Tag Archives: VMO

ĐỀ THI CHỌN ĐỘI TUYỂN QUỐC GIA CỦA CÁC TỈNH, THÀNH

ĐỀ THI CHỌN ĐỘI TUYỂN TRƯỜNG PHỔ THÔNG NĂNG KHIẾU

ĐỀ THI CHỌN ĐỘI TUYỂN HSG QUỐC GIA CỦA TRƯỜNG PTNK NĂM 2008 – 2009 – Toán Việt (toanviet.net)

ĐỀ THI CHỌN ĐỘI TUYỂN HSG QUỐC GIA CỦA TRƯỜNG PTNK NĂM 2009 – 2010 – Toán Việt (toanviet.net)

ĐỀ THI CHỌN ĐỘI TUYỂN HSG QUỐC GIA CỦA TRƯỜNG PTNK 2010 – 2011 – Toán Việt (toanviet.net)

ĐỀ THI CHỌN ĐỘI TUYỂN HSG QUỐC GIA CỦA TRƯỜNG PTNK NĂM 2011 – 2012 – Toán Việt (toanviet.net)

ĐỀ THI CHỌN ĐỘI TUYỂN QUỐC GIA CỦA TRƯỜNG PTNK NĂM 2013 – 2014 – Toán Việt (toanviet.net)

ĐỀ THI CHỌN ĐỘI TUYỂN HSG QUỐC GIA CỦA TRƯỜNG PTNK NĂM 2014 – 2015 – Toán Việt (toanviet.net)

Đáp án thi chọn đội tuyển Toán trường PTNK năm 2015 – Toán Việt (toanviet.net)

Đáp án đề thi chọn đội tuyển trường Phổ thông Năng khiếu thi HSG QG năm 2016 – Toán Việt (toanviet.net)

ĐỀ THI CHỌN ĐỘI TUYỂN HSG QUỐC GIA CỦA TRƯỜNG PTNK NĂM 2017 – 2018 – Toán Việt (toanviet.net)

ĐỀ THI CHỌN ĐỘI TUYỂN HSG QUỐC GIA CỦA TRƯỜNG PTNK NĂM 2018 – 2019 – Toán Việt (toanviet.net)

ĐỀ THI CHỌN ĐỘI TUYỂN HSG QUỐC GIA CỦA TRƯỜNG PTNK NĂM 2019 – 2020 – Toán Việt (toanviet.net)

Đáp án đề thi chọn đội tuyển trường PTNK năm 2020 – Toán Việt (toanviet.net)

Đề thi và đáp án chọn đội tuyển toán trường PTNK năm 2021 – Toán Việt (toanviet.net)

ĐỀ THI CHỌN ĐỘI TUYỂN CÁC TỈNH THÀNH KHÁC

Bổ đề về số mũ đúng

BỔ ĐỀ VỀ SỐ MŨ ĐÚNG

(Thầy Nguyễn Ngọc Duy giáo viên trường PTNK TP Hồ Chí Minh)

Bổ đề số mũ đúng của một số nguyên là một hướng tiếp cận khá mới đối với các bài toán sơ cấp. Nó cung cấp một công cụ khá hữu hiệu để giải các phương trình Diophante hoặc các bài toán chia hết liên quan đến số mũ. Trong bài viết này tôi sẽ cố gắng mang đến một cái nhìn thật sơ cấp và tự nhiên đến vấn đề, trang bị thêm kiến thức và kĩ năng cho các các em học sinh để giải quyết các bài toán số học. Đặc biệt, ta sẽ dùng bổ đề số mũ đúng để giải quyết một số trường hợp đặc biệt của định lí lớn Fermat.

1. Kiến thức cần nhớ

Định nghĩa 1.1: Cho $\left( a,n \right)=1$. Kí hiệu cấp của a theo modulo n là $or{{d}_{n}}\left( a \right)$, là số nguyên dương d nhỏ nhất thỏa $a^d\equiv 1\, \left( \bmod n \right)$.

Tính chất 1.1: Nếu $x$ là số nguyên dương thỏa mãn $a^x \equiv 1\, \left( \bmod n \right)$ thì $or{{d}_{n}}\left( a \right)|x$.

Định nghĩa 1.2: Cho $p$ là số nguyên tố, $x$ là số nguyên bất kì, kí hiệu $v_p \left( x \right)=n$ nếu $x$ chia hết cho $p^n$ nhưng không chia hết cho $p^{n+1}$ .

Tính chất 1.2: Với $a,b$ là các số nguyên và $n$ là số nguyên dương thì:

  • $v_p \left( ab \right)=v_p \left( a \right)+v_p \left( b \right)$.
  • Nếu $p|a$ thì $v_p(a) >0.$
  • $v_p \left( a^n \right)=n v_p \left( a \right)$.
  • $v_p \left( a+b \right) \ge \min \left\{ v_p \left( a \right), v_p \left( b \right) \right\}$. Đẳng thức xảy ra chẳng hạn khi $v_p(a) \neq v_p(b).$
  • $v_p(\text{gcd}(a,b)) = \min(v_p(a), v_p(b))$ và $v_p(\text{lcm}(a,b)) = \max(v_p(a), v_p(b)).$

Định lý 1.1: Bổ đề số mũ đúng. Cho $p$ là số nguyên tố lẻ; $a,b$ không chia hết cho $p$

$i)$  Nếu $a-b$ chia hết cho p thì $v_p \left( a^n – b^n \right)=v_p \left( a-b \right)+v_p \left( n \right)$.

$ii)$  Nếu $a+b$ chia hết cho $p, n$ lẻ thì $v_p\left( a^n+b^n \right)=v_p\left( a+b \right)+v_p \left( n \right)$.

$iii)$  Nếu $a, b$ lẻ thì $v_2 \left( a^n – b^n \right)=v_2 \left( \dfrac{x^2 – y^2}{2} \right) + v_2 \left( n \right)$.

Chứng minh

  • Trước tiên, ta chứng minh: ${{v}_{p}}\left( {{a}^{p}}-{{b}^{p}} \right)={{v}_{p}}\left( a-b \right)+1$ $(*)$. Ta có:

$${{a}^{p}}-{{b}^{p}}=\left( a-b \right)\left( {{a}^{p-1}}+{{a}^{p-2}}b+…+a{{b}^{p-2}}+{{b}^{p-1}} \right).$$

Do $a\equiv b\left( \bmod p \right)$ nên ${{a}^{p-1}}+{{a}^{p-2}}b+…+a{{b}^{p-2}}+{{b}^{p-1}}\equiv p.{{a}^{p-1}}\equiv 0\left( \bmod p \right)$.

Suy ra : ${{a}^{p-1}}+{{a}^{p-2}}b+…+a{{b}^{p-2}}+{{b}^{p-1}}$ chia hết cho $p$  $(1)$.

Ta chứng minh tiếp $${{a}^{p-1}}+{{a}^{p-2}}b+…+a{{b}^{p-2}}+{{b}^{p-1}} \text{không chia hết cho } {{p}^{2}}. $$

Thật vậy, do $a\equiv b\left( \bmod p \right)$ nên $a=b+kp$ . Sử dụng khai triển nhị thức Newton ta có

$ {{a}^{p-1}}+{{a}^{p-2}}b+\cdots+{{b}^{p-1}}$

$\equiv \left[ \left( p-1 \right)kp{{b}^{p-2}}+{{b}^{p-1}} \right]+\left[ \left( p-2 \right)kp{{b}^{p-2}}+{{b}^{p-1}} \right]+  \cdots+\left[ kp{{b}^{p-2}}+{{b}^{p-1}} \right]+{{b}^{p-1}}\left( \bmod {{p}^{2}} \right) $

$\equiv \dfrac{p\left( p-1 \right)}{2}kp{{b}^{n-2}}+p.{{b}^{p-1}}$

$\equiv p{{b}^{p-1}}\left( \bmod {{p}^{2}} \right) $

Theo giả thiết thì $b$ không chia hết cho $p$ nên $p{{b}^{p-1}}$ không chia hết cho ${{p}^{2}}$. Do đó ${{a}^{p-1}}+{{a}^{p-2}}b+\cdots+a{{b}^{p-2}}+{{b}^{p-1}}$ cũng không chia hết cho ${{p}^{2}}$  $(2)$.

