Ngày thi thứ nhất. Thời gian làm bài 180 phút.
Bài 1 (5,0 điểm)
Cho $a$ là một số thực không âm và dãy số $\left(u_n\right)$ được xác định bởi
$$
u_1=6, u_{n+1}=\dfrac{2 n+a}{n}+\sqrt{\dfrac{n+a}{n} u_n+4}, \quad \forall n \geq 1 .
$$
a) Với $a=0$, chứng minh rằng $\left(u_n\right)$ có giới hạn hữu hạn và tìm giới hạn đó.
b) Với mọi $a \geq 0$, chứng minh rằng $\left(u_n\right)$ có giới hạn hữu hạn.
Bài 2 (5,0 điểm)
Tìm tất cả các hàm số $f:(0 ;+\infty) \rightarrow(0 ;+\infty)$ thoả mãn
$$
f\left(\dfrac{f(x)}{x}+y\right)=1+f(y), \forall x, y \in(0 ;+\infty) .
$$
Bài 3(5,0$ điểm)
Cho tam giác nhọn $A B C$. Các điểm $E, F$ lần lượt thay đổi trên tia đối của các tia $B A, C A$ sao cho $B F=C E(E \neq B, F \neq C)$. Gọi $M, N$ tương ứng là trung điểm của $B E, C F$ và $D$ là giao điểm của $B F$ với $C E$.
a) Gọi $I, J$ lần lượt là tâm đường tròn ngoại tiếp các tam giác $D B E, D C F$. Chứng minh rằng $M N$ song song với $I J$.
b) Gọi $K$ là trung điểm của $M N$ và $H$ là trực tâm của tam giác $A E F$. Chứng minh rằng $H K$ luôn đi qua một điểm cố định.
Bài 4 (5,0 điểm)
Với mỗi cặp số nguyên dương $(n, m)$ thoả mãn $n<m$, gọi $s(n, m)$ là số các số nguyên dương thuộc đoạn $[n ; m]$ và nguyên tố cùng nhau với $m$. Tìm tất cả các số nguyên dương $m \geq 2$ thoả mãn đồng thời hai điều kiện sau:
i) $\dfrac{s(n, m)}{m-n} \geq \frac{s(1, m)}{m}$ với mọi $n=1,2, \ldots, m-1$;
ii) $2022^m+1$ chia hết cho $m^2$.
Ngày thi thứ hai. Thời gian làm bài 180 phút.
Bài 5(6,0 điểm)
Cho $P(x)$ và $Q(x)$ là hai đa thức khác hằng, có hệ số là các số nguyên không âm, trong đó các hệ số của $P(x)$ đều không vượt quá 2021 và $Q(x)$ có ít nhất một hệ số lớn hơn 2021. Giả sử $P(2022)=Q(2022)$ và $P(x), Q(x)$ có chung nghiệm hữu tỷ $\dfrac{p}{q} \neq 0(p, q \in \mathbb{Z} ; p$ và $q$ nguyên tố cùng nhau). Chứng minh rằng $|p|+n|q| \leq Q(n)-P(n)$ với mọi $n=1,2, \ldots, 2021$.
Bài 6 (7,0 điểm)
Gieo 4 con súc sắc cân đối, đồng chất. Ký hiệu $x_i\left(1 \leq x_i \leq 6\right)$ là số chấm trên mặt xuất hiện của con súc sắc thứ $i(i=1,2,3,4)$.
a) Tính số các bộ $\left(x_1, x_2, x_3, x_4\right)$ có thể có.
b) Tính xác suất để có một số trong $x_1, x_2, x_3, x_4$ bằng tổng của ba số còn lại.
c) Tính xác suất để có thể chia $x_1, x_2, x_3, x_4$ thành hai nhóm có tổng bằng nhau.
Bài 7 (7,0 điểm)
Cho tam giác $A B C$ có $B, C$ cố định trên đường tròn $(O)$ ( $B C$ không đi qua tâm $O$ ) và điểm $A$ thay đổi trên cung lớn $\overparen{B C}$ sao cho $A B \neq A C$. Đường tròn nội tiếp $(I)$ của tam giác $A B C$ tiếp xúc với $B C$ tại $D$. Gọi $I_a$ là tâm đường tròn bàng tiếp góc $\widehat{B A C}, L$ là giao điểm của $I_a D$ với $O I$ và $E$ là điểm trên $(I)$ sao cho $D E$ song song với $A I$.
a) Đường thẳng $L E$ cắt đường thẳng $A I$ tại $F$. Chứng minh rằng $A F=A I$.
b) Trên đường tròn $(J)$ ngoại tiếp tam giác $I_a B C$ lấy điểm $M$ sao cho $I_a M$ song song với $A D, M D$ cắt lại $(J)$ tại $N$. Chứng minh rằng trung điểm $T$ của $M N$ luôn thuộc một đường tròn cố định.
(Nguồn: Bộ giáo dục Việt Nam)