Tứ giác nội tiếp – Phần 3

Bài 1. Cho tam giác $ABC$. Gọi $M$ là trung điểm $BC$. Gọi $D, E, F$ lần lượt là tâm đường tròn nội tiếp các tam giác
$ABM, ACM, ABC$. Gọi $H$ là hình chiếu vuông góc của $F$ trên BC. Chứng minh $D, H, M, E$ cùng thuộc một đường tròn.

Lời giải
  Gọi $P, Q$ là hình chiếu của $D, E$ trên BC.

Ta có $\triangle MDP \backsim \triangle EMQ$, suy ra $MQ\cdot MP = EQ\cdot PD$.

Ta có $BP = \dfrac{1}{2}(AB+BM-AM), BH = \dfrac{1}{2}(AB+BC-AC)$

Suy ra $PH = BH – BP = \dfrac{1}{2}(BC – AC – BM + AM ) = \dfrac{1}{2}(MC + AM – AC) = MQ$

Suy ra $PM = HQ$. Suy ra $PH\cdot HQ = MQ\cdot MP = DP\cdot EQ$, suy ra $\triangle DPH \backsim \triangle HQE$

Từ đó ta có $\angle DHE = 90^\circ$.

Bài 2. Cho đường tròn tâm $O$ bán kính $R$ và dây $BC =R \sqrt{3}$ cố định. $A$ là một điểm thay đổi trên cung lớn $BC$ sao cho tam giác $ABC$ nhọn. Các đường cao $BD$ và $CE$ cắt nhau tại $H$. Phân giác trong góc $A$ cắt $(O)$ tại $G$ và cắt $DE$ tại $F$.

a) Chứng minh tứ giác $BEGF$ nội tiếp.
b) Gọi $I$ là giao điểm của $AH$ và $BC$. Chứng minh $FIHG$ nội tiếp.

Lời giải

(a) Ta có $BEFC$ nội tiếp nên $\angle AED = \angle ACB$
Và $\angle ACB = \angle AFB$ (cùng chắn cung AB).
Suy ra $\angle AED = \angle AFB$, do đó tứ giác $BEGF$ nội tiếp.
(b) Tứ giác $BEGF$ nội tiếp, suy ra $AG\cdot AF = AE\cdot AB$.
Mặt khác ta có $AE\cdot AB = AH \cdot AI$
Suy ra $AG\cdot AF = AH\cdot AI$, từ đó ta có $\triangle AHF \backsim AGI$, suy ra $\angle AFH = \angle AIG$.

Bài 3. Cho đường tròn $(O)$ và điểm $P$ nằm ngoài đường tròn. Vẽ các tiếp tuyến $PA, PB$ đến $(O)$ với $A, B$ là các tiếp điểm. $C$ là điểm trên cung nhỏ $AB$, tiếp tuyến tại $C$ cắt $PA, PB$ và $PO$ lần lượt tại $D, E, F$. Chứng minh rằng đường tròn ngoại tiếp các tam giác $PAB, PDE$ và $PCF$ cùng đi qua một điểm khác $P$.

Lời giải

Gọi $Q$ là giao điểm của $(PDE)$ và $(PAB)$.

Ta có $\triangle QAD \backsim \triangle QBE$, suy ra $QD/QE = AD/EB = CD/CE$. Khi đó $QC$ là phân giác $\angle DQE$.

Ta có $QO$ cũng là phân giác $\angle AQB$ và $\angle AQB = \angle DQE$. Suy ra $\angle DQC = \angle OQB$.

Mà $\angle QDC = \angle QOB$ nên $\angle QCD =\angle QBO = \angle QPF$.  Vậy tứ giác $QPFC$ nội tiếp.

Bài 4. Gọi $O$ là giao điểm của hai đường chéo hình thang $ABCD$ có đáy là $AB, CD$. Lấy $M, N$ là điểm thuộc $OA$, $N$ là điểm thuộc $OD$ sao cho $\angle BMD = \angle AMC$. Chứng minh rằng BMNC là tứ giác nội tiếp.

Lời giải
  Cho đường tròn ngoại tiếp tam giác $ABM$ cắt $OC$ tại $N’$. Chứng minh $\angle AN’C = \angle BMD = \angle ANC$.

Bài 5. Cho $(O)$ và $(O_1)$ cắt nhau tại $M, N$. Tiếp tuyến tại $M$ của $(O)$ cắt $(O_1)$ tại $B$. Tiếp tuyến tại $M$ của $(O_1)$ cắt $(O)$ tại $A$. Gọi $P$ là điểm đối xứng của $M$ qua $N$. Chứng minh rằng tứ giác $MAPB$ nội tiếp.

Lời giải

Chứng minh $NM^2 = NA \cdot NB = NP^2$. Suy ra $\angle A + \angle B = \angle M + \angle N$.

Bài 6. Cho tứ giác $ABCD$ có các cạnh đối diện $AD$ và $BC$ cắt nhau tại $E$, $AB$ và $CD$ cắt nhau tại $F$. Chứng minh rằng tứ giác $ABCD$ nội tiếp khi và chỉ khi $EA.ED + FA.FB = EF^2$.

Lời giải

Gọi $K$ là giao điểm của đường tròn ngoại tiếp tam giác $ADF$ và $EF$. Ta có $EK \cdot EF = EA \cdot ED$, suy ra $FK \cdot FE = FA \cdot FB$, suy ra $EKAB$ nội tiếp. \\
Khi đó $\angle EBA = \angle FKA = \angle ADC$ nên $ABCD$ nội tiếp.