Từ $(1), (2)$ ta có: ${{v}_{p}}\left( {{a}^{p-1}}+{{a}^{p-2}}b+\cdots+a{{b}^{p-2}}+{{b}^{p-1}} \right)=1$.

Vậy ${{v}_{p}}\left( {{a}^{p}}-{{b}^{p}} \right)={{v}_{p}}\left( a-b \right)+1$.

  • Tương tự, ta cũng có: nếu m không chia hết cho p thì ${{v}_{p}}\left( {{a}^{m}}-{{b}^{m}} \right)={{v}_{p}}\left( a-b \right)$ $(**)$.

Ta quay lại định lí. Đặt ${{v}_{p}}\left( n \right)=k\Rightarrow n={{p}^{k}}.m$, với $\left( m,p \right)=1$.

Áp dụng $(*)$ và $(**)$ ta có:

${{v}_{p}}\left( {{a}^{n}}-{{b}^{n}} \right)  ={{v}_{p}}\left( {{\left( {{a}^{{{p}^{k-1}}.m}} \right)}^{p}}-{{\left( {{b}^{{{p}^{k-1}}.m}} \right)}^{p}} \right) $

$={{v}_{p}}\left( {{a}^{{{p}^{k-1}}.m}}-{{b}^{{{p}^{k-1}}.m}} \right)+1=\ldots={{v}_{p}}\left( {{a}^{m}}-{{b}^{m}} \right)+k $

$={{v}_{p}}\left( a-b \right)+{{v}_{p}}\left( n \right).$

Vậy ta đã chứng minh xong phần $i)$ của định lí.

Vì $n$ lẻ nên thay $b$ bởi $-b$ trong i. ta được ${{v}_{p}}\left( {{a}^{n}}+{{b}^{n}} \right)={{v}_{p}}\left( {{a}^{n}}-{{\left( -b \right)}^{n}} \right)={{v}_{p}}\left( a+b \right)+{{v}_{p}}\left( n \right)$

Vậy ta đã chứng minh xong phần $ii)$ của định lí. Tương tự cách làm trong $i)$ ta cũng có kết quả $iii)$.

Như vậy ta đã chứng minh xong bổ đề số mũ đúng. Sau đây ta sẽ sử dụng bổ đề để giải quyết một bài toán thú vị.

2. Các bài toán áp dụng

Bài toán Fermat lớn: Cho $n$ là số tự nhiên lớn hơn $2.$ Chứng minh rằng phương trình ${{a}^{n}}+{{b}^{n}}={{c}^{n}}$ không có nghiệm nguyên dương.

Bài Toán Fermat lớn là bài toán cực kì thú vị. Nó tồn tại gần bốn thế kỉ, kích thích biết bao nhà toán học thế giới. Bài toán cuối cùng được chứng minh bởi nhà toán học Andrew Wiles vào năm 1993. Và người ta nói rằng sẽ không có phương pháp sơ cấp nào có thể chứng minh bài toán trên. Bài báo sẽ đề cập một trường hợp đặc biệt của bài toán: số $c$ là số nguyên tố. Và chúng ta sẽ giải quyết thông qua bổ đề số mũ đúng.

Bài toán 1: Cho số nguyên lẻ $n>2$, $p$ là số nguyên tố. Chứng minh rằng phương trình $a^n + b^n = p^n$ không có nghiệm nguyên dương.

Giải

Không mất tính tổng quát, giả sử phương trình có nghiệm $a\ge b$ .

$1.$ Nếu $a=1\Rightarrow b=1$, thế vào phương trình suy ra vô lí.

$2.$ Nếu $a=2\Rightarrow b=1;2$.

  • Trường hợp $\left( a,b \right)=\left( 2,2 \right)\Rightarrow p=2$ (vô lí).
  • Trường hợp $\left( a,b \right)=\left( 2,1 \right)\Rightarrow p=3$ , thế vào phương trình ta được ${{3}^{n}}-{{2}^{n}}=1$ , cũng suy ra vô lí.

Vậy bắt buộc $a\ge 3$, mà ${{p}^{n}}>{{a}^{n}}\Rightarrow p>3$ , nên p là số nguyên tố lẻ. Do n lẻ, ta có : $${{p}^{n}}={{a}^{n}}+{{b}^{n}}=\left( a+b \right)\left( {{a}^{n-1}}-{{a}^{n-2}}b+\cdots-a{{b}^{n-2}}+{{b}^{n-1}} \right) $$

Suy ra $p|a+b$ (do $a+b>1$ ). Áp dụng bổ đề số mũ đúng cho $p$, ta có

$${{v}_{p}}\left( {{a}^{n-1}}-{{a}^{n-2}}b+\cdots-a{{b}^{n-2}}+{{b}^{n-1}} \right)={{v}_{p}}\left( {{a}^{n}}+{{b}^{n}} \right)-{{v}_{p}}\left( a+b \right)={{v}_{p}}\left( n \right) $$

Mà ${{a}^{n-1}}-{{a}^{n-2}}b+\cdots-a{{b}^{n-2}}+{{b}^{n-1}}$ là lũy thừa của $p$ nên ta có $$\left( {{a}^{n-1}}-{{a}^{n-2}}b+\cdots-a{{b}^{n-2}}+{{b}^{n-1}} \right)|n.$$

Do ${{a}^{n-1}}-{{a}^{n-2}}b+\cdots-a{{b}^{n-2}}+{{b}^{n-1}}=\frac{1}{2}\left[ {{a}^{n-1}}+{{a}^{n-3}}{{\left( a-b \right)}^{2}}+\cdots+{{b}^{n-3}}{{\left( a-b \right)}^{2}}+{{b}^{n-1}} \right]\ge \dfrac{1}{2}\left( {{a}^{n-1}}+{{b}^{n-1}} \right)$

Vì $a\ge 3$, $n\ge 3$ nên $\frac{1}{2}\left( {{a}^{n-1}}+{{b}^{n-1}} \right)>n$ nên không thể $$\left( {{a}^{n-1}}-{{a}^{n-2}}b+\cdots-a{{b}^{n-2}}+{{b}^{n-1}} \right)|n.$$

Vậy phương trình vô nghiệm khi $p$ là số nguyên tố.

Bài tập 2: Cho số nguyên $n>2$ có ước lẻ khác 1, $p$ là số nguyên tố. Chứng minh rằng phương trình ${{a}^{n}}+{{b}^{n}}={{p}^{n}}$ không có nghiệm nguyên dương.

Giải

Gọi $k>1$ là ước lẻ của $n$, giả sử $n=km$ . Đặt $x={{a}^{m}};y={{b}^{m}}$. Phương trình trên trở thành

$${{x}^{k}}+{{y}^{k}}={{p}^{n}}.$$

Không mất tính tổng quát, giả sử $x\ge y$ . Tương tự bài toán $1$ ta sẽ loại được các trường hợp tầm thường $x=1;x=2$ . Nên ta xét bài toán với trường hợp $x,p\ge 3.$ Do $k$ lẻ, ta có ${{p}^{n}}={{a}^{k}}+{{b}^{k}}=\left( a+b \right)\left( {{a}^{k-1}}-{{a}^{k-2}}b+\cdots-a{{b}^{k-2}}+{{b}^{k-1}} \right)$

Suy ra $p|b+a$. Áp dụng bổ đề số mũ đúng cho $p$ ta có

$${{v}_{p}}\left( {{a}^{k-1}}-{{a}^{k-2}}b+\cdots-a{{b}^{k-2}}+{{b}^{k-1}} \right)={{v}_{p}}\left( {{a}^{k}}+{{b}^{k}} \right)-{{v}_{p}}\left( a+b \right)={{v}_{p}}\left( k \right) $$

Mà ${{a}^{k-1}}-{{a}^{k-2}}b+ \cdots-a{{b}^{k-2}}+{{b}^{k-1}}$ là lũy thừa của $p$ nên ta có $$\left( {{a}^{k-1}}-{{a}^{k-2}}b+\cdots-a{{b}^{k-2}}+{{b}^{k-1}} \right) | k$$

Lập luận tương tự bài toán $1$ ta cũng suy ra vô lí. Vậy phương trình vô nghiệm .

