac{3\sqrt{5}\left( 3- \sqrt{5} \right) }{4} $
$= 3\sqrt{5}-5 + \dfrac{5+ \sqrt{5}-9\sqrt{5}+15}{4} $
$=3\sqrt{5}-5 + 5 -2\sqrt{5} = \sqrt{5}$.
b) $B=\left( \dfrac{x}{x+ 3\sqrt{x}}+ \dfrac{1}{\sqrt{x}+3} \right) : \left( 1- \dfrac{2}{\sqrt{x}} + \dfrac{6}{x+ 3\sqrt{x}} \right) \hspace{1.5cm} (x > 0) $
$= \left( \dfrac{\sqrt{x}}{\sqrt{x}+3} + \dfrac{1}{\sqrt{x}+3} \right) : \left( \dfrac{x+ 3\sqrt{x}- 2 \left( \sqrt{x} + 3 \right) + 6}{\sqrt{x} \left( \sqrt{x}+ 3 \right) } \right) $
$= \left( \dfrac{\sqrt{x}+ 1}{\sqrt{x} + 3} \right) : \left( \dfrac{\sqrt{x}+ 1}{\sqrt{x}+3} \right) =1$
Bài 4.
a) $x^2 – mx -1 =0$ $(1)$
$\Delta = m^2 + 4 >0$
Do đó phương trình luôn có hai nghiệm phân biệt với mọi $m$.
Theo Viet, ta có: $P = x_1 \cdot x_2 = \dfrac{c}{a} = -1 <0 $
Vậy phương trình luôn có hai nghiệm trái dấu.
b) Theo Viet, ta có:
$S= x_1 + x_2 = m $ và $P = x_1 \cdot x_2 = -1$
$P = \dfrac{x_1^2 + x_1 -1}{x_1} – \dfrac{x_2^2 + x_2 -1}{x_2} $
$= \dfrac{x_1^2 + x_1 + x_1 x_2}{x_1} – \dfrac{x_2^2 + x_2 + x_1 x_2 }{x_2} $
$= x_1 + 1 + x_2 – x_2 -1 -x_1 =0$
Bài 5.
a) Ta có:
$\angle BFC = \angle BDA = 90^ \circ$ ($AD$, $CF$ là các đường cao)
$\Rightarrow \angle BFC + \angle BDA =180^ \circ \Rightarrow $ tứ giác $BFHD$ nội tiếp
$\Rightarrow \angle ABC + \angle DHF =180 ^\circ $
$\angle ABC + \angle AHC = 180 ^\circ $
$\angle AHC = 180 ^\circ – \angle ABC$.
b) Ta có $\angle AMC = \angle ABC$ ( cùng chắn cung $AC$)
$\angle AMC = \angle ANC$ (tính chất đối xứng)
$\Rightarrow \angle ANC = \angle ABC$
Mà $\angle AHC + \angle ABC = 180 ^\circ$
$\Rightarrow \angle AHC + \angle ANC = 180 ^\circ$
$\Rightarrow $ $AHCN$ nội tiếp.
c) Ta có $\angle MAC = \angle NAC$ ( tính chất đối xứng)
$\angle NAC = \angle NHC $ (cùng chắn cung $NC$)
$\Rightarrow \angle MAC = \angle NHC$ hay $\angle IAJ = \angle IHJ $
$\Rightarrow $ $AHIJ$ nội tiếp (2 đỉnh kề cùng nhìn cạnh dưới góc bằng nhau)
$\Rightarrow \angle AJI = 180 ^\circ \angle AHC = \angle ANC$.
d) Vẽ tiếp tuyến $xy$ của $(O)$ tại $A$ $\Rightarrow OA \bot xy$
$\angle AJI = \angle ANC = \angle AMC = \angle yAC \Rightarrow IJ // xy $
$\Rightarrow OA \bot IJ$.