Bài 7. Cho tứ giác $ABCD$ có hai đường chéo vuông góc nhau tại $I$. Gọi $E, F, G, H$ lần lượt là hình chiếu vuông góc của $I$ trên $AB, BC, CD$ và $DA$. $IE$ cắt $CD$ tại $M$.

a) Chứng minh $EFGH$ và $HGMF$ nội tiếp.
b) $BH$ cắt đường tròn ngoại tiếp tam giác $IEH$ tại $J$, $BG$ cắt đường tròn ngoại tiếp tam giác $IFG$ tại $K$. Chứng minh $E, J, K, F$ cùng thuộc một đường tròn.

Lời giải

(a) Ta có $BD$ là tiếp tuyến chung của $(IHE)$ và $(IFG)$. \\ $\angle BEF = \angle BIF = \angle IGF, \angle AEH = \angle EIH = \angle HGI$. \\ Suy ra $\angle FEF + \angle HGF = 180^\circ $. Suy ra $HEFG$ nội tiếp. \\ Ta có $\angle IMG = \angle ICM + \angle MIC = \angle DIG + \angle AIE = \angle DHG + \angle AHE = 180^\circ – \angle EHG$. \\ Suy ra $EHGM$ nội tiếp. \\ Do đó $EGMF$ nội tiếp. \\ (b) Ta có $BJ\cdot BH = BE\cdot BA = BI^2 = BK\cdot BG$. \\ Suy ra $GHJK$ nội tiếp. \\ Ta có $\angle EFK = \angle EFI – \angle KFI = \angle EBI – \angle IGB$. \\ Và $\angle EJK = \angle EJB + \angle BJK = \angle DAB + \angle HGB$. \\ Suy ra $\angle EFK + \angle EJK = \angle DAB + \angle HGB – \angle IBG + \angle EBI = \angle DAB + \angle HGI + \angle EBI = 180^\circ $. \\ Do đó $EJKF$ nội tiếp.

Bài 8. (Thi HSGQG THPT Việt Nam năm 2010) Cho tam giác $ABC$ không cân có $\angle ABC$ và $\angle ACB$ nhọn. $D$ là điểm di chuyển trên cạnh $BC$ sao cho $AD$ không vuông góc $BC$. Đường thẳng qua $D$ vuông góc với $BC$ cắt các đường thẳng $AB, AC$ tại $E$ và $F$. Gọi $M, N, P$ là tâm đường tròn nội tiếp các tam giác $AEF, BDE, CDF$. Chứng minh rằng $A, M, N, P$ cùng thuộc một đường tròn khi và chỉ khi $d$ đi qua tâm nội tiếp của tam giác $ABC$.

Lời giải

Gọi $I$ là tâm nội tiếp của tam giác $ABC$.
Gọi $J$ là giao điểm của $AI$ và $EN$, suy ra $FJ$ là phân giác góc $AFD$.
Ta có $FKC = 90^o + \dfrac{1}{2}\angle ACB = \angle JIN$.
Tứ giác $AMFJ$ nội tiếp, suy ra $\angle NJI =\angle AJM = \angle AFM = \angle KFP$ ($K$ là giao điểm của $d$ và $IC$).
Từ đó $\triangle NIJ \backsim \triangle PFK$.
Suy ra $IJ/FK = JN/FP$.
Ta có $A, M, P, N$ đồng viên khi và chỉ khi $\angle ANJ = \angle APF \Leftrightarrow \triangle AJN \backsim \triangle AFP \Leftrightarrow AF/AJ = FP/JN$.
Mà $AF/AJ = FS/JS$ (Với $S$ là giao điểm của $AI$ và $d$)
Vậy $A, M, P, N$ đồng viên khi và chỉ khi $IJ/KF = FS/JS$.
Điều này chỉ đúng khi $I$ trùng $S$. Vì nếu $I$ khác $S$ thì $IK//FJ$ (!)

Bài tập rèn luyện

Bài 9. Cho tam giác $ABC$ nhọn và khác tam giác cân. Phân giác góc nhọn tạo bởi hai đường cao hạ từ $B$ và $C$ của tam giác cắt các cạnh $AB$ và $AC$ lần lượt tại $P$ và $Q$. Phân giác của góc $BAC$ cắt đoạn thẳng nối trực tâm của tam giác $ABC$ và trung điểm $BC$ tại $R$. Chứng minh rằng $P, A, Q, R$ cùng thuộc một đường tròn.

Bài 10. Cho tam giác $ABC$ nội tiếp đường tròn $(O)$, phân giác góc $A$ cắt $BC$ tại $D$, $M$ là trung điểm $BC$, $E$ là điểm đối xứng của $D$ qua $M$. Trên các đường thẳng $AO$ và $AD$ lấy điểm $P$ và $Q$ sao cho $PD$ và $EQ$ vuông góc $BC$. Chứng minh 4 điểm $B, C, P, Q$ cùng thuộc một đường tròn.

Bài 11. (Đề đề nghị thi Toán Quốc Tế 2010) Cho tam giác $ABC$ nội tiếp $w$, các đường cao là $AD, BE, CF$. Tia $EF$ cắt $w$ tại $P$. $BP$ cắt $DF$ tại $Q$. Chứng minh 4 điểm $A, P, Q, F$ cùng thuộc một đường tròn và $AQ = AP$.

2 thoughts on “Tứ giác nội tiếp – Phần 3

Leave a Reply

Your email address will not be published. Required fields are marked *