Bài tập 3: Cho số nguyên $n={{2}^{k}},k>1$ , p là số nguyên tố. Chứng minh rằng phương trình ${{a}^{n}}+{{b}^{n}}={{p}^{n}}$ không có nghiệm nguyên dương.

Giải

Tương tự Bài toán $1$, ta loại được các trường hợp tầm thường nên ta chỉ xét đối với trường hợp $a,b$ có ít nhất một số lớn hơn $2$, khi đó $p>3$. Phương trình trở thành dạng

$${{x}^{4}}+{{y}^{4}}={{p}^{{{2}^{k}}}}$$

trong đó $x, y$ có ít nhất một số lớn hơn $2$ và $\left( x,y \right)=1$.

Do $p$ lẻ nên $x, y$ khác tính chẵn lẻ. Không mất tính tổng quát, giả sử $x$ lẻ, $y$ chẵn. Ta có

$${{y}^{4}}={{p}^{{{2}^{k}}}}-{{x}^{4}}=\left( {{p}^{{{2}^{k-1}}}}+{{x}^{2}} \right)\left( {{p}^{{{2}^{k-1}}}}-{{x}^{2}} \right)$$

Do $\left( {{p}^{{{2}^{k-1}}}}+{{x}^{2}};{{p}^{{{2}^{k-1}}}}-{{x}^{2}} \right)=2$ nên

$$\left\{ \begin{array}{l} {{p}^{{{2}^{k-1}}}}+{{x}^{2}}=2{{m}_{1}}^{2} \\ {{p}^{{{2}^{k-1}}}}-{{x}^{2}}=2{{n}_{1}}^{2} \end{array} \right. $$

Suy ra

$$\left\{ \begin{array}{l} {{p}^{{{2}^{k-1}}}}={{m}_{1}}^{2}+{{n}_{1}}^{2} \\ {{x}^{2}}={{m}_{1}}^{2}-{{n}_{1}}^{2} \end{array} \right. $$

và ${{y}^{2}}=2{{m}_{1}}{{n}_{1}}.$

Ta thấy $\left( {{m}_{1}};{{n}_{1}} \right)=1$ vì nếu ngược lại thì ${{m}_{1}}$ và ${{m}_{2}}$ đều phải chia hết cho $p$ (vô lí) nên có các trường hợp sau

$1)$ Nếu $m_1 = m_2^2, n_1=2n_2^2$ và $(m_2,n_2)=1$ thì thế vào ta được

$${{p}^{{{2}^{k-1}}}}={{m}_{2}}^{4}+4{{n}_{2}}^{4}=\left( {{m}_{2}}^{2}+2{{m}_{2}}{{n}_{2}}+2{{n}_{2}}^{2} \right)\left( {{m}_{2}}^{2}-2{{m}_{2}}{{n}_{2}}+2{{n}_{2}}^{2} \right)$$

mà \[\left( {{m}_{2}}^{2}+2{{m}_{2}}{{n}_{2}}+2{{n}_{2}}^{2},{{m}_{2}}^{2}-2{{m}_{2}}{{n}_{2}}+2{{n}_{2}}^{2} \right)=1\] nên \[{{m}_{2}}^{2}-2{{m}_{2}}{{n}_{2}}+2{{n}_{2}}^{2}=1\Leftrightarrow {{\left( {{m}_{2}}-{{n}_{2}} \right)}^{2}}+{{n}_{2}}^{2}=1\Leftrightarrow {{m}_{2}}={{n}_{2}}=1.\] Trường hợp này không thỏa.

$2)$ Nếu $m_1=2m_2^2,n_1=n_2^2$ và $(m_2,n_2)=1$ thì cũng tương tự.

Vậy phương trình không có nghiệm nguyên dương.

Như vậy sử dụng bổ đề số mũ đúng ta đã chứng minh được một trường hợp đặc biệt của Định lí lớn Fermat.

Sau đây, chúng ta sẽ sử dụng Bổ đề số mũ đúng để giải quyết một số bài toán khác.

Bài tập 4: Tìm bộ số nguyên dương $\left( a,b,p \right)$ trong đó $p$ là số nguyên tố thỏa $${{2}^{a}}+{{p}^{b}}={{15}^{a}}.$$

Giải

Ta có $\forall x,y\in \mathbb{Z};n\in \mathbb{N}$ thì ${{x}^{n}}-{{y}^{n}}\vdots x+y$ nên ${{p}^{b}}={{15}^{a}}-{{2}^{a}}\vdots 13\Rightarrow p=13.$

Áp dụng bổ đề

$$b={{v}_{13}}\left( {{13}^{b}} \right)={{v}_{13}}\left( {{15}^{a}}-{{2}^{a}} \right)={{v}_{13}}\left( 15-2 \right)+{{v}_{13}}\left( a \right)\Rightarrow {{v}_{13}}\left( a \right)=b-1\Rightarrow a \ \vdots \  {{13}^{b-1}}$$

Mà $a>0$ nên $a\ge {{13}^{b-1}}$, suy ra

${{13}^{b}}  ={{15}^{a}}-{{2}^{a}}=\left( 15-2 \right)\left( {{15}^{a-1}}+{{15}^{a-2}}.2+\cdots +{{15.2}^{a-2}}+{{2}^{a-1}} \right) $

$ \ge \left( 15-2 \right)\left( {{15}^{{{13}^{b-1}}-1}}+{{15}^{{{13}^{b-1}}-2}}.2+\cdots+{{15.2}^{{{13}^{b-1}}-2}}+{{2}^{{{13}^{b-1}}-1}} \right) $

$\Rightarrow b=1\Rightarrow a=1.$

Vậy nghiệm bài toán là $\left( a,b,p \right)=\left( 1,1,13 \right)$.

 

Bài tập 5: Chứng minh rằng không tồn tại cặp số $\left( a,n \right)$ nguyên dương, $n>2$ , sao cho ${{\left( a+1 \right)}^{n}}-{{a}^{n}}$ là lũy thừa bậc dương của $5.$

Giải

Giả sử tồn tại số nguyên dương $m$ sao cho $${{\left( a+1 \right)}^{n}}-{{a}^{n}}={{5}^{m}}.$$

Nhận xét: nếu$a$ hoặc $a+1$ chia hết cho $5$ thì số còn lại cũng cũng chia hết cho $5$ (vô lí). Nên cả hai số đều không chia hết cho $5.$ Ta xét các trường hợp:

$1.$  Nếu $a\equiv 1\left( \bmod 5 \right)\Rightarrow 0\equiv {{\left( a+1 \right)}^{n}}-{{a}^{n}}\equiv {{2}^{n}}-1\left( \bmod 5 \right)$ . Suy ra $4|n$.

$2.$  Nếu $a\equiv 2\left( \bmod 5 \right)\Rightarrow 0\equiv {{\left( a+1 \right)}^{n}}-{{a}^{n}}\equiv {{3}^{n}}-{{2}^{n}}\left( \bmod 5 \right)$. Suy ra $2|n$.

$3.$  Nếu $a\equiv 3\left( \bmod 5 \right)\Rightarrow 0\equiv {{\left( a+1 \right)}^{n}}-{{a}^{n}}\equiv {{4}^{n}}-{{3}^{n}}\left( \bmod 5 \right)$. Suy ra $4|n$.

