Tag Archives: VMO

Đề thi và lời giải Học sinh giỏi Quốc gia năm 2019 (VMO 2019)

Ngày thi thứ nhất. Thời gian làm bài 180 phút.

Bài 1. Cho hàm số liên tục $f: \mathbb{R} \rightarrow(0 ;+\infty)$ thỏa mãn

$\lim_{x \rightarrow – \infty} f(x)= \lim_{x \rightarrow + \infty} f(x) = 0$
a) Chứng minh rằng $f(x)$ đạt giá trị lớn nhất trên $\mathbb{R}$.
b) Chứng minh rằng tồn tại hai dãy $\left(x_n\right),\left(y_n\right)$ với $x_n<y_n, \forall n=1,2,3, \ldots$ sao cho chúng cùng hội tụ tới một giới hạn và thỏa mãn $f\left(x_n\right)=f\left(y_n\right)$ với mọi $n$.

Bài 2. Cho dãy số nguyên dương $\left(x_n\right)$ thỏa mãn $0 \leq x_0<x_1 \leq 100$ và
$$
x_{n+2}=7 x_{n+1}-x_n+280, \quad \forall n \geq 0 .
$$
a) Chứng minh rằng nếu $x_0=2, x_1=3$ thì với mỗi số nguyên dương $n$, tổng các ước nguyên dương của $x_n x_{n+1}+x_{n+1} x_{n+2}+x_{n+2} x_{n+3}+2018$ thì chia hết cho 24 .
b) Tìm tất cả các cặp số $\left(x_0, x_1\right)$ để số $x_n x_{n+1}+2019$ là số chính phương với vô số số $n$.

Bài 3. Với mỗi đa thức $f(x)=a_0+a_1 x+\cdots+a_n x^n$, đặt
$$
\Gamma(f(x))=a_0^2+a_1^2+\cdots+a_m^2 .
$$

Cho đa thức $P(x)=(x+1)(x+2) \ldots(x+2020)$. Chứng minh rằng tồn tại ít nhất 2019 đa thức đôi một phân biệt $Q_k(x)$ với $1 \leq k \leq 2^{2019}$ với các hệ số dương thỏa mãn hai điều kiện sau:
i) $\operatorname{deg} Q_k(x)=2020$.
ii) $\Gamma\left(Q_k(x)^n\right)=\Gamma\left(P(x)^n\right)$ với mọi số nguyên dương $n$.

Bài 4. Cho tam giác $A B C$ có tâm đường tròn nội tiếp $I$ và trực tâm $H$. Trên các tia $A B, A C, B C, B A, C A, C B$ lần lượt lấy các điểm $A_1, A_2, B_1, B_1, C_1, C_2$ sao cho $A A_1=A A_2=B C$, $B B_1=B B_2=A C, C C_1=C C_2=A B$. Gọi $A^{\prime}, B^{\prime}, C^{\prime}$ lần lượt là giao điểm của các cặp đường thẳng $\left(B B_1, C C_1\right) ;\left(C C_1, A A_1\right) ;\left(A A_1, B B_1\right)$.
a) Chứng minh rằng diện tích tam giác $A^{\prime} B^{\prime} C^{\prime}$ không vượt quá diện tích tam giác $A B C$.
b) Gọi $J$ là tâm đường tròn ngoại tiếp $A^{\prime} B^{\prime} C^{\prime}$. Các đường thẳng $A J, B J, C J$ lần lượt cắt $B C, C A, A B$ theo thứ tự tại $R, S, T$. Gọi $K$ là điểm chung của các đường tròn ngoại tiếp $A S T, B T R, C R S$. Giả sử tam giác $A B C$ không cân, chứng minh $I H J K$ là hình bình hành.

Ngày thi thứ hai. Thời gian làm bài 180 phút.

Bài 5. Xét đa thức $f(x)=x^2-\alpha x+1$ với $\alpha \in \mathbb{R}$.
a) Khi $\alpha=\frac{\sqrt{15}}{2}$, hãy viết $f(x)$ thành thương của hai đa thức với các hệ số không âm.
b) Tìm tất cả các giá trị $\alpha$ để $f(x)$ có thể viết được thành thương của hai đa thức với các hệ số không âm.

Bài 6. Cho tam giác nhọn, không cân $A B C$ nội tiếp đường tròn $(O)$ và có trực tâm $H$. Gọi $M, N, P$ lần lượt là trung điểm cạnh $B C, C A, A B$ và $D, E, F$ lần lượt là chân đường cao ứng với các đỉnh $A, B, C$ của tam giác $A B C$. Gọi $K$ là đối xứng của $H$ qua $B C$. Hai đường thẳng $D E, M P$ cắt nhau tại $X$; hai đường thẳng $D F, M N$ cắt nhau tại $Y$.
a) Đường thẳng $X Y$ cắt cung $\overparen{B C}$ của $(O)$ tại $Z$. Chứng minh rằng $K, Z, E, F$ đồng viên.
b) Hai đường thẳng $K E, K F$ cắt lại $(O)$ tại $S, T$. Chứng minh rằng $B S, C T, X Y$ đồng quy.

Bài 7. Có một số mảnh giấy hình vuông có cùng kích thước, mỗi mảnh được chia caro thành $5 \times 5$ ô vuông ở cả hai mặt. Ta dùng $n$ màu để tô các mảnh giấy sao cho mỗi ô của mỗi mảnh giấy được tô cả hai mặt bởi cùng một màu. Hai mảnh giấy màu được coi là giống nhau nếu có thể xếp chúng chồng khít lên nhau sao cho các cặp ô vuông ở cùng vị trí có cùng màu. Chứng minh rằng ta thu được không quá $\frac{1}{8}\left(n^{25}+4 n^{15}+n^{13}+2 n^7\right)$ mảnh giấy đôi một không giống nhau.

Lời giải tham khảo

Đề thi và đáp án học sinh giỏi quốc gia năm 2022 (VMO 2022)

Ngày thi thứ nhất. Thời gian làm bài 180 phút.

Bài 1 (5,0 điểm)
Cho $a$ là một số thực không âm và dãy số $\left(u_n\right)$ được xác định bởi
$$
u_1=6, u_{n+1}=\dfrac{2 n+a}{n}+\sqrt{\dfrac{n+a}{n} u_n+4}, \quad \forall n \geq 1 .
$$
a) Với $a=0$, chứng minh rằng $\left(u_n\right)$ có giới hạn hữu hạn và tìm giới hạn đó.
b) Với mọi $a \geq 0$, chứng minh rằng $\left(u_n\right)$ có giới hạn hữu hạn.

Bài 2 (5,0 điểm)
Tìm tất cả các hàm số $f:(0 ;+\infty) \rightarrow(0 ;+\infty)$ thoả mãn
$$
f\left(\dfrac{f(x)}{x}+y\right)=1+f(y), \forall x, y \in(0 ;+\infty) .
$$

Bài 3(5,0$ điểm)
Cho tam giác nhọn $A B C$. Các điểm $E, F$ lần lượt thay đổi trên tia đối của các tia $B A, C A$ sao cho $B F=C E(E \neq B, F \neq C)$. Gọi $M, N$ tương ứng là trung điểm của $B E, C F$ và $D$ là giao điểm của $B F$ với $C E$.
a) Gọi $I, J$ lần lượt là tâm đường tròn ngoại tiếp các tam giác $D B E, D C F$. Chứng minh rằng $M N$ song song với $I J$.
b) Gọi $K$ là trung điểm của $M N$ và $H$ là trực tâm của tam giác $A E F$. Chứng minh rằng $H K$ luôn đi qua một điểm cố định.

Bài 4 (5,0 điểm)
Với mỗi cặp số nguyên dương $(n, m)$ thoả mãn $n<m$, gọi $s(n, m)$ là số các số nguyên dương thuộc đoạn $[n ; m]$ và nguyên tố cùng nhau với $m$. Tìm tất cả các số nguyên dương $m \geq 2$ thoả mãn đồng thời hai điều kiện sau:
i) $\dfrac{s(n, m)}{m-n} \geq \frac{s(1, m)}{m}$ với mọi $n=1,2, \ldots, m-1$;
ii) $2022^m+1$ chia hết cho $m^2$.

Ngày thi thứ hai. Thời gian làm bài 180 phút.

Bài 5(6,0 điểm)
Cho $P(x)$ và $Q(x)$ là hai đa thức khác hằng, có hệ số là các số nguyên không âm, trong đó các hệ số của $P(x)$ đều không vượt quá 2021 và $Q(x)$ có ít nhất một hệ số lớn hơn 2021. Giả sử $P(2022)=Q(2022)$ và $P(x), Q(x)$ có chung nghiệm hữu tỷ $\dfrac{p}{q} \neq 0(p, q \in \mathbb{Z} ; p$ và $q$ nguyên tố cùng nhau). Chứng minh rằng $|p|+n|q| \leq Q(n)-P(n)$ với mọi $n=1,2, \ldots, 2021$.

Bài 6 (7,0 điểm)
Gieo 4 con súc sắc cân đối, đồng chất. Ký hiệu $x_i\left(1 \leq x_i \leq 6\right)$ là số chấm trên mặt xuất hiện của con súc sắc thứ $i(i=1,2,3,4)$.
a) Tính số các bộ $\left(x_1, x_2, x_3, x_4\right)$ có thể có.
b) Tính xác suất để có một số trong $x_1, x_2, x_3, x_4$ bằng tổng của ba số còn lại.
c) Tính xác suất để có thể chia $x_1, x_2, x_3, x_4$ thành hai nhóm có tổng bằng nhau.

Bài 7 (7,0 điểm)
Cho tam giác $A B C$ có $B, C$ cố định trên đường tròn $(O)$ ( $B C$ không đi qua tâm $O$ ) và điểm $A$ thay đổi trên cung lớn $\overparen{B C}$ sao cho $A B \neq A C$. Đường tròn nội tiếp $(I)$ của tam giác $A B C$ tiếp xúc với $B C$ tại $D$. Gọi $I_a$ là tâm đường tròn bàng tiếp góc $\widehat{B A C}, L$ là giao điểm của $I_a D$ với $O I$ và $E$ là điểm trên $(I)$ sao cho $D E$ song song với $A I$.
a) Đường thẳng $L E$ cắt đường thẳng $A I$ tại $F$. Chứng minh rằng $A F=A I$.
b) Trên đường tròn $(J)$ ngoại tiếp tam giác $I_a B C$ lấy điểm $M$ sao cho $I_a M$ song song với $A D, M D$ cắt lại $(J)$ tại $N$. Chứng minh rằng trung điểm $T$ của $M N$ luôn thuộc một đường tròn cố định.

Đáp án chính thức

(Nguồn: Bộ giáo dục Việt Nam)

Đề thi học sinh giỏi quốc gia năm 2023 (VMO 2023)

Ngày thi thứ nhất. Thời gian làm bài 180 phút.

Bài 1 (5,0 điểm) Xét dãy số $\left(a_n\right)$ thỏa mãn $a_1=\frac{1}{2}, a_{n+1}=\sqrt[3]{3 a_{n+1}-a_n}$ và $0 \leq a_n \leq 1$, với mọi $n \geq 1$.
a) Chứng minh rằng dãy $\left(a_n\right)$ xác định duy nhất và có giới hạn hữu hạn.
b) Cho dãy số $\left(b_n\right)$ xác định bởi $b_n=\left(1+2 a_1\right)\left(1+2^2 a_2\right) \cdots\left(1+2^n a_n\right)$ với mọi $n \geq 1$. Chứng minh rằng dãy $\left(b_n\right)$ có giới hạn hữu hạn.

Bài 2 (5,0 điểm) Cho các số nguyên $a, b, c, \alpha, \beta$ và dãy số $\left(u_n\right)$ xác định bởi
$$
u_1=\alpha, u_2=\beta, u_{n+2}=a u_{n+1}+b u_n+c \text { với mọi } n \geq 1 \text {. }
$$
a) Chứng minh rằng nếu $a=3, b=-2, c=-1$ thì có vô số cặp số nguyên $(\alpha ; \beta)$ để $u_{2023}=2^{2022}$.
b) Chứng minh rằng tồn tại số nguyên dương $n_0$ sao cho có duy nhất một trong hai khẳng định sau là đúng:
i) Có vô số số nguyên dương $m$ để $u_{n_0} u_{n_0+1} \cdots u_{n_0+m}$ chia hết cho $7^{2023}$ hoặc $17^{2023}$;
ii) Có vô số số nguyên dương $k$ để $u_{n_0} u_{n_0+1} \cdots u_{n_0+k}-1$ chia hết cho 2023.

Bài 3 (5,0 điểm) Tìm số thực dương $k$ lớn nhất sao cho bất đẳng thức
$$
\frac{1}{k a b+c^2}+\frac{1}{k b c+a^2}+\frac{1}{k c a+b^2} \geq \frac{k+3}{a^2+b^2+c^2}
$$
đúng với mọi bộ ba số thực dương $(a ; b ; c)$ thỏa mãn điều kiện $a^2+b^2+c^2=2(a b+b c+c a)$.
Bài 4 (5,0 điểm) Cho tứ giác $A B C D$ có $D B=D C$ và nội tiếp một đường tròn. Gọi $M, N$ tương ứng là trung điểm của $A B, A C$ và $J, E, F$ tương ứng là các tiếp điểm của đường tròn $(I)$ nội tiếp tam giác $A B C$ với $B C, C A, A B$. Đường thẳng $M N$ cắt $J E, J F$ lần lượt tại $K, H ; I J$ cắt lại đường tròn $(I B C)$ tại $G$ và $D G$ cắt lại $(I B C)$ tại $T$.
a) Chứng minh rằng $J A$ đi qua trung điểm của $H K$ và vuông góc với $I T$.
b) Gọi $R, S$ tương ứng là hình chiếu vuông góc của $D$ trên $A B, A C$. Lấy các điểm $P, Q$ lần lượt trên $I F, I E$ sao cho $K P$ và $H Q$ đều vuông góc với $M N$. Chứng minh rằng ba đường thẳng $M P, N Q$ và $R S$ đồng quy.

Ngày thi thứ hai. Thời gian làm bài 180 phút.

Bài 5 (6,0 điểm) Xét các hàm số $f: \mathbb{R} \rightarrow \mathbb{R}$ và $g: \mathbb{R} \rightarrow \mathbb{R}$ thỏa mãn điều kiện $f(0)=2022$ và
$$
f(x+g(y))=x f(y)+(2023-y) f(x)+g(x) \text { với mọi } x, y \in \mathbb{R} \text {. }
$$
a) Chứng minh rằng $f$ là một toàn ánh và $g$ là một đơn ánh.
b) Tìm tất cả các hàm số $f$ và $g$ thỏa mãn điều kiện bài toán.

Bài 6 (7,0 điểm) Có $n \geq 2$ lớp học tổ chức $m \geq 1$ tổ ngoại khóa cho học sinh. Lớp nào cũng có học sinh tham gia ít nhất một tổ ngoại khóa. Mọi tổ ngoại khóa đều có đúng a lớp có học sinh tham gia. Với hai tổ ngoại khóa bất kỳ, có không quá $b$ lớp có học sinh tham gia đồng thời cả hai tổ này.
a) Tính $m$ khi $n=8, a=4, b=1$.
b) Chứng minh rằng $n \geq 20 \mathrm{khi} m=6, a=10, b=4$.
c) Tìm giá trị nhỏ nhất của $n$ khi $m=20, a=4, b=1$.

Bài 7 (7,0 điểm) Cho tam giác nhọn, không cân $A B C$ có trực tâm $H$ và tâm đường tròn ngoại tiếp $O$. Đường tròn nội tiếp $(I)$ của tam giác $A B C$ tiếp xúc với các cạnh $B C, C A, A B$ tương ứng tại $M, N, P$. Gọi $\Omega_A$ là một đường tròn đi qua $A$, tiếp xúc ngoài với $(I)$ tại một điểm $A^{\prime}$ và cắt lại $A B, A C$ tương ứng tại $A_b, A_c$. Các đường tròn $\Omega_B, \Omega_C$ và các điểm $B^{\prime}, B_a, B_c$, $C^{\prime}, C_a, C_b$ được xác định một cách tương tự.
a) Chứng minh rằng $B_c C_b+C_a A_c+A_b B_a \geq N P+P M+M N$.
b) Xét trường hợp $A^{\prime}, B^{\prime}, C^{\prime}$ tương ứng thuộc các đường thẳng $A M, B N, C P$. Gọi $K$ là tâm đường tròn ngoại tiếp tam giác có ba cạnh tương ứng thuộc ba đường thẳng $A_b A_c, B_c B_a, C_a C_b$. Chứng minh rằng $O H$ song song với $I K$.

(Nguồn: Bộ Giáo Dục Việt Nam)

Đáp án chính thức

ĐỀ THI CHỌN ĐỘI TUYỂN QUỐC GIA CỦA CÁC TỈNH, THÀNH

ĐỀ THI CHỌN ĐỘI TUYỂN TRƯỜNG PHỔ THÔNG NĂNG KHIẾU

ĐỀ THI CHỌN ĐỘI TUYỂN HSG QUỐC GIA CỦA TRƯỜNG PTNK NĂM 2008 – 2009 – Toán Việt (toanviet.net)

ĐỀ THI CHỌN ĐỘI TUYỂN HSG QUỐC GIA CỦA TRƯỜNG PTNK NĂM 2009 – 2010 – Toán Việt (toanviet.net)

ĐỀ THI CHỌN ĐỘI TUYỂN HSG QUỐC GIA CỦA TRƯỜNG PTNK 2010 – 2011 – Toán Việt (toanviet.net)

ĐỀ THI CHỌN ĐỘI TUYỂN HSG QUỐC GIA CỦA TRƯỜNG PTNK NĂM 2011 – 2012 – Toán Việt (toanviet.net)

ĐỀ THI CHỌN ĐỘI TUYỂN QUỐC GIA CỦA TRƯỜNG PTNK NĂM 2013 – 2014 – Toán Việt (toanviet.net)

ĐỀ THI CHỌN ĐỘI TUYỂN HSG QUỐC GIA CỦA TRƯỜNG PTNK NĂM 2014 – 2015 – Toán Việt (toanviet.net)

Đáp án thi chọn đội tuyển Toán trường PTNK năm 2015 – Toán Việt (toanviet.net)

Đáp án đề thi chọn đội tuyển trường Phổ thông Năng khiếu thi HSG QG năm 2016 – Toán Việt (toanviet.net)

ĐỀ THI CHỌN ĐỘI TUYỂN HSG QUỐC GIA CỦA TRƯỜNG PTNK NĂM 2017 – 2018 – Toán Việt (toanviet.net)

ĐỀ THI CHỌN ĐỘI TUYỂN HSG QUỐC GIA CỦA TRƯỜNG PTNK NĂM 2018 – 2019 – Toán Việt (toanviet.net)

ĐỀ THI CHỌN ĐỘI TUYỂN HSG QUỐC GIA CỦA TRƯỜNG PTNK NĂM 2019 – 2020 – Toán Việt (toanviet.net)

Đáp án đề thi chọn đội tuyển trường PTNK năm 2020 – Toán Việt (toanviet.net)

Đề thi và đáp án chọn đội tuyển toán trường PTNK năm 2021 – Toán Việt (toanviet.net)

ĐỀ THI CHỌN ĐỘI TUYỂN CÁC TỈNH THÀNH KHÁC

Bổ đề về số mũ đúng

BỔ ĐỀ VỀ SỐ MŨ ĐÚNG

(Thầy Nguyễn Ngọc Duy giáo viên trường PTNK TP Hồ Chí Minh)

Bổ đề số mũ đúng của một số nguyên là một hướng tiếp cận khá mới đối với các bài toán sơ cấp. Nó cung cấp một công cụ khá hữu hiệu để giải các phương trình Diophante hoặc các bài toán chia hết liên quan đến số mũ. Trong bài viết này tôi sẽ cố gắng mang đến một cái nhìn thật sơ cấp và tự nhiên đến vấn đề, trang bị thêm kiến thức và kĩ năng cho các các em học sinh để giải quyết các bài toán số học. Đặc biệt, ta sẽ dùng bổ đề số mũ đúng để giải quyết một số trường hợp đặc biệt của định lí lớn Fermat.

1. Kiến thức cần nhớ

Định nghĩa 1.1: Cho $\left( a,n \right)=1$. Kí hiệu cấp của a theo modulo n là $or{{d}_{n}}\left( a \right)$, là số nguyên dương d nhỏ nhất thỏa $a^d\equiv 1\, \left( \bmod n \right)$.

Tính chất 1.1: Nếu $x$ là số nguyên dương thỏa mãn $a^x \equiv 1\, \left( \bmod n \right)$ thì $or{{d}_{n}}\left( a \right)|x$.

Định nghĩa 1.2: Cho $p$ là số nguyên tố, $x$ là số nguyên bất kì, kí hiệu $v_p \left( x \right)=n$ nếu $x$ chia hết cho $p^n$ nhưng không chia hết cho $p^{n+1}$ .

Tính chất 1.2: Với $a,b$ là các số nguyên và $n$ là số nguyên dương thì:

  • $v_p \left( ab \right)=v_p \left( a \right)+v_p \left( b \right)$.
  • Nếu $p|a$ thì $v_p(a) >0.$
  • $v_p \left( a^n \right)=n v_p \left( a \right)$.
  • $v_p \left( a+b \right) \ge \min \left\{ v_p \left( a \right), v_p \left( b \right) \right\}$. Đẳng thức xảy ra chẳng hạn khi $v_p(a) \neq v_p(b).$
  • $v_p(\text{gcd}(a,b)) = \min(v_p(a), v_p(b))$ và $v_p(\text{lcm}(a,b)) = \max(v_p(a), v_p(b)).$

Định lý 1.1: Bổ đề số mũ đúng. Cho $p$ là số nguyên tố lẻ; $a,b$ không chia hết cho $p$

$i)$  Nếu $a-b$ chia hết cho p thì $v_p \left( a^n – b^n \right)=v_p \left( a-b \right)+v_p \left( n \right)$.

$ii)$  Nếu $a+b$ chia hết cho $p, n$ lẻ thì $v_p\left( a^n+b^n \right)=v_p\left( a+b \right)+v_p \left( n \right)$.

$iii)$  Nếu $a, b$ lẻ thì $v_2 \left( a^n – b^n \right)=v_2 \left( \dfrac{x^2 – y^2}{2} \right) + v_2 \left( n \right)$.

Chứng minh

  • Trước tiên, ta chứng minh: ${{v}_{p}}\left( {{a}^{p}}-{{b}^{p}} \right)={{v}_{p}}\left( a-b \right)+1$ $(*)$. Ta có:

$${{a}^{p}}-{{b}^{p}}=\left( a-b \right)\left( {{a}^{p-1}}+{{a}^{p-2}}b+…+a{{b}^{p-2}}+{{b}^{p-1}} \right).$$

Do $a\equiv b\left( \bmod p \right)$ nên ${{a}^{p-1}}+{{a}^{p-2}}b+…+a{{b}^{p-2}}+{{b}^{p-1}}\equiv p.{{a}^{p-1}}\equiv 0\left( \bmod p \right)$.

Suy ra : ${{a}^{p-1}}+{{a}^{p-2}}b+…+a{{b}^{p-2}}+{{b}^{p-1}}$ chia hết cho $p$  $(1)$.

Ta chứng minh tiếp $${{a}^{p-1}}+{{a}^{p-2}}b+…+a{{b}^{p-2}}+{{b}^{p-1}} \text{không chia hết cho } {{p}^{2}}. $$

Thật vậy, do $a\equiv b\left( \bmod p \right)$ nên $a=b+kp$ . Sử dụng khai triển nhị thức Newton ta có

$ {{a}^{p-1}}+{{a}^{p-2}}b+\cdots+{{b}^{p-1}}$

$\equiv \left[ \left( p-1 \right)kp{{b}^{p-2}}+{{b}^{p-1}} \right]+\left[ \left( p-2 \right)kp{{b}^{p-2}}+{{b}^{p-1}} \right]+  \cdots+\left[ kp{{b}^{p-2}}+{{b}^{p-1}} \right]+{{b}^{p-1}}\left( \bmod {{p}^{2}} \right) $

$\equiv \dfrac{p\left( p-1 \right)}{2}kp{{b}^{n-2}}+p.{{b}^{p-1}}$

$\equiv p{{b}^{p-1}}\left( \bmod {{p}^{2}} \right) $

Theo giả thiết thì $b$ không chia hết cho $p$ nên $p{{b}^{p-1}}$ không chia hết cho ${{p}^{2}}$. Do đó ${{a}^{p-1}}+{{a}^{p-2}}b+\cdots+a{{b}^{p-2}}+{{b}^{p-1}}$ cũng không chia hết cho ${{p}^{2}}$  $(2)$.

Từ $(1), (2)$ ta có: ${{v}_{p}}\left( {{a}^{p-1}}+{{a}^{p-2}}b+\cdots+a{{b}^{p-2}}+{{b}^{p-1}} \right)=1$.

Vậy ${{v}_{p}}\left( {{a}^{p}}-{{b}^{p}} \right)={{v}_{p}}\left( a-b \right)+1$.

  • Tương tự, ta cũng có: nếu m không chia hết cho p thì ${{v}_{p}}\left( {{a}^{m}}-{{b}^{m}} \right)={{v}_{p}}\left( a-b \right)$ $(**)$.

Ta quay lại định lí. Đặt ${{v}_{p}}\left( n \right)=k\Rightarrow n={{p}^{k}}.m$, với $\left( m,p \right)=1$.

Áp dụng $(*)$ và $(**)$ ta có:

${{v}_{p}}\left( {{a}^{n}}-{{b}^{n}} \right)  ={{v}_{p}}\left( {{\left( {{a}^{{{p}^{k-1}}.m}} \right)}^{p}}-{{\left( {{b}^{{{p}^{k-1}}.m}} \right)}^{p}} \right) $

$={{v}_{p}}\left( {{a}^{{{p}^{k-1}}.m}}-{{b}^{{{p}^{k-1}}.m}} \right)+1=\ldots={{v}_{p}}\left( {{a}^{m}}-{{b}^{m}} \right)+k $

$={{v}_{p}}\left( a-b \right)+{{v}_{p}}\left( n \right).$

Vậy ta đã chứng minh xong phần $i)$ của định lí.

Vì $n$ lẻ nên thay $b$ bởi $-b$ trong i. ta được ${{v}_{p}}\left( {{a}^{n}}+{{b}^{n}} \right)={{v}_{p}}\left( {{a}^{n}}-{{\left( -b \right)}^{n}} \right)={{v}_{p}}\left( a+b \right)+{{v}_{p}}\left( n \right)$

Vậy ta đã chứng minh xong phần $ii)$ của định lí. Tương tự cách làm trong $i)$ ta cũng có kết quả $iii)$.

Như vậy ta đã chứng minh xong bổ đề số mũ đúng. Sau đây ta sẽ sử dụng bổ đề để giải quyết một bài toán thú vị.

2. Các bài toán áp dụng

Bài toán Fermat lớn: Cho $n$ là số tự nhiên lớn hơn $2.$ Chứng minh rằng phương trình ${{a}^{n}}+{{b}^{n}}={{c}^{n}}$ không có nghiệm nguyên dương.

Bài Toán Fermat lớn là bài toán cực kì thú vị. Nó tồn tại gần bốn thế kỉ, kích thích biết bao nhà toán học thế giới. Bài toán cuối cùng được chứng minh bởi nhà toán học Andrew Wiles vào năm 1993. Và người ta nói rằng sẽ không có phương pháp sơ cấp nào có thể chứng minh bài toán trên. Bài báo sẽ đề cập một trường hợp đặc biệt của bài toán: số $c$ là số nguyên tố. Và chúng ta sẽ giải quyết thông qua bổ đề số mũ đúng.

Bài toán 1: Cho số nguyên lẻ $n>2$, $p$ là số nguyên tố. Chứng minh rằng phương trình $a^n + b^n = p^n$ không có nghiệm nguyên dương.

Giải

Không mất tính tổng quát, giả sử phương trình có nghiệm $a\ge b$ .

$1.$ Nếu $a=1\Rightarrow b=1$, thế vào phương trình suy ra vô lí.

$2.$ Nếu $a=2\Rightarrow b=1;2$.

  • Trường hợp $\left( a,b \right)=\left( 2,2 \right)\Rightarrow p=2$ (vô lí).
  • Trường hợp $\left( a,b \right)=\left( 2,1 \right)\Rightarrow p=3$ , thế vào phương trình ta được ${{3}^{n}}-{{2}^{n}}=1$ , cũng suy ra vô lí.