Do đó, $n$ luôn là số chẵn, đặt $n=2{{n}_{1}}$, $\left( {{n}_{1}}\in \mathbb{N},{{n}_{1}}\ge 2 \right)$. Ta có

$ {{5}^{m}} = {{\left( a+1 \right)}^{2{{n}_{1}}}}-{{a}^{2{{n}_{1}}}}=\left( {{\left( a+1 \right)}^{2}}-{{a}^{2}} \right)\left( {{\left( a+1 \right)}^{2\left( {{n}_{1}}-1 \right)}}+ \cdots + {{\left( a+1 \right)}^{2}}{{a}^{2\left( {{n}_{1}}-2 \right)}}+{{a}^{2\left( {{n}_{1}}-1 \right)}} \right) $

$=\left( 2a+1 \right)\left( {{\left( a+1 \right)}^{2\left( {{n}_{1}}-1 \right)}}+{{\left( a+1 \right)}^{2\left( {{n}_{1}}-2 \right)}}{{a}^{2}}+…+{{\left( a+1 \right)}^{2}}{{a}^{2\left( {{n}_{1}}-2 \right)}}+{{a}^{2\left( {{n}_{1}}-1 \right)}} \right). $

Suy ra $5| 2a+15$ , áp dụng bổ đề số mũ đúng ta được

${{v}_{5}}\left( {{\left( a+1 \right)}^{2\left( {{n}_{1}}-1 \right)}}+{{\left( a+1 \right)}^{2\left( {{n}_{1}}-2 \right)}}{{a}^{2}}+…+{{\left( a+1 \right)}^{2}}{{a}^{2\left( {{n}_{1}}-2 \right)}}+{{a}^{2\left( {{n}_{1}}-1 \right)}} \right) $

$= {{v}_{5}}\left( {{\left( a+1 \right)}^{2{{n}_{1}}}}-{{a}^{2{{n}_{1}}}} \right)-{{v}_{5}}\left( 2a+1 \right)={{v}_{5}}\left( {{n}_{1}} \right). $

Do ${{\left( a+1 \right)}^{2\left( {{n}_{1}}-1 \right)}}+{{\left( a+1 \right)}^{2\left( {{n}_{1}}-2 \right)}}{{a}^{2}}+ \cdots +{{\left( a+1 \right)}^{2}}{{a}^{2\left( {{n}_{1}}-2 \right)}}+{{a}^{2\left( {{n}_{1}}-1 \right)}}$ là lũy thừa của $5$ nên $${{n}_{1}}\vdots \left( {{\left( a+1 \right)}^{2\left( {{n}_{1}}-1 \right)}}+{{\left( a+1 \right)}^{2\left( {{n}_{1}}-2 \right)}}{{a}^{2}}+…+{{\left( a+1 \right)}^{2}}{{a}^{2\left( {{n}_{1}}-2 \right)}}+{{a}^{2\left( {{n}_{1}}-1 \right)}} \right)$$ (vô lí vì về phải gồm ${{n}_{1}}$ số nguyên dương, ${{n}_{1}}>1$ và $a+1\ge 2$).

Vậy không tồn tại cặp số $\left( a,n \right)$ nguyên dương, $n>2$ sao cho ${{\left( a+1 \right)}^{n}}-{{a}^{n}}$ là lũy thừa bậc dương của $5.$

 

Bài tập 6: Cho hai số nguyên $a,n\ge 2$ sao cho tồn tại số nguyên dương k thỏa $n|{{\left( a-1 \right)}^{k}}$ . Chứng minh rằng n là ước của $1+a+{{a}^{2}}+…+{{a}^{n-1}}$ .

Giải

Giả sử $p$ là ước nguyên tố bất kì của $n$ . Theo giả thiết $n|{{\left( a-1 \right)}^{k}}$ nên p cũng là ước của $a-1$ .

Do ${{a}^{n}}-1=\left( a-1 \right)\left( 1+a+{{a}^{2}}+\cdots +{{a}^{n-1}} \right)$ nên áp dụng bổ đề số mũ đúng ta có

$${{v}_{p}}\left( 1+a+{{a}^{2}}+\cdots+{{a}^{n-1}} \right)={{v}_{p}}\left( {{a}^{n}}-1 \right)-{{v}_{p}}\left( a-1 \right)={{v}_{p}}\left( n \right).$$

Do mọi ước nguyên tố $p$ của n đều thỏa điều trên nên ta có $$n|1+a+{{a}^{2}}+\cdots+{{a}^{n-1}}.$$

Bài tập 7 (HSG Trung Quốc 2009): Tìm cặp số nguyên tố $\left( p,q \right)$ thỏa $pq|{{5}^{p}}+{{5}^{q}}$ (*).

Giải

Ta xét các trường hợp

$1.$   $p=q=5$ thỏa mãn bài toán.

$2.$   Nếu có một số bằng $5$, một số khác $5$. Không mất tính tổng quát, giả sử $p=5;q\ne 5$. Ta có :

$$5q|{{5}^{5}}+{{5}^{q}}\Leftrightarrow q|{{5}^{4}}+{{5}^{q-1}}\Leftrightarrow q|{{5}^{4}}+1=626$$ do ${{5}^{q-1}}\equiv 1\left( \bmod \,q \right)$ nên suy ra $q=2$ hoặc $q=313$.

$3.$  Nếu cả hai số $p,q\ne 5$ . Do ${{5}^{p}}\equiv 5\left( \bmod p \right),\,\,{{5}^{q}}\equiv 5\,\,\,\,\left( \bmod \,q \right)$ nên

$$\left( * \right)\Leftrightarrow \left\{ \begin{array}{l}  {{5}^{p-1}}+1\vdots q \\ {{5}^{q-1}}+1\vdots p \end{array} \right. \Rightarrow \left\{ \begin{array}{l} {{5}^{2\left( p-1 \right)}}-1\vdots q \\ {{5}^{2\left( q-1 \right)}}-1\vdots p \end{array} \right.$$

Do ${{5}^{2\left( p-1 \right)}}-1$ chia hết cho $q$ nhưng ${{5}^{p-1}}-1$ không chia hết cho $q$ nên

$${{v}_{2}}\left( \text{ord}_{q}\left( 5 \right) \right)=1+{{v}_{2}}\left( p-1 \right) .$$

Do ${{5}^{q-1}}-1$ chia hết $q$ nên $q-1\vdots or{{d}_{q}}\left( 5 \right)$ nên

$${{v}_{2}}\left( q-1 \right)\ge 1+{{v}_{2}}\left( p-1 \right) .$$

Tương tự khi xét chia hết cho $p$ ta lại có ${{v}_{2}}\left( p-1 \right)\ge 1+{{v}_{2}}\left( q-1 \right)$ (vô lí).

Vậy các cặp số thỏa mãn là $\left( p,q \right)=\left( 2,5 \right);\left( 5,2 \right);\left( 5,5 \right);\left( 5,313 \right);\left( 313,5 \right).$

Bài tập 8 (HSG Brazil 2009): Cho hai số nguyên tố $p, q$ sao cho $q=2p+1$ . Chứng minh rằng tồn tại một số là bội của $q$ có tổng các chữ số của nó trong hệ cơ số $10$ nhỏ hơn $4.$

Giải

Do $p,q$ đều là số nguyên tố nên $q\ge 5$ .

Nếu $q=5$ thì ta chỉ cần chọn số $10$ thì thỏa yêu cầu bài toán.

Nếu $q>5$ , áp dụng Định lí Fermat nhỏ thì $q|{{10}^{q-1}}-1={{10}^{2p}}-1=\left( {{10}^{p}}-1 \right)\left( {{10}^{p}}+1 \right)$

Suy ra $q|{{10}^{p}}+1$ hoặc $q|{{10}^{p}}-1$.

$1.$  Nếu $q|{{10}^{p}}+1$ thì số $a={{10}^{p}}+1$ là số thỏa yêu cầu đề bài.