Vậy bắt buộc $a\ge 3$, mà ${{p}^{n}}>{{a}^{n}}\Rightarrow p>3$ , nên p là số nguyên tố lẻ. Do n lẻ, ta có : $${{p}^{n}}={{a}^{n}}+{{b}^{n}}=\left( a+b \right)\left( {{a}^{n-1}}-{{a}^{n-2}}b+\cdots-a{{b}^{n-2}}+{{b}^{n-1}} \right) $$

Suy ra $p|a+b$ (do $a+b>1$ ). Áp dụng bổ đề số mũ đúng cho $p$, ta có

$${{v}_{p}}\left( {{a}^{n-1}}-{{a}^{n-2}}b+\cdots-a{{b}^{n-2}}+{{b}^{n-1}} \right)={{v}_{p}}\left( {{a}^{n}}+{{b}^{n}} \right)-{{v}_{p}}\left( a+b \right)={{v}_{p}}\left( n \right) $$

Mà ${{a}^{n-1}}-{{a}^{n-2}}b+\cdots-a{{b}^{n-2}}+{{b}^{n-1}}$ là lũy thừa của $p$ nên ta có $$\left( {{a}^{n-1}}-{{a}^{n-2}}b+\cdots-a{{b}^{n-2}}+{{b}^{n-1}} \right)|n.$$

Do ${{a}^{n-1}}-{{a}^{n-2}}b+\cdots-a{{b}^{n-2}}+{{b}^{n-1}}=\frac{1}{2}\left[ {{a}^{n-1}}+{{a}^{n-3}}{{\left( a-b \right)}^{2}}+\cdots+{{b}^{n-3}}{{\left( a-b \right)}^{2}}+{{b}^{n-1}} \right]\ge \dfrac{1}{2}\left( {{a}^{n-1}}+{{b}^{n-1}} \right)$

Vì $a\ge 3$, $n\ge 3$ nên $\frac{1}{2}\left( {{a}^{n-1}}+{{b}^{n-1}} \right)>n$ nên không thể $$\left( {{a}^{n-1}}-{{a}^{n-2}}b+\cdots-a{{b}^{n-2}}+{{b}^{n-1}} \right)|n.$$

Vậy phương trình vô nghiệm khi $p$ là số nguyên tố.

Bài tập 2: Cho số nguyên $n>2$ có ước lẻ khác 1, $p$ là số nguyên tố. Chứng minh rằng phương trình ${{a}^{n}}+{{b}^{n}}={{p}^{n}}$ không có nghiệm nguyên dương.

Giải

Gọi $k>1$ là ước lẻ của $n$, giả sử $n=km$ . Đặt $x={{a}^{m}};y={{b}^{m}}$. Phương trình trên trở thành

$${{x}^{k}}+{{y}^{k}}={{p}^{n}}.$$

Không mất tính tổng quát, giả sử $x\ge y$ . Tương tự bài toán $1$ ta sẽ loại được các trường hợp tầm thường $x=1;x=2$ . Nên ta xét bài toán với trường hợp $x,p\ge 3.$ Do $k$ lẻ, ta có ${{p}^{n}}={{a}^{k}}+{{b}^{k}}=\left( a+b \right)\left( {{a}^{k-1}}-{{a}^{k-2}}b+\cdots-a{{b}^{k-2}}+{{b}^{k-1}} \right)$

Suy ra $p|b+a$. Áp dụng bổ đề số mũ đúng cho $p$ ta có

$${{v}_{p}}\left( {{a}^{k-1}}-{{a}^{k-2}}b+\cdots-a{{b}^{k-2}}+{{b}^{k-1}} \right)={{v}_{p}}\left( {{a}^{k}}+{{b}^{k}} \right)-{{v}_{p}}\left( a+b \right)={{v}_{p}}\left( k \right) $$

Mà ${{a}^{k-1}}-{{a}^{k-2}}b+ \cdots-a{{b}^{k-2}}+{{b}^{k-1}}$ là lũy thừa của $p$ nên ta có $$\left( {{a}^{k-1}}-{{a}^{k-2}}b+\cdots-a{{b}^{k-2}}+{{b}^{k-1}} \right) | k$$

Lập luận tương tự bài toán $1$ ta cũng suy ra vô lí. Vậy phương trình vô nghiệm .

Bài tập 3: Cho số nguyên $n={{2}^{k}},k>1$ , p là số nguyên tố. Chứng minh rằng phương trình ${{a}^{n}}+{{b}^{n}}={{p}^{n}}$ không có nghiệm nguyên dương.

Giải

Tương tự Bài toán $1$, ta loại được các trường hợp tầm thường nên ta chỉ xét đối với trường hợp $a,b$ có ít nhất một số lớn hơn $2$, khi đó $p>3$. Phương trình trở thành dạng

$${{x}^{4}}+{{y}^{4}}={{p}^{{{2}^{k}}}}$$

trong đó $x, y$ có ít nhất một số lớn hơn $2$ và $\left( x,y \right)=1$.

Do $p$ lẻ nên $x, y$ khác tính chẵn lẻ. Không mất tính tổng quát, giả sử $x$ lẻ, $y$ chẵn. Ta có

$${{y}^{4}}={{p}^{{{2}^{k}}}}-{{x}^{4}}=\left( {{p}^{{{2}^{k-1}}}}+{{x}^{2}} \right)\left( {{p}^{{{2}^{k-1}}}}-{{x}^{2}} \right)$$

Do $\left( {{p}^{{{2}^{k-1}}}}+{{x}^{2}};{{p}^{{{2}^{k-1}}}}-{{x}^{2}} \right)=2$ nên

$$\left\{ \begin{array}{l} {{p}^{{{2}^{k-1}}}}+{{x}^{2}}=2{{m}_{1}}^{2} \\ {{p}^{{{2}^{k-1}}}}-{{x}^{2}}=2{{n}_{1}}^{2} \end{array} \right. $$

Suy ra

$$\left\{ \begin{array}{l} {{p}^{{{2}^{k-1}}}}={{m}_{1}}^{2}+{{n}_{1}}^{2} \\ {{x}^{2}}={{m}_{1}}^{2}-{{n}_{1}}^{2} \end{array} \right. $$

và ${{y}^{2}}=2{{m}_{1}}{{n}_{1}}.$

Ta thấy $\left( {{m}_{1}};{{n}_{1}} \right)=1$ vì nếu ngược lại thì ${{m}_{1}}$ và ${{m}_{2}}$ đều phải chia hết cho $p$ (vô lí) nên có các trường hợp sau

$1)$ Nếu $m_1 = m_2^2, n_1=2n_2^2$ và $(m_2,n_2)=1$ thì thế vào ta được

$${{p}^{{{2}^{k-1}}}}={{m}_{2}}^{4}+4{{n}_{2}}^{4}=\left( {{m}_{2}}^{2}+2{{m}_{2}}{{n}_{2}}+2{{n}_{2}}^{2} \right)\left( {{m}_{2}}^{2}-2{{m}_{2}}{{n}_{2}}+2{{n}_{2}}^{2} \right)$$

mà \[\left( {{m}_{2}}^{2}+2{{m}_{2}}{{n}_{2}}+2{{n}_{2}}^{2},{{m}_{2}}^{2}-2{{m}_{2}}{{n}_{2}}+2{{n}_{2}}^{2} \right)=1\] nên \[{{m}_{2}}^{2}-2{{m}_{2}}{{n}_{2}}+2{{n}_{2}}^{2}=1\Leftrightarrow {{\left( {{m}_{2}}-{{n}_{2}} \right)}^{2}}+{{n}_{2}}^{2}=1\Leftrightarrow {{m}_{2}}={{n}_{2}}=1.\] Trường hợp này không thỏa.

$2)$ Nếu $m_1=2m_2^2,n_1=n_2^2$ và $(m_2,n_2)=1$ thì cũng tương tự.

Vậy phương trình không có nghiệm nguyên dương.

Như vậy sử dụng bổ đề số mũ đúng ta đã chứng minh được một trường hợp đặc biệt của Định lí lớn Fermat.

Sau đây, chúng ta sẽ sử dụng Bổ đề số mũ đúng để giải quyết một số bài toán khác.

Bài tập 4: Tìm bộ số nguyên dương $\left( a,b,p \right)$ trong đó $p$ là số nguyên tố thỏa $${{2}^{a}}+{{p}^{b}}={{15}^{a}}.$$

Giải

Ta có $\forall x,y\in \mathbb{Z};n\in \mathbb{N}$ thì ${{x}^{n}}-{{y}^{n}}\vdots x+y$ nên ${{p}^{b}}={{15}^{a}}-{{2}^{a}}\vdots 13\Rightarrow p=13.$

Áp dụng bổ đề

$$b={{v}_{13}}\left( {{13}^{b}} \right)={{v}_{13}}\left( {{15}^{a}}-{{2}^{a}} \right)={{v}_{13}}\left( 15-2 \right)+{{v}_{13}}\left( a \right)\Rightarrow {{v}_{13}}\left( a \right)=b-1\Rightarrow a \ \vdots \  {{13}^{b-1}}$$

Mà $a>0$ nên $a\ge {{13}^{b-1}}$, suy ra

${{13}^{b}}  ={{15}^{a}}-{{2}^{a}}=\left( 15-2 \right)\left( {{15}^{a-1}}+{{15}^{a-2}}.2+\cdots +{{15.2}^{a-2}}+{{2}^{a-1}} \right) $

$ \ge \left( 15-2 \right)\left( {{15}^{{{13}^{b-1}}-1}}+{{15}^{{{13}^{b-1}}-2}}.2+\cdots+{{15.2}^{{{13}^{b-1}}-2}}+{{2}^{{{13}^{b-1}}-1}} \right) $

$\Rightarrow b=1\Rightarrow a=1.$

Vậy nghiệm bài toán là $\left( a,b,p \right)=\left( 1,1,13 \right)$.

 

Bài tập 5: Chứng minh rằng không tồn tại cặp số $\left( a,n \right)$ nguyên dương, $n>2$ , sao cho ${{\left( a+1 \right)}^{n}}-{{a}^{n}}$ là lũy thừa bậc dương của $5.$

Giải

Giả sử tồn tại số nguyên dương $m$ sao cho $${{\left( a+1 \right)}^{n}}-{{a}^{n}}={{5}^{m}}.$$

Nhận xét: nếu$a$ hoặc $a+1$ chia hết cho $5$ thì số còn lại cũng cũng chia hết cho $5$ (vô lí). Nên cả hai số đều không chia hết cho $5.$ Ta xét các trường hợp:

$1.$  Nếu $a\equiv 1\left( \bmod 5 \right)\Rightarrow 0\equiv {{\left( a+1 \right)}^{n}}-{{a}^{n}}\equiv {{2}^{n}}-1\left( \bmod 5 \right)$ . Suy ra $4|n$.

$2.$  Nếu $a\equiv 2\left( \bmod 5 \right)\Rightarrow 0\equiv {{\left( a+1 \right)}^{n}}-{{a}^{n}}\equiv {{3}^{n}}-{{2}^{n}}\left( \bmod 5 \right)$. Suy ra $2|n$.

$3.$  Nếu $a\equiv 3\left( \bmod 5 \right)\Rightarrow 0\equiv {{\left( a+1 \right)}^{n}}-{{a}^{n}}\equiv {{4}^{n}}-{{3}^{n}}\left( \bmod 5 \right)$. Suy ra $4|n$.

Do đó, $n$ luôn là số chẵn, đặt $n=2{{n}_{1}}$, $\left( {{n}_{1}}\in \mathbb{N},{{n}_{1}}\ge 2 \right)$. Ta có

$ {{5}^{m}} = {{\left( a+1 \right)}^{2{{n}_{1}}}}-{{a}^{2{{n}_{1}}}}=\left( {{\left( a+1 \right)}^{2}}-{{a}^{2}} \right)\left( {{\left( a+1 \right)}^{2\left( {{n}_{1}}-1 \right)}}+ \cdots + {{\left( a+1 \right)}^{2}}{{a}^{2\left( {{n}_{1}}-2 \right)}}+{{a}^{2\left( {{n}_{1}}-1 \right)}} \right) $

$=\left( 2a+1 \right)\left( {{\left( a+1 \right)}^{2\left( {{n}_{1}}-1 \right)}}+{{\left( a+1 \right)}^{2\left( {{n}_{1}}-2 \right)}}{{a}^{2}}+…+{{\left( a+1 \right)}^{2}}{{a}^{2\left( {{n}_{1}}-2 \right)}}+{{a}^{2\left( {{n}_{1}}-1 \right)}} \right). $

Suy ra $5| 2a+15$ , áp dụng bổ đề số mũ đúng ta được

${{v}_{5}}\left( {{\left( a+1 \right)}^{2\left( {{n}_{1}}-1 \right)}}+{{\left( a+1 \right)}^{2\left( {{n}_{1}}-2 \right)}}{{a}^{2}}+…+{{\left( a+1 \right)}^{2}}{{a}^{2\left( {{n}_{1}}-2 \right)}}+{{a}^{2\left( {{n}_{1}}-1 \right)}} \right) $

$= {{v}_{5}}\left( {{\left( a+1 \right)}^{2{{n}_{1}}}}-{{a}^{2{{n}_{1}}}} \right)-{{v}_{5}}\left( 2a+1 \right)={{v}_{5}}\left( {{n}_{1}} \right). $

Do ${{\left( a+1 \right)}^{2\left( {{n}_{1}}-1 \right)}}+{{\left( a+1 \right)}^{2\left( {{n}_{1}}-2 \right)}}{{a}^{2}}+ \cdots +{{\left( a+1 \right)}^{2}}{{a}^{2\left( {{n}_{1}}-2 \right)}}+{{a}^{2\left( {{n}_{1}}-1 \right)}}$ là lũy thừa của $5$ nên $${{n}_{1}}\vdots \left( {{\left( a+1 \right)}^{2\left( {{n}_{1}}-1 \right)}}+{{\left( a+1 \right)}^{2\left( {{n}_{1}}-2 \right)}}{{a}^{2}}+…+{{\left( a+1 \right)}^{2}}{{a}^{2\left( {{n}_{1}}-2 \right)}}+{{a}^{2\left( {{n}_{1}}-1 \right)}} \right)$$ (vô lí vì về phải gồm ${{n}_{1}}$ số nguyên dương, ${{n}_{1}}>1$ và $a+1\ge 2$).

Vậy không tồn tại cặp số $\left( a,n \right)$ nguyên dương, $n>2$ sao cho ${{\left( a+1 \right)}^{n}}-{{a}^{n}}$ là lũy thừa bậc dương của $5.$

 

Bài tập 6: Cho hai số nguyên $a,n\ge 2$ sao cho tồn tại số nguyên dương k thỏa $n|{{\left( a-1 \right)}^{k}}$ . Chứng minh rằng n là ước của $1+a+{{a}^{2}}+…+{{a}^{n-1}}$ .

Giải

Giả sử $p$ là ước nguyên tố bất kì của $n$ . Theo giả thiết $n|{{\left( a-1 \right)}^{k}}$ nên p cũng là ước của $a-1$ .

Do ${{a}^{n}}-1=\left( a-1 \right)\left( 1+a+{{a}^{2}}+\cdots +{{a}^{n-1}} \right)$ nên áp dụng bổ đề số mũ đúng ta có

$${{v}_{p}}\left( 1+a+{{a}^{2}}+\cdots+{{a}^{n-1}} \right)={{v}_{p}}\left( {{a}^{n}}-1 \right)-{{v}_{p}}\left( a-1 \right)={{v}_{p}}\left( n \right).$$

Do mọi ước nguyên tố $p$ của n đều thỏa điều trên nên ta có $$n|1+a+{{a}^{2}}+\cdots+{{a}^{n-1}}.$$

Bài tập 7 (HSG Trung Quốc 2009): Tìm cặp số nguyên tố $\left( p,q \right)$ thỏa $pq|{{5}^{p}}+{{5}^{q}}$ (*).

Giải

Ta xét các trường hợp

$1.$   $p=q=5$ thỏa mãn bài toán.

$2.$   Nếu có một số bằng $5$, một số khác $5$. Không mất tính tổng quát, giả sử $p=5;q\ne 5$. Ta có :

$$5q|{{5}^{5}}+{{5}^{q}}\Leftrightarrow q|{{5}^{4}}+{{5}^{q-1}}\Leftrightarrow q|{{5}^{4}}+1=626$$ do ${{5}^{q-1}}\equiv 1\left( \bmod \,q \right)$ nên suy ra $q=2$ hoặc $q=313$.

$3.$  Nếu cả hai số $p,q\ne 5$ . Do ${{5}^{p}}\equiv 5\left( \bmod p \right),\,\,{{5}^{q}}\equiv 5\,\,\,\,\left( \bmod \,q \right)$ nên

$$\left( * \right)\Leftrightarrow \left\{ \begin{array}{l}  {{5}^{p-1}}+1\vdots q \\ {{5}^{q-1}}+1\vdots p \end{array} \right. \Rightarrow \left\{ \begin{array}{l} {{5}^{2\left( p-1 \right)}}-1\vdots q \\ {{5}^{2\left( q-1 \right)}}-1\vdots p \end{array} \right.$$

Do ${{5}^{2\left( p-1 \right)}}-1$ chia hết cho $q$ nhưng ${{5}^{p-1}}-1$ không chia hết cho $q$ nên

$${{v}_{2}}\left( \text{ord}_{q}\left( 5 \right) \right)=1+{{v}_{2}}\left( p-1 \right) .$$

Do ${{5}^{q-1}}-1$ chia hết $q$ nên $q-1\vdots or{{d}_{q}}\left( 5 \right)$ nên

$${{v}_{2}}\left( q-1 \right)\ge 1+{{v}_{2}}\left( p-1 \right) .$$

Tương tự khi xét chia hết cho $p$ ta lại có ${{v}_{2}}\left( p-1 \right)\ge 1+{{v}_{2}}\left( q-1 \right)$ (vô lí).

Vậy các cặp số thỏa mãn là $\left( p,q \right)=\left( 2,5 \right);\left( 5,2 \right);\left( 5,5 \right);\left( 5,313 \right);\left( 313,5 \right).$

Bài tập 8 (HSG Brazil 2009): Cho hai số nguyên tố $p, q$ sao cho $q=2p+1$ . Chứng minh rằng tồn tại một số là bội của $q$ có tổng các chữ số của nó trong hệ cơ số $10$ nhỏ hơn $4.$

Giải

Do $p,q$ đều là số nguyên tố nên $q\ge 5$ .

Nếu $q=5$ thì ta chỉ cần chọn số $10$ thì thỏa yêu cầu bài toán.

Nếu $q>5$ , áp dụng Định lí Fermat nhỏ thì $q|{{10}^{q-1}}-1={{10}^{2p}}-1=\left( {{10}^{p}}-1 \right)\left( {{10}^{p}}+1 \right)$

Suy ra $q|{{10}^{p}}+1$ hoặc $q|{{10}^{p}}-1$.

$1.$  Nếu $q|{{10}^{p}}+1$ thì số $a={{10}^{p}}+1$ là số thỏa yêu cầu đề bài.

$2.$  Nếu $q|{{10}^{p}}-1$. Do $p$ là số nguyên tố và $q$ không là ước của $10-1$(do $q>5$ ) nên $p$ cũng chính là $or{{d}_{q}}\left( 10 \right)$. Do đó $10;{{10}^{2}};\ldots ;{{10}^{p}}$ sẽ có số dư khác nhau khi chia cho $q.$

Ta sẽ có các trường hợp

  • Nếu tồn tại $1\le k\le p$ mà ${{10}^{k}}\equiv p\left( \bmod \,q \right)$ thì ${{2.10}^{k}}+1\equiv 2p+1\equiv 0\left( \bmod \,q \right)$. Khi đó số $a={{2.10}^{k}}+1$ là số thỏa yêu cầu đề bài.
  • Nếu tồn tại $1\le k\le p$ mà ${{10}^{k}}\equiv 2p\left( \bmod \,q \right)$ thì ${{10}^{k}}+1\equiv 2p+1\equiv 0\left( \bmod \,q \right)$. Khi đó số $a={{10}^{k}}+1$ là số thỏa yêu cầu đề bài.
  • Nếu không tồn tại $1\le k\le p$ mà ${{10}^{k}}$ có số dư là $p$ hay $2p$ khi chia cho $q.$ Thì ta sẽ chia các số dư còn lại của $q$ thành $p$ bộ $$\left( 1;2p-1 \right),\left( 2;2p-2 \right),\ldots,\left( p-1;p+1 \right)$$ (tổng $2$ phần tử của một bộ bằng $2p$) . Do tập số dư khi chia cho $q$ của tập $\left\{ 10;{{10}^{2}};\ldots ;{{10}^{p}} \right\}$ có $p$ phần tử nên Theo nguyên lí Dirichlet sẽ có ít nhất hai số ${{10}^{k}}$ và ${{10}^{l}}$ thuộc cùng một bộ. Khi đó số $a={{10}^{k}}+{{10}^{l}}+1$ sẽ chia hết cho $q$ là số thỏa yêu cầu đề bài.

Bài tập 9 (IMO Shortlist 1997): Cho $b,m,n$ là các số nguyên dương thỏa$m>1;\,\,m\ne n$. Biết ${{b}^{m}}-1$và ${{b}^{n}}-1$ có cùng tập hợp các ước nguyên tố. Chứng minh $b+1$ là lũy thừa của $2.$

Giải

Theo đề, gọi $p$ là ước nguyên tố bất kì của ${{b}^{m}}-1$và ${{b}^{n}}-1$.

Ta có kết quả quen thuộc: $$\left( {{b}^{m}}-1,{{b}^{n}}-1 \right)={{b}^{\left( m,n \right)}}-1,$$ đặt $\alpha =\left( m,n \right)$ nên $p|{{b}^{\alpha }}-1$. Suy ra tồn tại $k,l\in \mathbb{N}*$ thỏa $m=\alpha k;\,\,n=\alpha l$.

Đặt $a={{b}^{\alpha }}$ , từ giả thiết suy ra mọi ước nguyên tố của ${{a}^{k}}-1$ và ${{a}^{l}}-1$ đều là ước của $a-1$ . Nói cách khác, tập hợp các ước nguyên tố của ${{a}^{k}}-1,{{a}^{l}}-1$ và $a-1$ là trùng nhau.

Do $m\ne n$ suy ra tồn tại một số $k$ hoặc $l$ lớn hơn 1. Giả sử số đó là k.

Ta chứng minh $a+1$ là lũy thừa của 2.

Thật vậy:

$1.$  Nếu $k$ là số chẵn, đặt $k={{2}^{\beta }}.k’$($k’$ là số lẻ).

Ta có: $${{a}^{k}}-1=\left( {{a}^{k’}}-1 \right)\left( {{a}^{k’}}+1 \right)\left( {{a}^{2k’}}+1 \right)…\left( {{a}^{{{2}^{\beta -1}}k’}}+1 \right).$$

Do đó mọi ước nguyên tố $q$ của ${{a}^{k’}}+1$ cũng là ước của $a-1$

Mà ${{a}^{k’}}+1\vdots a+1$, $\left( a+1;a-1 \right)=1$ hoặc $2.$ Suy ra $2\vdots q\Rightarrow q=2$ nên ${{a}^{k’}}+1$ là lũy thừa của $2.$ Suy ra $a+1$ cũng là lũy thừa của $2.$

$2.$  Nếu $k$ là số lẻ, ta có ${{a}^{k}}-1=\left( a-1 \right)\left( {{a}^{k-1}}+{{a}^{k-2}}+…+a+1 \right)$

Gọi $q$ là ước nguyên tố bất kì của ${{a}^{k-1}}+{{a}^{k-2}}+…+1$. Do ${{a}^{k-1}}+{{a}^{k-2}}+…+a+1$ là số lẻ nên, nên $q$ cũng lẻ và là ước của ${{a}^{k}}-1$ . Do đó q cũng là ước của $a-1$ .

Áp dụng bổ đề số mũ đúng của $q$ ta có

${{v}_{q}}\left( {{a}^{k-1}}+{{a}^{k-2}}+…+1 \right)={{v}_{q}}\left( {{a}^{k}}-1 \right)-{{v}_{q}}\left( a-1 \right)={{v}_{q}}\left( k \right)$

Suy ra $k\vdots \left( {{a}^{k-1}}+{{a}^{k-2}}+…+1 \right)$ (vô lí vì vế phải có k số nguyên dương, $a>1$ ).

Vậy $a+1={{b}^{\alpha }}+1$ là lũy thừa của $2$.

Vì ${{b}^{\alpha }}+1$ là lũy thừa của $2$ nên nếu $\alpha $ là số chẵn thì ${{b}^{\alpha }}+1={{\left( {{b}^{\alpha ‘}} \right)}^{2}}+1$ hoặc là số lẻ hoặc chia 4 dư 2 nên chỉ có một trường hợp thỏa là $b=1$ . Còn nếu $\alpha $ là số lẻ thì ${{b}^{\alpha }}+1=\left( b+1 \right)\left( {{b}^{\alpha -1}}+{{b}^{\alpha -2}}+…+b+1 \right)$ nên $b+1$ cũng là lũy thừa của $2$.

Bài tập 10 (IMO Shortlist 1999): Tìm các số nguyên dương $n,p$ trong đó p nguyên tố thỏa ${{n}^{p-1}}|{{\left( p-1 \right)}^{n}}+1$.

Giải

Ta xét các trường hợp sau

$1.$  Nếu $p=2\Rightarrow n|2\Rightarrow n=1;2$ (thỏa).

$2.$  Nếu $p>2$ , suy ra $p$ lẻ nên ${{\left( p-1 \right)}^{n}}+1$ lẻ $\Rightarrow n$ lẻ

Gọi $q$ là ước nguyên tố nhỏ nhất của n $\Rightarrow q|{{n}^{p-1}}|{{\left( p-1 \right)}^{n}}+1$ $\Rightarrow q|{{\left( p-1 \right)}^{2n}}-1$

Mà : $q|{{\left( p-1 \right)}^{q-1}}-1\Rightarrow q|{{\left( p-1 \right)}^{\left( 2n,q-1 \right)}}-1$

Do n lẻ và $q$ là ước nguyên tố nhỏ nhất của n nên $\left( 2n;q-1 \right)=2$ .

Suy ra $q|{{\left( p-1 \right)}^{2}}-1=\left( p-2 \right)p$ $\Rightarrow $ $q|p-2$ hoặc $q=p$. Ta lại có các trường hợp nhỏ

$(a)$  Nếu $q|p-2\Rightarrow 0\equiv {{\left( p-1 \right)}^{n}}+1\equiv 1+1\equiv 2\left( \bmod \,q \right)$ $\Rightarrow q=2$ (vô lí vì q lẻ)

$(b)$  Nếu $q=p$ . Áp dụng bổ đề số mũ đúng cơ số q ta có

$\left( p-1 \right){{v}_{p}}\left( n \right)={{v}_{p}}\left( {{n}^{p-1}} \right)\le {{v}_{p}}\left[ {{\left( p-1 \right)}^{n}}+1 \right]={{v}_{p}}\left( p-1+1 \right)+{{v}_{p}}\left( n \right)=1+{{v}_{p}}\left( n \right)$

Suy ra : $\left( p-2 \right){{v}_{p}}\left( n \right)\le 1\Rightarrow p=3$ và ${{v}_{p}}\left( n \right)=1.$

Đến đây, bài toán trở thành : Tìm n để ${{n}^{2}}|{{2}^{n}}+1$.

Nhận xét $n=1$ thỏa yêu cầu bài toán nên ta xét $n>1$. Suy ra $n$ là số lẻ, gọi $r$ là ước nguyên tố nhỏ nhất của $n$. Suy ra $r|{{2}^{n}}+1\,\,|{{2}^{2n}}-1$, mà $r|{{2}^{r-1}}-1$ nên suy ra $r|{{2}^{\left( 2n;r-1 \right)}}-1$.

Do $n$ là số lẻ và $r$ là ước nguyên tố nhỏ nhất của $n$ nên $\left( 2n;r-1 \right)=2$ nên $r=3$. Ta có đánh giá sau

$$2{{v}_{3}}\left( n \right)\le {{v}_{3}}\left( {{4}^{n}}-1 \right)={{v}_{3}}\left( 4-1 \right)+{{v}_{3}}\left( n \right)\Rightarrow {{v}_{3}}\left( n \right)\le 1\Rightarrow {{v}_{3}}\left( n \right)=1.$$ Suy ra $n=3.m$, $\left( m,n \right)=1$. Thế vào đề bài, ta được $${{m}^{2}}|{{8}^{m}}+1|{{8}^{2m}}-1.$$

Nếu $m>1$ , tương tự ta gọi $s$ là ước nguyên tố nhỏ nhất của $m.$ Suy ra $m$ là ước của ${{8}^{2}}-1=63$. Do đó $s=7$, điều này vô lí vì ${{8}^{m}}+1$ chia $7$ dư $2.$ Suy ra $m=1\Rightarrow n=3$.