$2.$  Nếu $q|{{10}^{p}}-1$. Do $p$ là số nguyên tố và $q$ không là ước của $10-1$(do $q>5$ ) nên $p$ cũng chính là $or{{d}_{q}}\left( 10 \right)$. Do đó $10;{{10}^{2}};\ldots ;{{10}^{p}}$ sẽ có số dư khác nhau khi chia cho $q.$

Ta sẽ có các trường hợp

  • Nếu tồn tại $1\le k\le p$ mà ${{10}^{k}}\equiv p\left( \bmod \,q \right)$ thì ${{2.10}^{k}}+1\equiv 2p+1\equiv 0\left( \bmod \,q \right)$. Khi đó số $a={{2.10}^{k}}+1$ là số thỏa yêu cầu đề bài.
  • Nếu tồn tại $1\le k\le p$ mà ${{10}^{k}}\equiv 2p\left( \bmod \,q \right)$ thì ${{10}^{k}}+1\equiv 2p+1\equiv 0\left( \bmod \,q \right)$. Khi đó số $a={{10}^{k}}+1$ là số thỏa yêu cầu đề bài.
  • Nếu không tồn tại $1\le k\le p$ mà ${{10}^{k}}$ có số dư là $p$ hay $2p$ khi chia cho $q.$ Thì ta sẽ chia các số dư còn lại của $q$ thành $p$ bộ $$\left( 1;2p-1 \right),\left( 2;2p-2 \right),\ldots,\left( p-1;p+1 \right)$$ (tổng $2$ phần tử của một bộ bằng $2p$) . Do tập số dư khi chia cho $q$ của tập $\left\{ 10;{{10}^{2}};\ldots ;{{10}^{p}} \right\}$ có $p$ phần tử nên Theo nguyên lí Dirichlet sẽ có ít nhất hai số ${{10}^{k}}$ và ${{10}^{l}}$ thuộc cùng một bộ. Khi đó số $a={{10}^{k}}+{{10}^{l}}+1$ sẽ chia hết cho $q$ là số thỏa yêu cầu đề bài.

Bài tập 9 (IMO Shortlist 1997): Cho $b,m,n$ là các số nguyên dương thỏa$m>1;\,\,m\ne n$. Biết ${{b}^{m}}-1$và ${{b}^{n}}-1$ có cùng tập hợp các ước nguyên tố. Chứng minh $b+1$ là lũy thừa của $2.$

Giải

Theo đề, gọi $p$ là ước nguyên tố bất kì của ${{b}^{m}}-1$và ${{b}^{n}}-1$.

Ta có kết quả quen thuộc: $$\left( {{b}^{m}}-1,{{b}^{n}}-1 \right)={{b}^{\left( m,n \right)}}-1,$$ đặt $\alpha =\left( m,n \right)$ nên $p|{{b}^{\alpha }}-1$. Suy ra tồn tại $k,l\in \mathbb{N}*$ thỏa $m=\alpha k;\,\,n=\alpha l$.

Đặt $a={{b}^{\alpha }}$ , từ giả thiết suy ra mọi ước nguyên tố của ${{a}^{k}}-1$ và ${{a}^{l}}-1$ đều là ước của $a-1$ . Nói cách khác, tập hợp các ước nguyên tố của ${{a}^{k}}-1,{{a}^{l}}-1$ và $a-1$ là trùng nhau.

Do $m\ne n$ suy ra tồn tại một số $k$ hoặc $l$ lớn hơn 1. Giả sử số đó là k.

Ta chứng minh $a+1$ là lũy thừa của 2.

Thật vậy:

$1.$  Nếu $k$ là số chẵn, đặt $k={{2}^{\beta }}.k’$($k’$ là số lẻ).

Ta có: $${{a}^{k}}-1=\left( {{a}^{k’}}-1 \right)\left( {{a}^{k’}}+1 \right)\left( {{a}^{2k’}}+1 \right)…\left( {{a}^{{{2}^{\beta -1}}k’}}+1 \right).$$

Do đó mọi ước nguyên tố $q$ của ${{a}^{k’}}+1$ cũng là ước của $a-1$

Mà ${{a}^{k’}}+1\vdots a+1$, $\left( a+1;a-1 \right)=1$ hoặc $2.$ Suy ra $2\vdots q\Rightarrow q=2$ nên ${{a}^{k’}}+1$ là lũy thừa của $2.$ Suy ra $a+1$ cũng là lũy thừa của $2.$

$2.$  Nếu $k$ là số lẻ, ta có ${{a}^{k}}-1=\left( a-1 \right)\left( {{a}^{k-1}}+{{a}^{k-2}}+…+a+1 \right)$

Gọi $q$ là ước nguyên tố bất kì của ${{a}^{k-1}}+{{a}^{k-2}}+…+1$. Do ${{a}^{k-1}}+{{a}^{k-2}}+…+a+1$ là số lẻ nên, nên $q$ cũng lẻ và là ước của ${{a}^{k}}-1$ . Do đó q cũng là ước của $a-1$ .

Áp dụng bổ đề số mũ đúng của $q$ ta có

${{v}_{q}}\left( {{a}^{k-1}}+{{a}^{k-2}}+…+1 \right)={{v}_{q}}\left( {{a}^{k}}-1 \right)-{{v}_{q}}\left( a-1 \right)={{v}_{q}}\left( k \right)$

Suy ra $k\vdots \left( {{a}^{k-1}}+{{a}^{k-2}}+…+1 \right)$ (vô lí vì vế phải có k số nguyên dương, $a>1$ ).

Vậy $a+1={{b}^{\alpha }}+1$ là lũy thừa của $2$.

Vì ${{b}^{\alpha }}+1$ là lũy thừa của $2$ nên nếu $\alpha $ là số chẵn thì ${{b}^{\alpha }}+1={{\left( {{b}^{\alpha ‘}} \right)}^{2}}+1$ hoặc là số lẻ hoặc chia 4 dư 2 nên chỉ có một trường hợp thỏa là $b=1$ . Còn nếu $\alpha $ là số lẻ thì ${{b}^{\alpha }}+1=\left( b+1 \right)\left( {{b}^{\alpha -1}}+{{b}^{\alpha -2}}+…+b+1 \right)$ nên $b+1$ cũng là lũy thừa của $2$.

Bài tập 10 (IMO Shortlist 1999): Tìm các số nguyên dương $n,p$ trong đó p nguyên tố thỏa ${{n}^{p-1}}|{{\left( p-1 \right)}^{n}}+1$.

Giải

Ta xét các trường hợp sau

$1.$  Nếu $p=2\Rightarrow n|2\Rightarrow n=1;2$ (thỏa).

$2.$  Nếu $p>2$ , suy ra $p$ lẻ nên ${{\left( p-1 \right)}^{n}}+1$ lẻ $\Rightarrow n$ lẻ

Gọi $q$ là ước nguyên tố nhỏ nhất của n $\Rightarrow q|{{n}^{p-1}}|{{\left( p-1 \right)}^{n}}+1$ $\Rightarrow q|{{\left( p-1 \right)}^{2n}}-1$

Mà : $q|{{\left( p-1 \right)}^{q-1}}-1\Rightarrow q|{{\left( p-1 \right)}^{\left( 2n,q-1 \right)}}-1$

Do n lẻ và $q$ là ước nguyên tố nhỏ nhất của n nên $\left( 2n;q-1 \right)=2$ .

Suy ra $q|{{\left( p-1 \right)}^{2}}-1=\left( p-2 \right)p$ $\Rightarrow $ $q|p-2$ hoặc $q=p$. Ta lại có các trường hợp nhỏ

$(a)$  Nếu $q|p-2\Rightarrow 0\equiv {{\left( p-1 \right)}^{n}}+1\equiv 1+1\equiv 2\left( \bmod \,q \right)$ $\Rightarrow q=2$ (vô lí vì q lẻ)

$(b)$  Nếu $q=p$ . Áp dụng bổ đề số mũ đúng cơ số q ta có

$\left( p-1 \right){{v}_{p}}\left( n \right)={{v}_{p}}\left( {{n}^{p-1}} \right)\le {{v}_{p}}\left[ {{\left( p-1 \right)}^{n}}+1 \right]={{v}_{p}}\left( p-1+1 \right)+{{v}_{p}}\left( n \right)=1+{{v}_{p}}\left( n \right)$

Suy ra : $\left( p-2 \right){{v}_{p}}\left( n \right)\le 1\Rightarrow p=3$ và ${{v}_{p}}\left( n \right)=1.$

Đến đây, bài toán trở thành : Tìm n để ${{n}^{2}}|{{2}^{n}}+1$.