Vậy $\left( n,p \right)=\left( 1,2 \right);\left( 2,2 \right);\left( 3;3 \right)$ .

Phép vị tự (Phần 2)

Xem phần 1 tại [Phần 1]

Ví dụ 4.  Cho tam giác $ABC$ nội tiếp đường tròn (O) và ngoại tiếp đường tròn (I); đường tròn (I) tiếp xúc với $BC, AB, AC$ tại $D, E, F$. Vẽ $OH \bot EF$ và đường kính $AM$ của $(O)$. Chứng minh $H, I, M$ thẳng hàng.

Gợi ý

  • Xét phép vị tự ngoài tâm $P$ biến $(I)$ thành $(O)$. Khi đó $D \mapsto D’, E \mapsto E’, F \mapsto F’, H \mapsto H’$ với $D’, E’, F’$ là điểm chính giữa các cung $BC, AC, AB$.
  • Ta có $D’H’ \bot E’F’$ và $H’$ là trung điểm của $AI$.
  • Ta có $IH||OH’$. (1)
  • Tam giác $AIM$ có $OH’$ là đường trung bình nên $IM||OH’$. (2)
  • Từ (1) và (2) ta có $H, I, M$ thẳng hàng.

Ví dụ 5. Cho tam giác $ABC$, đường tròn $(I)$ nội tiếp tam giác. Đường tròn $w_a$ qua $B, C$ tiếp xúc trong với (I); các đường tròn $w_b, w_c$ được xác định tương tự. Gọi $A’$ là giao điểm của $w_b, w_c$ khác $A$; các điểm $B’, C’$ được xác định tương tự. Chứng minh rằng các đường thẳng $AA’, BB’$ và $CC’$ đồng quy tại một điểm nằm trên $IO$, với $O$ là tâm đường tròn ngoại tiếp tam giác $ABC$.

Gợi ý

  • Gọi $X$ là tiếp điểm của $w_a$ và $(I)$. Theo tính chất 1.5 thì $XD$ đi qua điểm chính giữa cung $BC$ của $w_a$, đặt là $A_1$. Các điểm $B_1, C_1$ được xác định tương tự.
  • Hơn nữa $A_1D.A_1X = A_1C^2$ và $B_1E.B_1Y = B_1C^2$, khi đó $B_1C_1$ là trục đẳng phương của $(I)$ và đường tròn điểm $C$, suy ra $IC \bot A_1B_1$.
  • Mặt khác $IC \bot DE$, suy ra $DE||A_1B_1$.
  • Ta có hai tam giác $DEF$ và $A_1B_1C_1$ đôi một có các cạnh song song nên có phép vị tự tâm $K$, biến $\Delta DEF$ thành $\Delta A_1B_1C_1$. Vì $K$ thuộc $DA_1$ nên $K \in XA_1$.
  • Ta có $\dfrac{KD}{KA_1} = \dfrac{KE}{KB_1}$ mà $KX.KD = KY.KE$, suy ra $KX.KA_1 = KY.KB_1$; do đó $K$ thuộc trục đẳng phương của $w_a$ và $w_b$, vậy $K \in AA’$.
  • Chứng minh tương tự ta cũng có $K \in BB’, CC’$.
  • Xét phép vị tự tâm K thì $I \mapsto O’$; ta có vì $ID \bot BC$ nên $O’A_1 \bot BC$; tương tự thì $O’B_1 \bot AC$; do đó $O’ \equiv O$.
  • Vậy $AA’, BB’, CC’$ đồng qui tại K thuộc IO.

Ví dụ 6. (Đường tròn mixtilinear incircle) Cho đường tam giác ABC nội tiếp đường tròn (O). Đường tròn $w_a$ tiếp xúc với các cạnh AB, AC tại D, E và tiếp xúc trong với $(O)$ tại $A_1$. Các điểm $B_1, C_1$ được xác định tương tự.
1. Chứng minh rằng DE qua tâm đường tròn nội tiếp tam giác ABC.
2. Chứng minh rằng $AA_1, BB_1, CC_1$ đồng quy.

Gợi ý

  1. Theo bổ đề 3.1 thì $A_1D$ qua điểm $D’$ chính giữa cung AB, $A_1E$ qua điểm $E’$ chính giữa cung AC. Khi đó $I \in CD’, I \in BE’$.
    Áp dụng định lý Pascal ta có $D, I, E$ thẳng hàng.
  2. Xét $H(A_1): (O) \mapsto (I_a), H(A): (I_a) \mapsto (I)$, theo định lý Monge D’lemabert thì $AA_1$ đi qua tâm vị tự ngoài biến $(O) \mapsto (I)$. Chứng minh tương tự ta cũng có $BB_1, CC_1$ qua tâm vị tự ngoài biến $(O)$ thành $(I)$.
    Do đó các đường thẳng $AA_1, BB_1, CC_1$ đồng quy tại một điểm thuộc IO.

Ví dụ 7. (Định lý Thebault)
Cho tam giác $ABC$ nội tiếp đường tròn $w$. $D$ là một điểm thuộc cạnh $BC$. Đường tròn $w_1$ tiếp xúc với đoạn $AD, CD$ tại $P, Q$ và tiếp xúc với $w$ tại $W$.

1. Chứng minh $PQ$ qua tâm đường tròn nội tiếp tam giác $ABC$.
2. Gọi $w_2$ là đường tròn tiếp xúc với $AD, BD$ và tiếp xúc với $w$. Chứng minh đường thẳng nối tâm của $w_1, w_2$ qua tâm nội tiếp của tam giác $ABC$.

Gợi ý

  1. Ta có $PE$ qua điểm $M$ chính giữa cung BC. Gọi $I’$ là giao điểm của $EF$ và $AM$.
    Xét phép vị tự tâm P thì $EF||MN$, suy ra $\angle AIF = \angle AMN = \angle APF$. Suy ra $AFIP$ nội tiếp.
    Khi đó $\angle AFP = \angle AI’P = \angle I’EP$.
    Suy ra $\triangle MEI’ \backsim \triangle MI’P$. Suy ra $MI’^2 = ME.MP = MB^2$.
    Do đó $I’ \equiv I$.
  2. Xét tứ giác $JGEK$ và điểm $D$ thuộc $GE$. Khi đó $IG||DK$ và $IE||DJ$.
    Gọi $I’$ là giao điểm của $GI$ và $JK$. Khi đó $\dfrac{JI’}{I’K} = \dfrac{JT}{TD} = \dfrac{EQ}{EK}$. Suy ra $I’E||JQ$, do đó $I’ \equiv I$.
    Vậy $J, I, K$ thẳng hàng.

Ví dụ 8. (IMO 1999) Cho hai đường tròn $(w_1)$ và $(w_2)$ tiếp xúc trong với$ ( w) $tại M, N và tâm của đường tròn $(w_2)$ nằm trên đường tròn $(w_1)$. Dây cung chung của $(w_1)$ và $(w_2)$cắt $(w )$ tại A và B. MA và MB cắt $(w_1)$ tại C và D. Chứng minh rằng đường tròn $(w_2)$ tiếp xúc với đường thẳng $CD$.

Gợi ý

  • Vẽ tiếp tuyến chung $XY$ của $w_1, w_2$ với $X, Y$ là các tiếp điểm, giả sử $XY$ cắt $w$ tại $S,T$. Gọi $A’$ là điểm chính giữa cung $ST$.
  • Theo bổ đề 3.1 ta có $A’, X, M$ và $A’, Y, N$ thẳng hàng. Ta có $A’Y.A’N = AS^2 = A’X.A’M$. Suy ra $A’$ thuộc trục đẳng phương của $w_1, w_2$. Suy ra $A’ \in PQ$.
  • Vậy $A’ \equiv A$ và $X \equiv C, Y \equiv E$. Gọi $U$ là giao điểm của $CE$ và $O_1O_2$. Suy ra $\dfrac{UO_2}{UO_1} = \dfrac{r_2}{r_1}$.
  • Ta có $CD || PQ$, suy ra $CD \bot O_1O_2$. Gọi $H$ là giao điểm của $CD$ và $O_1O_2$. Ta tính được $O_2H = r_2$ nên $CD$ tiếp xúc với $w_2$.

Ví dụ 9. Cho tam giác $ABC$ nội tiếp đường tròn tâm O, đường tròn tâm I nội tiếp tam giác $ABC$ tiếp xúc với các cạnh BC, AC, AB tại D,E, F. Chứng minh rằng trực tâm của tam giác $DEF$ thuộc đường thẳng $IO$.

Gợi ý

  • Xét phép nghịch đảo tâm I, tỉ số $r^2$, biến $M \mapsto A, N \mapsto C, P \mapsto B$. Khi đó $(MNP) \mapsto (ABC)$. Khi đó có phép vị tự tâm I biến $(MNP) \mapsto (ABC)$.
  • Gọi $F$ là tâm của $(MNP)$ ta có $I, F, O$ thẳng hàng.
  • Mặt khác $(MNP)$ là đường tròn euler của tam giác $DEF$ nên $F, I, H$ thẳng hàng, với $H$ là trực tâm tam giác DEF.
  • Vậy $H, I, O$ thẳng hàng.

Ví dụ 10. (Barasil MO 2013) Đường tròn nội tiếp tam giác $ABC$ tiếp xúc với các cạnh BC, CA, AB tại D, E, F. Gọi $P$ là giao điểm của $AD$ và $BE$. Gọi $X, Y, Z$ là các điểm đối xứng của $P$ qua $EF, DF$ và $DE$. Chứng minh rằng các đường thẳng $AX, BY, CZ$ đồng quy tại một điểm thuộc đường thẳng $OI$, với $O, I$ lần lượt là tâm đường tròn ngoại tiếp và nội tiếp tam giác $ABC$.

Gợi ý

  • Gọi $K$ là hình chiếu của $D$ trên $EF$, tương tự với $L, J$.
    Gọi $T$ là giao điểm của $AD$ và $EF$, ta có $(AIDT) = -1$ và $DK \bot KT$ nên $KT$ là phân giác của $\angle AKD$. Do đó $X$ thuộc $AK$.
  • Ta có $\angle FKJ = \angle FDE = \angle AFE$, suy ra $KJ||AB$; tương tự ta có $\angle KL||AC; LJ||BC$. Khi đó tồn tại phép vị tự tâm $V_(H): \Delta KJL \mapsto ABC$ và $F \mapsto O$, với $F$ là tâm đường tròn euler của tam giác $DEF$ và $H$ là giao điểm của $AK, BJ, CL$.
  • Mặt khác theo ví dụ 1.9 thì $F, I, O$ thẳng hàng. Do đó $H, I, O$ thẳng hàng.
  • Vậy $AX, BY, CZ$ đồng quy tại điểm $H$ thuộc đường thẳng $IO$.

III. BÀI TẬP

  1. Cho hai đường tròn $(O_1)$ và $(O_2)$ tiếp xúc nhau tại $M$. Một điểm $A$ thay đổi trên đường tròn $(O_2)$, từ $A$ vẽ hai tiếp tuyến $AB, AC$ đến $(O_1)$ với $B, C$ là hai tiếp điểm. $BM, CM$ lần lượt cắt $(O_2)$ tại $D$ và $E$. $DE$ cắt tiếp tuyến tại $A$ của $(O_2)$ tại $F$. Chứng minh rằng $F$ thuộc một đường thẳng cố định khi $A$ di chuyển trên $(O_2)$ không thẳng hàng với $O_1$ và $M$.
  2. Cho tam giác $ABC$, đường tròn tâm $I$ nội tiếp tam giác $ABC$ tiếp xúc với các cạnh $BC$, $AC, AB$ lần lượt tại $D, E, F$. Gọi $P$ là hình chiếu của $D$ trên $EF$; $M$ là trung điểm của $DP$. Gọi $H$ là trực tâm của tam giác $IBC$. Chứng minh rằng $MH$ qua trung điểm của $EF$.
  3. Cho tam giác $ABC$ nội tiếp $(O)$. $D$ là một điểm thay đổi trên cạnh $BC$. Đường tròn $w$ tiếp xúc với các đoạn $AD, CD$ và tiếp xúc trong với $(O)$ tại $E, F, X$. Chứng minh rằng $XF$ đi qua một điểm cố định và $EF$ cũng đi qua một điểm cố định.
  4. Cho tam giác nhọn $ABC$ khác tam giác cân. Gọi $O$ và $I$ lần lượt là tâm đường tròn ngoại tiếp và nội tiếp tam giác $ABC$. Gọi $D, E, F$ là tiếp điểm của $(I)$ với các cạnh $BC, CA $ và $AB$. Gọi $P$ là giao điểm của $AI$ và $OD$, $Q$ là giao điểm của $BI$ và $OE$, và $R$ là giao điểm của $CI$ và $OF$. Gọi $M$ là tâm đường tròn ngoại tiếp tam giác $PQR$. Chứng minh rằng $I, M, O$ thẳng hàng.
  5. Cho tam giác $ABC$ nội tiếp đường tròn $(O)$ tâm O, có $B, C$ cố định và $A$ thay đổi trên $(O)$. Kí hiệu $(I)$ là đường tròn nội tiếp tam giác $ABC$. Gọi $(O_1)$ là đường tròn thay qua $A, B$ và tiếp xúc với $(I)$ tại $E$. Gọi $(O_2)$ là đường tròn thay qua $A, C$ và tiếp xúc với $(I)$ tại $F$. Đường phân giác trong của góc $\widehat{AEB}$ cắt $(O_1)$ tại $M$ và đường phân giác trong của góc $\widehat{AFC}$ cắt $(O_2)$ tại $N$.

    a.Chứng minh rằng tứ giác $EFMN$ nội tiếp.
    b. Gọi $J$ là giao điểm của $EM$ và $FN$. Chứng minh rằng đường thẳng $IJ$ đi qua một điểm cố định.

  6.  (ELMO shortlist 2011)
    Cho 3 đường tròn $\omega,\omega_1,\omega_2$ đôi một tiếp xúc nhau sao cho $\omega_1,\omega_2$ tiếp xúc ngoài tại $P$, $\omega_1,\omega$ tiếp xúc trong tại $A$, and $\omega,\omega_2$ tiếp xúc trong tại $B$. Gọi $O,O_1,O_2$ lần lượt là tâm của $\omega,\omega_1,\omega_2$. Gọi $X$ chân đường vuông góc từ $P$ đến $AB$, chứng minh $\angle{O_1XP}=\angle{O_2XP}$.
  7. Cho tam giác $ABC$ khác tam giác vuông nội tiếp đường tròn $(O)$ cố định có $BC$ cố định và $A$ thay đổi. Trên đường thẳng $BC$ lấy các điểm $K, L$ sao cho $\angle BAK = \angle CAL = 90^o$. Gọi $H$ là hình chiếu của $A$ trên $BC$. Chứng minh rằng đường thẳng qua trung điểm của $AH$ và $KL$ luôn đi qua một điểm cố định.
  8. (IMO shortlist 1998) Cho tam giác ABC. Gọi H là trực tâm và O là tâm đường tròn ngoại tiếp tam giác. Gọi D, E, F lần lượt là điểm đối xứng của A qua BC, B qua CA và của C qua AB. Chứng minh rằng D, E, F thẳng hàng khi và chỉ khi OH = 2R, với R là bán kính đường tròn ngoại tiếp tam giác.
  9. (USA TST 2010) Cho tam giác $ABC$. Điểm M,N trên các cạnh AC và BC sao cho $MN||AB$; Các điểm $P, Q$ lần lượt thuộc $AB, BC$ sao cho $PQ ||AC$. Đường tròn nội tiếp tam giác $CMN$ tiếp xúc với AC tại E; đường tròn nội tiếp tam giác $BPQ$ tiếp xúc với $AB$ tại $F$. Đường thẳng $EN$ cắt $AB$ tại $R$; đường thẳng $FQ$ cắt AC tại S. Cho $AE = AF$, chứng minh rằng tâm nội tiếp của tam giác $AEF$ thuộc đường tròn nội tiếp của tam giác $ARS$.
  10. Cho tam giác ABC nội tiếp đường tròn tâm O và ngoại tiếp đường tròn tâm I. Đường tròn mitilinear incircle của tam giác ABC tâm K tiếp xúc với (O) tại D. DI cắt BC tại L. Chứng minh KL chia OI theo tỉ số $\dfrac{1}{2}$.
  11. (IMO 2008) Cho tứ giác lồi ABCD (AB khác BC). Gọi đường tròn nội tiếp của các tam giác ABC và ADC lần lượt là $(w_1)$ và $(w_2)$. Giả sử tồn tại đường tròn $(w )$ tiếp xúc với tia BA về hướng A và tia BC về hướng C và tiếp xúc với các đường thẳng AD và CD. Chứng minh rằng tiếp tuyến chung ngoài của các đường tròn $(w_1)$ và $(w_2)$ cắt nhau tại một điểm thuộc đường tròn (C ). 

Phép vị tự (Phần 1)

Phép vị tự là một trong những phép biến hình quan trọng nhất, có nhiều ứng dụng trong giải toán hình học phẳng. Thông qua phép vị tự, ta có một công cụ giải toán khá mạnh, giúp chúng ta nhìn lại những bài toán cũ theo một cách khác, toàn diện và rõ ràng hơn. Ngoài ra, một số bổ đề suy ra trực tiếp hoặc chứng minh một cách dễ dàng bằng phép vị tự cũng giúp giải được những bài toán khó hơn. Qua bài viết nhỏ này, hy vọng các em học sinh có cơ hội nhìn lại các bài toán cũ và thêm một hướng để giải quyết các bài toán hình học phẳng.

I. LÝ THUYẾT

Định nghĩa 1. Trong mặt phẳng cho điểm O cố định và một số thực k khác 0 cho trước. Phép biến hình biến mỗi điểm M thành điểm $M’$ sao cho $\overrightarrow{OM’} = k.\overrightarrow{OM}$ được gọi là phép vị tự tâm O hệ số(tỉ số) k và được kí hiệu là $H_{(O;k)}$.

Tính chất 2. Trong phép vị tự $H_{(O;k)}$ thì:

  1. Tâm O là điểm bất động duy nhất.
  2. $\overrightarrow {AB} \mapsto \overrightarrow {A’B’} $ thì $\overrightarrow {AB} = k.\overrightarrow {A’B’} $
  3. Chùm đường thẳng qua tâm vị tự là những đường thẳng bất biến duy nhất.
  4. Một đường thẳng không qua tâm biến thành một đường thẳng song song với nó.
  5. Phép vị tự biến đường tròn $(I; R)$ thành đường tròn $(I; R’)$ thỏa $I’ = H_{(O;k)} (I)$ và $R’ = |k|/R$

Định lý 3. Cho hai đường tròn $C(O;R)$ và $C’(O’;R’)$ sao cho $R \ne R’,O \equiv O’$
Khi đó tồn tại hai phép vị tự $H_1(O_1;k_1)$ và $H_2(O_2;k_2)$ biến $(C )$ thành $(C‘)$ trong đó: $\dfrac{{\overline {{O_1}O} }}
{{\overline {{O_1}O’} }} = {k_1} = \dfrac{{R’}}{R}$ và $\dfrac{{\overline {{O_2}O} }}{{\overline {{O_2}O’} }} = {k_2} = – \dfrac{{R’}}{R}$

Hệ quả 4. Bốn điểm $O, O’, O_1, O_2$ tạo thành một hàng điểm điều hòa.

Hệ quả 5. Nếu hai đường tròn tiếp xúc nhau tại tiếp điểm $A$. Khi đó có một phép vị tự tâm $A$ biến đường tròn này thành đường tròn kia.

Tính chất 6. Cho hai đường tròn $(O)$ và $(I)$ tiếp xúc trong tại $A$. Một dây cung $BC$ của $(O)$ tiếp xúc với $(I)$ tại $P$. Khi đó $AP$ đi qua điểm $D$ chính giữa cung $BC$ của $(O)$ và $DP.DA = DB^2$.

Chứng minh.

Xét phép vị tự $H(A): (I) \mapsto (O)$. Khi đó $P \mapsto D$. Suy ra $IP ||OD$ mà $IP \bot BD$. Suy ra $OD \bot BC$. Do đó $D$ là điểm chình giữa cung $BC$.

Định lý 7. (Tích của hai phép vị tự)Ta xét tích của hai phép vị tự $H_1(O_1;k_1)$ và $H_2(O_2;k_2)$:

  1. Trường hợp 1: Nếu $k_1k_2 = 1$ thì tích $H_2(O_2;k_2)oH_1(O_1;k_1)$ là một phép tịnh tiến theo Vectơ $\overrightarrow v = \left( {1 – {k_2}} \right)\overrightarrow {{O_1}{O_2}} $
  2. Trường hợp 2: ${k_1}{k_2} \neq 1$ thì tích $H_2(O_2;k_2)oH_1(O_1;k_1)$ là một phép vị tự tỉ số $k = k_1k_2$ và có tâm O được xác định bởi công thức $\overrightarrow {OO_1} = \dfrac{{k_2 + 1}}{k_1k_2}\overrightarrow {OO_2} $

Định lý 8. (Monge – D’alambert)  Cho ba đường tròn $C_1(O_1, R_1), C_2(O_2, R_2), C_3(O_3, R_3)$ phân biệt trên mặt phẳng. Khi đó tâm vị tự ngoài của các cặp đường tròn $(C_1, C_2), (C_2, C_3), (C_3, C_1)$ cùng thuộc một đường thẳng. Hai tâm vị tự trong của hai trong ba cặp đường tròn trên và tâm vị tự ngoài của cặp đường tròn còn lại cùng thuộc một đường thẳng.

Định lý 9. Nếu có một phép nghịch đảo tâm I biến $(O)$ thành $(O’)$ thì sẽ có một phép vị tự tâm $I$ biến $(O)$ thành $(O’)$.

II. VÍ DỤ

Ví dụ 1. Cho tam giác $ABC$, gọi $M, N, P$ là trung điểm các cạnh $BC, AC$ và $AB$. Các đường phân giác trong $AD, BE, CF$ cắt nhau tại $I$, đường tròn tâm $I$ nội tiếp tam giác và tiếp xúc với các cạnh $BC, AC, AB$ tại $X, Y, Z$.

  1. (Đường thẳng Euler). Chứng minh rằng trọng tâm, trực tâm và tâm đường tròn ngoại tiếp của tam giác $ABC$ cùng nằm trên một đường thẳng.
  2. Gọi $da$ là đường thẳng qua $M$ và song song với phân giác góc $A$, $d_b, d_c$ được định nghĩa tương tự. Chứng minh rằng $d_a, d_b$ và $d_c$ đồng quy tại một điểm.

Gợi ý

  • Gọi $G, H, O$ lần lượt là trọng tâm, trực tâm và tâm đưởng tròn ngoại tiếp tam giác $ABC$.
  • Xét phép vị tự tâm $G$, tỉ số $k = \dfrac{-1}{2}$. Khi đó $\Delta ABC \mapsto \Delta MNP$. $H$ là trực tâm tam giác $ABC$, $O$ là trực tâm tam giác $MNP$ nên $H \mapsto O$, suy ra $\overrightarrow{GO} = -\dfrac{1}{2}\overrightarrow{GH}$.
  • Vậy $ H,G, O$ theo thứ tự cùng thuộc một đường thẳng (đường thẳng Euler) và $GH = 2GO
    $

2.  Cũng sử dụng phép vị tự trên thì ta có $d_a, d_b, d_c $ song song với phân giác góc $A, B, $      nên $d_a, d_b, d_c$ là ảnh của phân giác các góc $A, B, C$ của tam giác $ABC$ qua phép vị tự       này. Do đó $d_a, d_b, d_c$ đồng quy.

Ví dụ 2. Cho tam giác $ABC$, đường tròn tâm $I$ nội tiếp tam giác và tiếp xúc với $BC, AC$ và $AB$ lần lượt tại $D, E, F$. Gọi $D’, E’, F’$là điểm đối xứng của $D, E, F$ qua $I$.

1. Chứng minh rằng $AD’, BE’$ và $CF’$ đồng quy $J$ .
2. Gọi G là trọng tâm tam giác. Chứng minh $I, J, G$ thẳng hàng và $GJ = 2GI$.

Gợi ý

  • Qua $D’$ vẽ đường thẳng song song với $BC$ cắt $AB, AC$ tại $U, V$. Xét phép vị tự $H(A;\dfrac{AU}{AB}): \Delta AUV \mapsto \Delta ABC$. Biến đường tròn tâm $I$ thành đường tròn $I_a$ bàng tiếp tam giác $ABC$.
  • Ta có $D’ \mapsto D_a$ là tiếp điểm của $(I_a)$ với $BC$.\\ Ta chứng minh được $BD = CD_a$. Chứng minh tương tự ta cũng có $CE = AE_a, BF = AF_a$. \\Mà các đường thẳng $AD, BE, CF$ đồng quy nên $AD_a, BE_a, CF_a$ đồng quy hay $AD’, BE’, CF’$ đồng quy tại $J$.
  •  Gọi $M$ là trung điểm $BC$ suy ra $M$ cũng là trung điểm của $DD_a$. Ta có $IM || D’D_a$.
  • Xét phép vị tự $H'(G;\dfrac{-1}{2}): A \mapsto M$. Mà $IM ||AD’$, suy ra $H’: AD’ \mapsto IM$.
  • Suy ra $J \mapsto I$. Do đó $G, I, J$ thẳng hàng và $GJ = 2GI$.

Ví dụ 3. (Chọn đội tuyển toán PTNK năm 2010) Cho tam giác ABC nội tiếp đường tròn (O). Gọi $I,I_1,I_2,I_3$ là tâm đường tròn nội tiếp và bàng tiếp các góc A, B, C tương tứng. Đường tròn ngoại tiếp tam giác $II_2 I_3$ cắt (O) tại hai điểm $M_1,N_1$. Gọi $J_1$ (khác A) là giao điểm của AI và (O). Ký hiệu $d_1$ là đường thẳng qua $J_1$ và vuông góc với $M_1 N_1$. Tương tự xác định các đường thẳng $d_2,d_3$. Chứng minh các đường thẳng $d_1,d_2,d_3$ đồng quy tại một điểm

Gợi ý

  • Dễ thấy đường tròn tâm $O$ ngoại tiếp tam giác $ABC$ là đường tròn Euler của tam giác $I_1I_2I_3$, nên $J_1$ là trung điểm của $II_1$.
  • Gọi $K_1$ là tâm đường tròn ngoại tiếp tam giác $II_2I_3$, và $K$ là tâm ngoại tiếp tam giác $I_1I_2I_3$ ta có $\overrightarrow{KK_1} = \overrightarrow{I_1I}$.
  • Suy ra $I_1K_1$ qua trung điểm của $IK$, mà $O$ là trung điểm $IK$ nên $I_1, O, K_1$ thẳng hàng. Mặt khác $OK_1 \bot M_1N_1$. Do đó $I_1K_1 \bot M_1N_1$, suy ra $I_1K_1 ||d_1$.
  • Xét phép vị tự $H(I;2): J_1 \mapsto I_1$ mà $d_a ||I_1O$ nên $H: d_a \mapsto I_1K_1$. Tương tự $d_b \mapsto I_2K_2, d_c \mapsto I_3K_3$.Do đó $d_a, d_b, d_c$ đồng quy.

[Phần 2]

Hàng điểm điều hòa – Phần 1

I. LÝ THUYẾT

Định nghĩa 1 Cho 4 điểm $A, B, C, D$ thẳng hàng. Khi đó tỉ số kép của 4 điểm $A, B, C, D$ kí hiệu là $(ABCD)$ và được tính bởi công thức
\[\left( {ABCD} \right) = \frac{{\overline {CA} }}{{\overline {CB} }}:\frac{{\overline {DA} }}{{\overline {DB} }}\]

Định nghĩa 2. Nếu tỉ số kép của 4 điểm $A, B, C, D$ bằng $-1$ thì 4 điểm $A, B, C, D$ được gọi là hàng điểm điều hòa. Kí hiệu là $(ABCD) = -1$.

Ví dụ 3. Cho tam giác $ABC$. Gọi $D, E$ là chân đường phân giác trong và phân giác ngoài của góc $A$. Khi đó $A, B, D, E$ là hàng điểm điều hòa.

Tính chất 4. Từ định nghĩa suy ra:

  1. $(ABCD) = (CDAB) = (BADC) = (DCBA)$
  2. $(ABCD) = 1/(BACD) = 1/(ABDC)$
  3. $(ABCD) = 1 -(ACBD) = 1 -(DBCA)$
  4. $(ABCD) = (A’BCD) \Leftrightarrow A \equiv A’$.