Nhận xét $n=1$ thỏa yêu cầu bài toán nên ta xét $n>1$. Suy ra $n$ là số lẻ, gọi $r$ là ước nguyên tố nhỏ nhất của $n$. Suy ra $r|{{2}^{n}}+1\,\,|{{2}^{2n}}-1$, mà $r|{{2}^{r-1}}-1$ nên suy ra $r|{{2}^{\left( 2n;r-1 \right)}}-1$.

Do $n$ là số lẻ và $r$ là ước nguyên tố nhỏ nhất của $n$ nên $\left( 2n;r-1 \right)=2$ nên $r=3$. Ta có đánh giá sau

$$2{{v}_{3}}\left( n \right)\le {{v}_{3}}\left( {{4}^{n}}-1 \right)={{v}_{3}}\left( 4-1 \right)+{{v}_{3}}\left( n \right)\Rightarrow {{v}_{3}}\left( n \right)\le 1\Rightarrow {{v}_{3}}\left( n \right)=1.$$ Suy ra $n=3.m$, $\left( m,n \right)=1$. Thế vào đề bài, ta được $${{m}^{2}}|{{8}^{m}}+1|{{8}^{2m}}-1.$$

Nếu $m>1$ , tương tự ta gọi $s$ là ước nguyên tố nhỏ nhất của $m.$ Suy ra $m$ là ước của ${{8}^{2}}-1=63$. Do đó $s=7$, điều này vô lí vì ${{8}^{m}}+1$ chia $7$ dư $2.$ Suy ra $m=1\Rightarrow n=3$.

Vậy $\left( n,p \right)=\left( 1,2 \right);\left( 2,2 \right);\left( 3;3 \right)$ .

Phép vị tự (Phần 2)

Xem phần 1 tại [Phần 1]

Ví dụ 4.  Cho tam giác $ABC$ nội tiếp đường tròn (O) và ngoại tiếp đường tròn (I); đường tròn (I) tiếp xúc với $BC, AB, AC$ tại $D, E, F$. Vẽ $OH \bot EF$ và đường kính $AM$ của $(O)$. Chứng minh $H, I, M$ thẳng hàng.

Gợi ý

  • Xét phép vị tự ngoài tâm $P$ biến $(I)$ thành $(O)$. Khi đó $D \mapsto D’, E \mapsto E’, F \mapsto F’, H \mapsto H’$ với $D’, E’, F’$ là điểm chính giữa các cung $BC, AC, AB$.
  • Ta có $D’H’ \bot E’F’$ và $H’$ là trung điểm của $AI$.
  • Ta có $IH||OH’$. (1)
  • Tam giác $AIM$ có $OH’$ là đường trung bình nên $IM||OH’$. (2)
  • Từ (1) và (2) ta có $H, I, M$ thẳng hàng.

Ví dụ 5. Cho tam giác $ABC$, đường tròn $(I)$ nội tiếp tam giác. Đường tròn $w_a$ qua $B, C$ tiếp xúc trong với (I); các đường tròn $w_b, w_c$ được xác định tương tự. Gọi $A’$ là giao điểm của $w_b, w_c$ khác $A$; các điểm $B’, C’$ được xác định tương tự. Chứng minh rằng các đường thẳng $AA’, BB’$ và $CC’$ đồng quy tại một điểm nằm trên $IO$, với $O$ là tâm đường tròn ngoại tiếp tam giác $ABC$.

Gợi ý

  • Gọi $X$ là tiếp điểm của $w_a$ và $(I)$. Theo tính chất 1.5 thì $XD$ đi qua điểm chính giữa cung $BC$ của $w_a$, đặt là $A_1$. Các điểm $B_1, C_1$ được xác định tương tự.
  • Hơn nữa $A_1D.A_1X = A_1C^2$ và $B_1E.B_1Y = B_1C^2$, khi đó $B_1C_1$ là trục đẳng phương của $(I)$ và đường tròn điểm $C$, suy ra $IC \bot A_1B_1$.
  • Mặt khác $IC \bot DE$, suy ra $DE||A_1B_1$.
  • Ta có hai tam giác $DEF$ và $A_1B_1C_1$ đôi một có các cạnh song song nên có phép vị tự tâm $K$, biến $\Delta DEF$ thành $\Delta A_1B_1C_1$. Vì $K$ thuộc $DA_1$ nên $K \in XA_1$.
  • Ta có $\dfrac{KD}{KA_1} = \dfrac{KE}{KB_1}$ mà $KX.KD = KY.KE$, suy ra $KX.KA_1 = KY.KB_1$; do đó $K$ thuộc trục đẳng phương của $w_a$ và $w_b$, vậy $K \in AA’$.
  • Chứng minh tương tự ta cũng có $K \in BB’, CC’$.
  • Xét phép vị tự tâm K thì $I \mapsto O’$; ta có vì $ID \bot BC$ nên $O’A_1 \bot BC$; tương tự thì $O’B_1 \bot AC$; do đó $O’ \equiv O$.
  • Vậy $AA’, BB’, CC’$ đồng qui tại K thuộc IO.

Ví dụ 6. (Đường tròn mixtilinear incircle) Cho đường tam giác ABC nội tiếp đường tròn (O). Đường tròn $w_a$ tiếp xúc với các cạnh AB, AC tại D, E và tiếp xúc trong với $(O)$ tại $A_1$. Các điểm $B_1, C_1$ được xác định tương tự.
1. Chứng minh rằng DE qua tâm đường tròn nội tiếp tam giác ABC.
2. Chứng minh rằng $AA_1, BB_1, CC_1$ đồng quy.

Gợi ý

  1. Theo bổ đề 3.1 thì $A_1D$ qua điểm $D’$ chính giữa cung AB, $A_1E$ qua điểm $E’$ chính giữa cung AC. Khi đó $I \in CD’, I \in BE’$.
    Áp dụng định lý Pascal ta có $D, I, E$ thẳng hàng.
  2. Xét $H(A_1): (O) \mapsto (I_a), H(A): (I_a) \mapsto (I)$, theo định lý Monge D’lemabert thì $AA_1$ đi qua tâm vị tự ngoài biến $(O) \mapsto (I)$. Chứng minh tương tự ta cũng có $BB_1, CC_1$ qua tâm vị tự ngoài biến $(O)$ thành $(I)$.
    Do đó các đường thẳng $AA_1, BB_1, CC_1$ đồng quy tại một điểm thuộc IO.

Ví dụ 7. (Định lý Thebault)
Cho tam giác $ABC$ nội tiếp đường tròn $w$. $D$ là một điểm thuộc cạnh $BC$. Đường tròn $w_1$ tiếp xúc với đoạn $AD, CD$ tại $P, Q$ và tiếp xúc với $w$ tại $W$.

1. Chứng minh $PQ$ qua tâm đường tròn nội tiếp tam giác $ABC$.
2. Gọi $w_2$ là đường tròn tiếp xúc với $AD, BD$ và tiếp xúc với $w$. Chứng minh đường thẳng nối tâm của $w_1, w_2$ qua tâm nội tiếp của tam giác $ABC$.

Gợi ý

  1. Ta có $PE$ qua điểm $M$ chính giữa cung BC. Gọi $I’$ là giao điểm của $EF$ và $AM$.
    Xét phép vị tự tâm P thì $EF||MN$, suy ra $\angle AIF = \angle AMN = \angle APF$. Suy ra $AFIP$ nội tiếp.
    Khi đó $\angle AFP = \angle AI’P = \angle I’EP$.
    Suy ra $\triangle MEI’ \backsim \triangle MI’P$. Suy ra $MI’^2 = ME.MP = MB^2$.
    Do đó $I’ \equiv I$.
  2. Xét tứ giác $JGEK$ và điểm $D$ thuộc $GE$. Khi đó $IG||DK$ và $IE||DJ$.
    Gọi $I’$ là giao điểm của $GI$ và $JK$. Khi đó $\dfrac{JI’}{I’K} = \dfrac{JT}{TD} = \dfrac{EQ}{EK}$. Suy ra $I’E||JQ$, do đó $I’ \equiv I$.
    Vậy $J, I, K$ thẳng hàng.