Tính chất 5. Trên trục số cho 4 điểm $A, B, C, D$. Khi đó các mệnh đề sau tương đương:

  • $A , B, C, D$ là hàng điểm điều hòa.
  • $\dfrac{{\overline {CA} }}{{\overline {CB} }} = – \frac{{\overline {DA} }}{{\overline {DB} }}$
  • $\dfrac{2}{{\overline {AB} }} = \dfrac{1}{{\overline {AC} }} + \dfrac{1}{{\overline {AD} }}$
  • ${\overline {IA} ^2} = \overline {IC} .\overline {ID}$ ($I$ là trung điểm của đoạn $AB$).
  • $\overline {AC} .\overline {AD} = \overline {AB} .\overline {AK} $ ($K$ là trung điểm của đoạn $CD$).

Định lý 6. Cho $A, B, C, D$ thuộc đường thẳng $(d)$. $S$ nằm ngoài $(d)$. Từ $C$ kẻ đường thẳng song song với $SD$ cắt $SA$, $SB$ tại $A’$ và $B’$. Khi đó: \[\left( {ABCD} \right) = \dfrac{{\overline {CA’} }}{{\overline {CB’} }}\]

Hệ quả 7. Bốn điểm $A, B, C, D$ là hàng điểm điều hòa khi và chỉ khi $C$ là trung điểm của $A’B’$.

Định nghĩa 8. Cho đường thẳng $(d)$ và $S$ ở ngoài $(d)$. Với mỗi điểm $M$ ($M$ không thuộc đường thẳng qua $S$ và song song với $(d)$ , $SM$ cắt $(d)$ tại $M’$. Vậy $M \to M’$ là phép chiếu xuyên tâm $S$ lên đường thẳng $(d)$.

Định lý 9. Cho 4 đường thẳng $a, b, c, d$ cắt nhau tại $S$. Một đường thẳng cắt $a, b, c, d$ lần lượt tại $A, B, C, D$. Khi đó ta có:
\[\left( {abcd} \right) = \left( {ABCD} \right) = \frac{{\sin \left( {\overrightarrow {SA} ,\overrightarrow {SC} } \right)}}{{\sin \left( {\overrightarrow {SA} ,\overrightarrow {SD} } \right)}}:\frac{{\sin \left( {\overrightarrow {SB} ,\overrightarrow {SC} } \right)}}{{\sin \left( {\overrightarrow {SB} ,\overrightarrow {SD} } \right)}}\]

Tính chất 10. Phép chiếu xuyên tâm bảo toàn tỉ số kép. Tức là qua phép chiếu xuyên tâm S lên đường thẳng $(d), A \to A’, B \to B’ , C \to C’, D \to D’$ thì: $(ABCD) = (A’B’C’D’)$.

Tính chất 11. Cho bốn đường thẳng $a, b, c, d$ cắt nhau tại $S$, một đường thẳng $\Delta$ cắt 4 đường thẳng tại 4 điểm $A, B, C, D$ thì $(ABCD)$ không phụ thuộc vào $\Delta$. Người ta gọi $(ABCD)$ là tỉ số kép của chùm 4 đường thẳng. Kí hiệu là $S(ABCD)$ hay $(abcd)$.

Định nghĩa 12.  Nếu $S(ABCD) = -1$ thì ta gọi $a, b, c, d$ là chùm điều hoà.

Tính chất 13. Từ tính chất của tỉ số kép ta có tính chất sau của chùm 4 đường thẳng: $$(a, b, c, d) = (a’, b, c, d) \Leftrightarrow a \equiv a’$$

Hệ quả 14. Nếu $S(ABCD) = S(A’BCD)$ thì $S, A, A’$ thẳng hàng.

Hệ quả 15. Cho hai đường thẳng $(d)$ và $(d’)$ cắt nhau tại $O$. Trên $(d)$ lấy các điểm $A, B, C$; trên $(d’)$ lấy các điểm $A’,B’, C’$ . Khi đó $(OABC) = (OA’B’C’)$ khi và chỉ khi $AA’, BB’$ và $CC’$ đôi một song song hoặc đồng qui.

Định lý 16. Cho chùm điều hòa $(abcd)$. Ta có $b \bot d$ khi và chỉ khi $b, d$ là phân giác trong và phân giác ngoài của góc tạo bởi $a$ và $c$.

Định lý 17. Cho đường $a, b, c$ cắt nhau tại $O$, và $a’,b’, c’$ cắt nhau tại $O’$. Gọi $d$ là đường thẳng đi qua hai điểm $OO’$. Gọi $A$ là giao của $a$ và $a’$; $B$ là giao của $b$ và $b’$; $C$ là giao của $c$ và $c’$. Khi đó $A, B, C$ thẳng hàng khi và chi khi $(abcd) = (a’b’c’d)$.

II. CÁC VÍ DỤ

  1. Một số ứng dụng của hàng điểm và phép chiếu xuyên tâm trong các định lý quen thuộc.

Đầu tiên là một số ví dụ về các hàng điểm điều hòa quen thuộc.

Ví dụ 1. Cho tứ giác $ABCD$. Gọi $O$ là giao điểm hai đường chéo $AC$ và $BD$; $I$ là giao điểm của hai cạnh bênh $AD$ và $BC$. $IO$ cắt $AB$ và $CD$ tại $MN$. Khi đó $I, O, M, N$ là hàng điểm điều hòa. Gọi $J$ là giao điểm của $AB$ và $CD$, khi đó $J, N, D, C$ cũng là hàng điểm điều hòa.

Cách 1

Cách 1. Ta có thể dùng định lý Ceva và Meneluas để tính toán các tỉ số.

  • Áp dụng định lý Menelaus cho tam giác $IOA$ cho cát tuyến $DNC$ ta có:
    \[\dfrac{{\overline {NO} }}{{\overline {NI} }}.\dfrac{{\overline {DI} }}{{\overline {DA} }}.\dfrac{{\overline {CA} }}{{\overline {CO} }} = 1\]
  • Tương tự cho tam giác $IOC$ ta có \[\dfrac{{\overline {MO} }}{{\overline {MI} }}.\dfrac{{\overline {BI} }}{{\overline {BC} }}.\dfrac{{\overline {AC} }}{{\overline {AO} }} = 1\]
  • Mặt khác áp dụng Menelaus cho tam giác $IAC$ ta có \[\dfrac{{\overline {BI} }}{{\overline {BC} }}.\dfrac{{\overline {OC} }}{{\overline {OA} }}.\dfrac{{\overline {DA} }}{{\overline {DI} }} = 1\]
  • Từ các điều trên ta có \[\dfrac{{\overline {NO} }}{{\overline {NI} }}:\dfrac{{\overline {MO} }}{{\overline {MI} }} = – 1\,\]
  • Nên $I, O, M, N$ là hàng điểm điều hòa.

Cách 2

Sử dụng phép chiếu xuyên tâm.

  • Ta có $(IOMN) = C(IOMN) = (BAMJ) = D(BAMJ) = (OIMN) = 1/(IOMN)$
  • Do đó $(IOMN) = – 1$ (Vì $(IOMN) \neq 1$
  • Vậy $(IOMN)$ là hàng điểm điều hòa.
  • Hơn nữa ta có $– 1 = (IOMN) = B(IOMN) = (CDJN)$
  • Vậy $J, N, D, C$ là hàng điểm điều hòa.

Ví dụ 2.   Cho tam giác $ABC$ ngoại tiếp đường tròn $(I)$. Đường tròn $(I)$ tiếp xúc với $BC, AB, AC$ lần lượt tại $D, E, F$. $EF$ cắt $BC$ tại $P$.
a. Khi đó $P, D, B, C$ là hàng điểm điều hòa.
b. Gọi $H$ là hình chiếu của $D$ trên $EF$. Chứng minh $HD$ là phân giác $\angle BHC$.

 

Gợi ý

a. Áp dụng Menelaus cho tam giác $ABC$ ta có $$ \dfrac{PB}{PC}.\dfrac{EC}{EA}.\dfrac{FA}{FB} = 1$$.
Suy ra $\dfrac{PB}{PC} = \dfrac{FB}{FC} = \dfrac{DB}{DC}$. Do đó $B, C, P, D$ là hàng điểm điều hòa.
b.  Ta có $H(BCPD) = -1$ mà $HD \bot HP$, suy ra $HD, HP$ lần lượt là phân giác ngoài và phân giác trong của $\angle BHC$.

Ngoài ra ta còn biết hàng điểm điều hòa như:

Tâm hai đường tròn và tâm vị tự ngoài và tâm vị tự trong của hai đường tròn đó tạo thành hàng điểm điều hòa.

Tâm đường tròn ngoại tiếp, tâm đường tròn Euler, trực tâm và trọng tâm tạo thành hàng điểm điều hòa. (Đây là trường hợp đặc biệt của tính chất trên)

 

Ta có thể sử dụng phép chiếu xuyên tâm để chứng minh các định lý sau.

Ví dụ 3. (Định lý Papus) Cho hai đường thẳng $\Delta$ và $\Delta ‘$. Trên $\Delta$ lấy các điểm $A, B, C$ và trên $\Delta’$ lấy các điểm $A’, B’, C’$. Gọi $M$ là giao của $AB’$ và $A’B$; $N$ là giao của $AC’$ và $A’C$ và $P$ là giao của $BC’$ và $B’C$. Chứng minh rằng $M, N, P$ thẳng hàng.

Gợi ý

  •  Gọi $K$ là giao điểm của $AC’$ và $A’B$; $I$ là giao điểm của $A’C$ và $BC’$.
  • Ta có $(BKMA’) = A(BKMA’) = A(CNLA’) = (CNLA’)$.
  • Và $(BC’PI) = C(BC’PI) = C(AC’HN) = B'(AC’HN) = (LA’CN) = (CNLA’)$.
  • Do đó $(BKMA’) = (BC’PI)$, suy ra $C’K, MP$ và $A’I$ đồng quy, hay $M, N, P$ thẳng hàng.

Ví dụ 4. (Định lý Pascal)  Cho đường tròn $(w)$. Trên $(w)$ lấy các điểm $A, B, C$ và $A’, B’, C’$. Gọi $M$ là giao của $AB’$ và $A’B$; $N$ là giao của $AC’$ và $A’C$ và $P$ là giao của $BC’$ và $B’C$. Chứng minh rằng $M, N, P$ thẳng hàng.

Gợi ý

  • Gọi $L$ là giao điểm của $AC’$ và $A’B$, $K$ là giao điểm của $A’C$ và $BC’$.
  • Xét tứ giác $A’BC’B’$. Ta có:
    $$(BLMA’) = A(BC’B’A’) = C(BC’B’A’) = (BC’PK)$$
  • Suy ra $C’L, PM$ và $A’K$ đồng quy. Vậy $M, N, P$ thẳng hàng.

Ví dụ 5. (Định lý Desargue)  Cho hai tam giác $ABC$ và $A’B’C’$. Gọi $P$ là giao điểm của $AB$ và $A’B’$; $Q$ là giao điểm của $AC$ và $A’C’$; $R$ là giao điểm của $BC$ và $B’C’$. Khi đó $P, Q , R$ thẳng hàng khi và chỉ khi $AA’, BB’, CC’$ đồng quy.

Gợi ý

  • Chiều thuận. Cho $M, N, P$ thẳng hàng, ta chứng minh $AA’, BB’, CC’$ đồng quy. Gọi $S$ là giao điểm của $AA’$ và $CC’$. Ta chứng minh $S, B, B’$ thẳng hàng.
  • Ta có $N(SAMA’) = M(SANA’) = N(SCMC’) = P(SCMC’)$. Mà $S$ là giao của $NS$ và $PS$, $B$ là giao của $MA$ và $PC$, $B’$ là giao của $MA’$ và $PC’$, suy ra $S, B’, B$ thẳng hàng. Hay $AA’, BB’, CC’$ đồng quy.
  • Chiều đảo. Áp dụng chiều thuận cho tam giác $AMA’$ và $CPC’$

 2. Áp dụng vào giải các bài toán.

Ví dụ 6. Cho tam giác $ABC$, đường tròn tâm $I$ nội tiếp tam giác tiếp xúc với $AC, AB, BC$ lần lượt tại $E$ , $F$ và $D$. $ID$ cắt $EF$ tại $K$. Chứng minh $AK$ đi qua trung điểm của $BC$.

Gợi ý

  • Gọi $M$ là giao điểm của $AK$ và $BC$, ta chứng minh $M$ là trung điểm $BC$.
  • Qua $A$ dựng đường thẳng $(d)$ song song với $BC$. Ta cần chứng minh $(d, AM, AB, AC) = -1$.
  • Gọi $J$ là giao điểm của $EF$ và $(d)$. Ta có $(d, AM, AB, AC) = (JKFE)$.
  • Gọi $H$ là giao điểm của $ID$ và $(d)$, ta có $AH \bot IH$, suy ra $H, A, E, F, I$ cùng thuộc đường tròn đường kính $AI$. Hơn nữa $IE = IF$, suy ra $\angle FHI = \angle EHI$. Từ đó ta có $HK, HJ$ là phân giác trong và phân giác ngoài của $\angle EHF$.
  • Do đó $(JKFE) = -1$.
  • Suy ra $(d, AM, AB, AC) = – 1$, vậy $M$ là trung điểm của $BC$.

Ví dụ 7. (BMO 2007) Cho tam giác $ABC$ vuông tại $A$, $D$ là một điểm trên cạnh $AC$. Gọi $E$ là điểm đối xứng của $A$ qua $BD$. Đường thẳng qua $D$ vuông góc với $BC$ cắt $CE$ tại $F$. Chứng minh $DE$ và $AF$ cắt nhau tại một điểm thuộc đường thẳng $BC$. 

Gợi ý

  • Gọi $I$ là giao điểm của $DF$ và $AE$, $J$ là giao điểm của $AF$ và $ED$, $K$ là giao điểm của $CB$ và $AE$.
  • Ta có $HK. HI = HD.HB = HE^2$, mà $H$ là trung điểm của $AE$ nên $(AEKI) = – 1$. Suy ra $B(AEKI) = – 1$.
  • Mặt khác, xét tứ giác $ADFE$ thì theo bài toán 1 ta có $C(AEJI) = – 1$.
  • Do đó $B(AEKI) = C(AEJI)$, suy ra $B, J, C$ thẳng hàng.

Ví dụ 8.  (IMO Shortlist 2006) Hai đường tròn $(O_1)$, $(O_2)$ tiếp xúc ngoài nhau tại $C$ và tiếp xúc trong với $(O)$ tại $D$ và $E$. Gọi $(d)$ là tiếp tuyến chung của $(O_1)$ và $(O_2)$ tại $C$. $AB$ là đường kính của $(O)$ sao cho $A$, $D$, $O_1$ cùng phía đối với $(d)$. Chứng minh rằng $AO_1, BO_2$ và $DE$ đồng quy.

Gợi ý

  • Ta có $\triangle DO_1C \backsim \triangle DOB$ (c.g.c), suy ra $\angle O_1DC =\angle ODB$, suy ra $D, C, B$ thẳng hàng.
  • Chứng minh tương tự ta cũng có $A, C, E$ thẳng hàng. Hơn nữa nếu $Z, Y$ là giao của $O_1O_2$ với $(O_1)$ và $(O_2)$ thì $Z$ thuộc $AD$ và $Y$ thuộc $EB$.
  • Do đó $\angle AEB = \angle ADB = 90^\circ$. Do đó $C$ là trực tâm của tam giác $MAB$ ($M$ là giao điểm của $AD$ và $BE$). Suy ra $M \in (d)$.
  • Gọi $P, H$ là giao điểm của $MC$ và $DE$ và $AB$. Khi đó ta có $(MCPH) = – 1$, suy ra $A(DPCH) = -1$ (1)
  • Mặt khác xét chùm $A(DO_1CH)$, đường thẳng qua $O_1$ song song với $AH$ cắt $AD$ và $AC$ tại $Z$ và $C$ và $O_1$ là trung điểm của $CZ$ nên $A(DO1CH) = – 1$ (2)
  • Từ (1) và (2) ta có $A, O_1, P$ thẳng hàng.
  • Chứng minh tương tự ta cũng có $B, O_2, P$ thẳng hàng.
  • Do đó ta có $AO_1, BO_2, DE$ đồng quy tại $P$.

Bài tập.

  1. Tam giác $ABC$ nội tiếp đường tròn $(O)$. $P$ thuộc tia đối của tia $AO$. Đường thẳng $b, c$ đối xứng với $PB$ qua $AB$ và $PC$ qua $AC$. Chứng minh giao điểm của $b$ và $c$ thuộc trên một đường cố định.
  2. Cho tam giác $ABC$ nội tiếp đường tròn tâm $O$ đường kính $BC$ ($AB < AC$). Gọi $E$ là điểm đối xứng của $A$ qua $BC$ và $D$ là giao điểm của tiếp tuyến tại $A$ với $BC$. Gọi $X$ là hình chiếu của $A$ trên $BE$, $M$ là trung điểm $AX$. Gọi $Z$ là giao điểm của $BM$ và $(O)$. Chứng minh rằng $CD$ là tiếp tuyến của đường tròn $(AZD)$.
  3. Cho tam giác $ABC$ nội tiếp đường tròn $(O)$. $E$ là một điểm di động trên $(O)$. $AE$ cắt các tiếp tuyến tại $B, C$ của $(O)$ tương ứng tại $M, N$. $BN$ cắt $CM$ tại $F$. Chứng minh rằng đường thẳng $EF$ luôn đi qua một điểm cố định khi $E$ di động trên $(O)$.
  4. Cho đường tròn $(O)$, một điểm $A$ nằm ngoài đường tròn. Từ $A$ vẽ hai tiếp tuyến $AB$ và $AC$ đến $(O)$ ($B, C$ là hai tiếp điểm), và hai cát tuyến $AMQ, ANP $đến $(O) $($M$ nằm giữa $A, Q$ và $N $ nằm giữa $A, P$). Chứng minh rằng $BC, PM, QN $ đồng quy.
  5. Cho $(O)$ và một điểm cố định nằm ngoài $(O)$; kẻ tiếp tuyến $MB$ và một cát tuyến $MAC$ bất kì. Một đường thẳng $d$ song song với $MB$ cắt $BA; BC$ tại $N$ và $P$. Chứng minh rằng trung điểm $I$ của $NP$ thuộc một đường cố định.

 

Đường thẳng qua điểm cố định. VMO 2014.

Bài toán. (PoP1.12) (VMO 2014) Cho tam giác nhọn $ABC$ nội tiếp đường tròn $(O)$, trong đó $B, C$ cố định và $A$ thay đổi trên $(O)$. Trên các tia $AB$ và $AC$ lần lượt lấy các điểm $M$ và $N$ sao cho $MA = MC$ và $NA = NB$. Các đường tròn ngoại tiếp các tam giác $AMN$ và $ABC$ cắt nhau tại $P$ ($P \neq A$). Đường thẳng $MN$ cắt đường thẳng $BC$ tại $Q$.

  1. Chứng minh rằng ba điểm $A, P, Q$ thẳng hàng.
  2. Gọi $D$ là trung điểm của $BC$. Các đường tròn có tâm là $M, N$ và cùng đi qua $A$ cắt nhau tại $K$ ($K \neq A$). Đường thẳng qua $A$ vuông góc với $AK$ cắt $BC$ tại $E$. Đường tròn ngoại tiếp tam giác $ADE$ cắt $(O)$ tại $F (F \neq A)$. Chứng minh rằng đường thẳng $AF$ đi qua một điểm cố định.

Gợi ý

1.

  • Ta có $MA = MC$ và $NA = NB$ nên tam giác $MAC$ cân tại $M$ và tam giác $NAB$ cân tại $N$.
  • Do đó $\angle BMC = \angle BAC + \angle MAC = 2\angle BAC = \angle BOC$ hay tứ giác $BMOC$ nội tiếp.
  • Tương tự thì tứ giác $BONC$ nội tiếp nên $BMNC$ nội tiếp.
  • Khi đó $QM.QN = QB.QC$, lại có $APMN, APBC$ nội tiếp nên $A, P, Q$ thẳng hàng.

2.

  • Tam giác $AMN$ có $OM \bot AN, ON \bot AM$ nên $AO \bot MN$. Mặt khác $AK \bot MN$ nên $A, O, K$ thẳng hàng.
  • Ta có $\angle OAE = \angle ODE = 90^o$ nên $AODE$ nội tiếp, do đó $\angle OAE = \angle OFE = 90^o$. Hơn nữa $OA = OF$ nên $A, F$ đối xứng qua $OE$.
  • Giả sử $OE$ cắt $AF$ tại $H$ thì $EH.EO = EA^2= EB.EC$ nên $BHOC$ nội tiếp, lại có $\angle OHA = 90^o$ nên $AH$ đi qua $G$ là điểm chính giữa cung $BC$ không chứa $O$ của đường tròn ngoại tiếp tam giác $OBC$.
  • Vậy $AF$ luôn đi qua điểm $G$ cố định.

Hình học tĩnh và động (Phần 2)

3. Động trong mô hình

Bên cạnh việc vận dụng các phép biến hình, trong quá trình giải quyết hoặc tìm ra các bài toán hình học, những học sinh nhạy bén có thể phát hiện ra những mô hình quen thuộc, những bài toán đã biết trước được lồng trong hình vẽ của mình hoặc đã được thay đổi khéo léo để trở thành những bài toán mới. Điều này cho thấy rằng nếu chúng ta chịu khó biến hoá linh hoạt với các mô hình dù là đã rất quen biết thì vẫn có thể có được những phát hiện mới vừa toàn diện, vừa sâu sắc về một vấn đề nào đó đang xem xét.

7

Điều kiện đối song thường được sử dụng rộng rãi dưới dạng sau:  Cho $latex A, C$ thuộc tia $latex Ox$ và $latex B, D$ thuộc tia $latex Oy$. Khi đó $latex AB$ và $latex CD$ đối song khi và chỉ khi tứ giác $latex ACBD $nội tiếp.

Bây giờ ta chọn một mô hình quen biết để thực hiện động tác đối song. Kết quả thu được sẽ thú vị và có phần nào “bất ngờ” nếu mô hình này cũng liên quan đến hình đối xứng qua đường phân giác

Một mô hình như vậy có thể là bài tập như sau:

Ví dụ 3.1. Cho tam giác $latex ABC$ nội tiếp đường tròn (O). Kí hiệu $latex N$ là giao điểm của các tiếp tuyến tại B và C của (O). Lúc đó AN đối xứng với trung tuyến AM qua phân giác trong góc A (hay NA đối song với AM)

8

Đây là một tính chất hình học rất quen thuộc trong tam giác và ta hãy thực hiện phép đối song cho nó. Trước hết ta dựng đường thẳng $latex B’C’$ đối song với $latex BC$ bằng cách vẽ đường tròn qua $latex B, C$ cắt $latex AB, AC$ tại $latex C, B$. Rõ ràng theo cấu trúc đối song thì kí hiệu  $latex M’, N’$ trong tam giác $latex AB’C’$ có vai trò như $latex M, N$ trong tam giác $latex ABC$ thì $latex AM’$ cùng phương với $latex AN$ và $latex AN’$ cùng phương với $latex AM$. Tức là $latex A, M’, N$ và $latex A, N’, M$ thẳng hàng. Từ đó ta có:

Bài toán 3. Cho tam giác $latex ABC$ có A thay đổi còn B và C cố định. Một đường tròn thay đổi đi qua B và C cắt AB, AC tại $latex C’$ và $latex B’$. Chứng minh rằng trung tuyến $latex AM’$ của $latex AB’C’$ luôn đi qua một điểm cố định.

Còn nếu thay đổi hình vẽ đi một ít nhằm “giấu” đi tam giác $latex ABC$ và cách làm phép đối song khá lộ liễu ở trên, ta có thể phát biểu bài toán như sau:

Bài toán 4. Cho hai đường tròn (O) và (O’) cắt nhau tại B và C. A là điểm thay đổi trên (O). Hai đường thẳng AB, AC cắt (O’) tại C’ và B’. Gọi M’ là trung điểm của đoạn B’C’. Chứng minh rằng đường thẳng AM’ luôn đi qua một điểm cố định.

9

       Rõ ràng $latex AM’$ đi qua giao điểm N của hai tiếp tuyến tại B và C của (O). Cách phát biểu này làm cho bài toán trở nên thanh thoát hơn đồng thời khó hơn một chút, nhưng nếu ta thử nhìn bằng con mắt chuyển động đối song thì không có gì phức tạp cả.

4. Lời kết

Thay cho lời kết về sự cần thiết của việc quan sát các đối tượng hình học dưới con mắt vận động của phép biến hình của mô hình đã quen biết, xin phép được nói đôi điều về bài toán số 2 của kỳ thi Olympic Toán quốc tế (IMO) lần thứ 48 được tổ chức tại Việt Nam năm 2007.

Bài toán 5. Cho 5 điểm A, B, C, D, E sao cho ABCD là hình bình hành và BCED là tứ giác nội tiếp. Cho $latex l$ là một đường thẳng qua A cắt cạnh BC và đường thẳng BD tương ứng tại F và G. Giả sử $latex EF = EC = EG$. Chứng minh rằng $latex l$ là phân giác góc $latex \widehat{BAD}$.

Các phát biểu này có phần nào hơi rối và có thể làm cho thí sinh ít nhiều lúng tung trong việc nắm bắt yêu cầu và bản chất của bài toán sẽ là rõ ràng và “dễ chịu” hơn nếu phát biểu lại:

Cho hình bình hành ABCD. Gọi $latex l$ là một đường thẳng đi qua A, cắt cạnh BC và đường thẳng DC tại F, G. Gọi E là tâm đường tròn ngoại tiếp tam giác CFG. Chứng minh rằng nếu DCED nội tiếp thì $latex l$ là phân giác $latex \widehat{DAB}$.

Dưới con mắt xây dựng một bài toán thì đây là một bài toán đảo. Nó được đặt ra từ bài toán khá nhẹ nhàng như sau: Nếu $latex l$ là phân giác $latex \widehat{DAB}$ thì tứ giác BCED nội tiếp.

Vì vậy, ý tưởng đầu tiên là đi chứng minh đảo (và đây cũng là ý của đáp án). Tuy nhiên, việc so sánh góc như ở bài toán thuận sẽ không mang lại kết quả. Vì thế, cần chuyển sang suy luận kiểu phản chứng: giả sử l// không phải là phân giác (tức là tam giác CFG// không cân) thì sẽ dẫn đến mâu thuẫn. Cách giải này ít được các thí sinh làm theo và làm đúng. Nó cũng không đẹp và không làm rõ được bản chất của hình vẽ. Trong khá nhiều cách giải được tìm ra, hai cách sau đây là hay nhất và điều lý thú là một cách thì sử dụng lối nắm bắt mô hình trong bài toán (cách giải 1), còn cách kia lại dựa vào phép biến hình để xử lý vấn đề (cách giải 2).

Cách giải 1. (Mô hình đường thẳng Simson)

10

Hạ $latex EI, EJ$ vuông góc với $latex CF, CG$. Thế thì $latex I, J$ là trung điểm của $latex FC$ và $latex GC$ nên đường thẳng $latex IJ$ (song song với $latex l$) đi qua trung điểm $latex K$ của AC và cũng là trung điểm BC. Mặt khác, do tứ giác EBDG nội tiếp nên $latex IJ$ chính là đường thẳng Simson của điểm E đối với tam giác BDC. Suy ra $latex EK \bot BD$ nên tam giác EBD cân tại E. Từ đây không khó suy ra tam giác CFG cân tại C và điều phải chứng minh.

Cách giải 2. (Phép biến hình).  Ở đây sẽ sử dụng phép vị tự quay; so với phép quyay, nó cũng không khác biệt lắm và các kết quả như các mệnh đề 1, 2, 3 ở trên đây đều có thể mở rộng tương tự.

11

Xét phép vị tự quay S biến đoạn BC thành đoạn DG. Do $latex \dfrac{FB}{FC} = \dfrac{CD}{CA}$ nên S biến F thành C. Suy ra S biến trung điểm $latex I$ của đoạn FC thành trung điểm $latex J$ của CG. Theo mệnh đề tương tự với mệnh đề 3, tâm O của S phải đồng thời thuộc đường tròn nội tiếp các tam giác CBD và CIJ nên O trùng với E. Suy ra tam giác EBD đồng dạng với tam giác EIH nên tam giác EBD cân tại E và bài toán được giải quyết.

Hết


[Phần 1]