Ví dụ 8. (IMO 1999) Cho hai đường tròn $(w_1)$ và $(w_2)$ tiếp xúc trong với$ ( w) $tại M, N và tâm của đường tròn $(w_2)$ nằm trên đường tròn $(w_1)$. Dây cung chung của $(w_1)$ và $(w_2)$cắt $(w )$ tại A và B. MA và MB cắt $(w_1)$ tại C và D. Chứng minh rằng đường tròn $(w_2)$ tiếp xúc với đường thẳng $CD$.

Gợi ý

  • Vẽ tiếp tuyến chung $XY$ của $w_1, w_2$ với $X, Y$ là các tiếp điểm, giả sử $XY$ cắt $w$ tại $S,T$. Gọi $A’$ là điểm chính giữa cung $ST$.
  • Theo bổ đề 3.1 ta có $A’, X, M$ và $A’, Y, N$ thẳng hàng. Ta có $A’Y.A’N = AS^2 = A’X.A’M$. Suy ra $A’$ thuộc trục đẳng phương của $w_1, w_2$. Suy ra $A’ \in PQ$.
  • Vậy $A’ \equiv A$ và $X \equiv C, Y \equiv E$. Gọi $U$ là giao điểm của $CE$ và $O_1O_2$. Suy ra $\dfrac{UO_2}{UO_1} = \dfrac{r_2}{r_1}$.
  • Ta có $CD || PQ$, suy ra $CD \bot O_1O_2$. Gọi $H$ là giao điểm của $CD$ và $O_1O_2$. Ta tính được $O_2H = r_2$ nên $CD$ tiếp xúc với $w_2$.

Ví dụ 9. Cho tam giác $ABC$ nội tiếp đường tròn tâm O, đường tròn tâm I nội tiếp tam giác $ABC$ tiếp xúc với các cạnh BC, AC, AB tại D,E, F. Chứng minh rằng trực tâm của tam giác $DEF$ thuộc đường thẳng $IO$.

Gợi ý

  • Xét phép nghịch đảo tâm I, tỉ số $r^2$, biến $M \mapsto A, N \mapsto C, P \mapsto B$. Khi đó $(MNP) \mapsto (ABC)$. Khi đó có phép vị tự tâm I biến $(MNP) \mapsto (ABC)$.
  • Gọi $F$ là tâm của $(MNP)$ ta có $I, F, O$ thẳng hàng.
  • Mặt khác $(MNP)$ là đường tròn euler của tam giác $DEF$ nên $F, I, H$ thẳng hàng, với $H$ là trực tâm tam giác DEF.
  • Vậy $H, I, O$ thẳng hàng.

Ví dụ 10. (Barasil MO 2013) Đường tròn nội tiếp tam giác $ABC$ tiếp xúc với các cạnh BC, CA, AB tại D, E, F. Gọi $P$ là giao điểm của $AD$ và $BE$. Gọi $X, Y, Z$ là các điểm đối xứng của $P$ qua $EF, DF$ và $DE$. Chứng minh rằng các đường thẳng $AX, BY, CZ$ đồng quy tại một điểm thuộc đường thẳng $OI$, với $O, I$ lần lượt là tâm đường tròn ngoại tiếp và nội tiếp tam giác $ABC$.

Gợi ý

  • Gọi $K$ là hình chiếu của $D$ trên $EF$, tương tự với $L, J$.
    Gọi $T$ là giao điểm của $AD$ và $EF$, ta có $(AIDT) = -1$ và $DK \bot KT$ nên $KT$ là phân giác của $\angle AKD$. Do đó $X$ thuộc $AK$.
  • Ta có $\angle FKJ = \angle FDE = \angle AFE$, suy ra $KJ||AB$; tương tự ta có $\angle KL||AC; LJ||BC$. Khi đó tồn tại phép vị tự tâm $V_(H): \Delta KJL \mapsto ABC$ và $F \mapsto O$, với $F$ là tâm đường tròn euler của tam giác $DEF$ và $H$ là giao điểm của $AK, BJ, CL$.
  • Mặt khác theo ví dụ 1.9 thì $F, I, O$ thẳng hàng. Do đó $H, I, O$ thẳng hàng.
  • Vậy $AX, BY, CZ$ đồng quy tại điểm $H$ thuộc đường thẳng $IO$.

III. BÀI TẬP

  1. Cho hai đường tròn $(O_1)$ và $(O_2)$ tiếp xúc nhau tại $M$. Một điểm $A$ thay đổi trên đường tròn $(O_2)$, từ $A$ vẽ hai tiếp tuyến $AB, AC$ đến $(O_1)$ với $B, C$ là hai tiếp điểm. $BM, CM$ lần lượt cắt $(O_2)$ tại $D$ và $E$. $DE$ cắt tiếp tuyến tại $A$ của $(O_2)$ tại $F$. Chứng minh rằng $F$ thuộc một đường thẳng cố định khi $A$ di chuyển trên $(O_2)$ không thẳng hàng với $O_1$ và $M$.
  2. Cho tam giác $ABC$, đường tròn tâm $I$ nội tiếp tam giác $ABC$ tiếp xúc với các cạnh $BC$, $AC, AB$ lần lượt tại $D, E, F$. Gọi $P$ là hình chiếu của $D$ trên $EF$; $M$ là trung điểm của $DP$. Gọi $H$ là trực tâm của tam giác $IBC$. Chứng minh rằng $MH$ qua trung điểm của $EF$.
  3. Cho tam giác $ABC$ nội tiếp $(O)$. $D$ là một điểm thay đổi trên cạnh $BC$. Đường tròn $w$ tiếp xúc với các đoạn $AD, CD$ và tiếp xúc trong với $(O)$ tại $E, F, X$. Chứng minh rằng $XF$ đi qua một điểm cố định và $EF$ cũng đi qua một điểm cố định.
  4. Cho tam giác nhọn $ABC$ khác tam giác cân. Gọi $O$ và $I$ lần lượt là tâm đường tròn ngoại tiếp và nội tiếp tam giác $ABC$. Gọi $D, E, F$ là tiếp điểm của $(I)$ với các cạnh $BC, CA $ và $AB$. Gọi $P$ là giao điểm của $AI$ và $OD$, $Q$ là giao điểm của $BI$ và $OE$, và $R$ là giao điểm của $CI$ và $OF$. Gọi $M$ là tâm đường tròn ngoại tiếp tam giác $PQR$. Chứng minh rằng $I, M, O$ thẳng hàng.
  5. Cho tam giác $ABC$ nội tiếp đường tròn $(O)$ tâm O, có $B, C$ cố định và $A$ thay đổi trên $(O)$. Kí hiệu $(I)$ là đường tròn nội tiếp tam giác $ABC$. Gọi $(O_1)$ là đường tròn thay qua $A, B$ và tiếp xúc với $(I)$ tại $E$. Gọi $(O_2)$ là đường tròn thay qua $A, C$ và tiếp xúc với $(I)$ tại $F$. Đường phân giác trong của góc $\widehat{AEB}$ cắt $(O_1)$ tại $M$ và đường phân giác trong của góc $\widehat{AFC}$ cắt $(O_2)$ tại $N$.

    a.Chứng minh rằng tứ giác $EFMN$ nội tiếp.
    b. Gọi $J$ là giao điểm của $EM$ và $FN$. Chứng minh rằng đường thẳng $IJ$ đi qua một điểm cố định.

  6.  (ELMO shortlist 2011)
    Cho 3 đường tròn $\omega,\omega_1,\omega_2$ đôi một tiếp xúc nhau sao cho $\omega_1,\omega_2$ tiếp xúc ngoài tại $P$, $\omega_1,\omega$ tiếp xúc trong tại $A$, and $\omega,\omega_2$ tiếp xúc trong tại $B$. Gọi $O,O_1,O_2$ lần lượt là tâm của $\omega,\omega_1,\omega_2$. Gọi $X$ chân đường vuông góc từ $P$ đến $AB$, chứng minh $\angle{O_1XP}=\angle{O_2XP}$.
  7. Cho tam giác $ABC$ khác tam giác vuông nội tiếp đường tròn $(O)$ cố định có $BC$ cố định và $A$ thay đổi. Trên đường thẳng $BC$ lấy các điểm $K, L$ sao cho $\angle BAK = \angle CAL = 90^o$. Gọi $H$ là hình chiếu của $A$ trên $BC$. Chứng minh rằng đường thẳng qua trung điểm của $AH$ và $KL$ luôn đi qua một điểm cố định.
  8. (IMO shortlist 1998) Cho tam giác ABC. Gọi H là trực tâm và O là tâm đường tròn ngoại tiếp tam giác. Gọi D, E, F lần lượt là điểm đối xứng của A qua BC, B qua CA và của C qua AB. Chứng minh rằng D, E, F thẳng hàng khi và chỉ khi OH = 2R, với R là bán kính đường tròn ngoại tiếp tam giác.
  9. (USA TST 2010) Cho tam giác $ABC$. Điểm M,N trên các cạnh AC và BC sao cho $MN||AB$; Các điểm $P, Q$ lần lượt thuộc $AB, BC$ sao cho $PQ ||AC$. Đường tròn nội tiếp tam giác $CMN$ tiếp xúc với AC tại E; đường tròn nội tiếp tam giác $BPQ$ tiếp xúc với $AB$ tại $F$. Đường thẳng $EN$ cắt $AB$ tại $R$; đường thẳng $FQ$ cắt AC tại S. Cho $AE = AF$, chứng minh rằng tâm nội tiếp của tam giác $AEF$ thuộc đường tròn nội tiếp của tam giác $ARS$.
  10. Cho tam giác ABC nội tiếp đường tròn tâm O và ngoại tiếp đường tròn tâm I. Đường tròn mitilinear incircle của tam giác ABC tâm K tiếp xúc với (O) tại D. DI cắt BC tại L. Chứng minh KL chia OI theo tỉ số $\dfrac{1}{2}$.
  11. (IMO 2008) Cho tứ giác lồi ABCD (AB khác BC). Gọi đường tròn nội tiếp của các tam giác ABC và ADC lần lượt là $(w_1)$ và $(w_2)$. Giả sử tồn tại đường tròn $(w )$ tiếp xúc với tia BA về hướng A và tia BC về hướng C và tiếp xúc với các đường thẳng AD và CD. Chứng minh rằng tiếp tuyến chung ngoài của các đường tròn $(w_1)$ và $(w_2)$ cắt nhau tại một điểm thuộc đường tròn (C ). 

Phép vị tự (Phần 1)

Phép vị tự là một trong những phép biến hình quan trọng nhất, có nhiều ứng dụng trong giải toán hình học phẳng. Thông qua phép vị tự, ta có một công cụ giải toán khá mạnh, giúp chúng ta nhìn lại những bài toán cũ theo một cách khác, toàn diện và rõ ràng hơn. Ngoài ra, một số bổ đề suy ra trực tiếp hoặc chứng minh một cách dễ dàng bằng phép vị tự cũng giúp giải được những bài toán khó hơn. Qua bài viết nhỏ này, hy vọng các em học sinh có cơ hội nhìn lại các bài toán cũ và thêm một hướng để giải quyết các bài toán hình học phẳng.

I. LÝ THUYẾT

Định nghĩa 1. Trong mặt phẳng cho điểm O cố định và một số thực k khác 0 cho trước. Phép biến hình biến mỗi điểm M thành điểm $M’$ sao cho $\overrightarrow{OM’} = k.\overrightarrow{OM}$ được gọi là phép vị tự tâm O hệ số(tỉ số) k và được kí hiệu là $H_{(O;k)}$.

Tính chất 2. Trong phép vị tự $H_{(O;k)}$ thì:

  1. Tâm O là điểm bất động duy nhất.
  2. $\overrightarrow {AB} \mapsto \overrightarrow {A’B’} $ thì $\overrightarrow {AB} = k.\overrightarrow {A’B’} $
  3. Chùm đường thẳng qua tâm vị tự là những đường thẳng bất biến duy nhất.
  4. Một đường thẳng không qua tâm biến thành một đường thẳng song song với nó.
  5. Phép vị tự biến đường tròn $(I; R)$ thành đường tròn $(I; R’)$ thỏa $I’ = H_{(O;k)} (I)$ và $R’ = |k|/R$

Định lý 3. Cho hai đường tròn $C(O;R)$ và $C’(O’;R’)$ sao cho $R \ne R’,O \equiv O’$
Khi đó tồn tại hai phép vị tự $H_1(O_1;k_1)$ và $H_2(O_2;k_2)$ biến $(C )$ thành $(C‘)$ trong đó: $\dfrac{{\overline {{O_1}O} }}
{{\overline {{O_1}O’} }} = {k_1} = \dfrac{{R’}}{R}$ và $\dfrac{{\overline {{O_2}O} }}{{\overline {{O_2}O’} }} = {k_2} = – \dfrac{{R’}}{R}$

Hệ quả 4. Bốn điểm $O, O’, O_1, O_2$ tạo thành một hàng điểm điều hòa.

Hệ quả 5. Nếu hai đường tròn tiếp xúc nhau tại tiếp điểm $A$. Khi đó có một phép vị tự tâm $A$ biến đường tròn này thành đường tròn kia.

Tính chất 6. Cho hai đường tròn $(O)$ và $(I)$ tiếp xúc trong tại $A$. Một dây cung $BC$ của $(O)$ tiếp xúc với $(I)$ tại $P$. Khi đó $AP$ đi qua điểm $D$ chính giữa cung $BC$ của $(O)$ và $DP.DA = DB^2$.

Chứng minh.

Xét phép vị tự $H(A): (I) \mapsto (O)$. Khi đó $P \mapsto D$. Suy ra $IP ||OD$ mà $IP \bot BD$. Suy ra $OD \bot BC$. Do đó $D$ là điểm chình giữa cung $BC$.

Định lý 7. (Tích của hai phép vị tự)Ta xét tích của hai phép vị tự $H_1(O_1;k_1)$ và $H_2(O_2;k_2)$:

  1. Trường hợp 1: Nếu $k_1k_2 = 1$ thì tích $H_2(O_2;k_2)oH_1(O_1;k_1)$ là một phép tịnh tiến theo Vectơ $\overrightarrow v = \left( {1 – {k_2}} \right)\overrightarrow {{O_1}{O_2}} $
  2. Trường hợp 2: ${k_1}{k_2} \neq 1$ thì tích $H_2(O_2;k_2)oH_1(O_1;k_1)$ là một phép vị tự tỉ số $k = k_1k_2$ và có tâm O được xác định bởi công thức $\overrightarrow {OO_1} = \dfrac{{k_2 + 1}}{k_1k_2}\overrightarrow {OO_2} $

Định lý 8. (Monge – D’alambert)  Cho ba đường tròn $C_1(O_1, R_1), C_2(O_2, R_2), C_3(O_3, R_3)$ phân biệt trên mặt phẳng. Khi đó tâm vị tự ngoài của các cặp đường tròn $(C_1, C_2), (C_2, C_3), (C_3, C_1)$ cùng thuộc một đường thẳng. Hai tâm vị tự trong của hai trong ba cặp đường tròn trên và tâm vị tự ngoài của cặp đường tròn còn lại cùng thuộc một đường thẳng.

Định lý 9. Nếu có một phép nghịch đảo tâm I biến $(O)$ thành $(O’)$ thì sẽ có một phép vị tự tâm $I$ biến $(O)$ thành $(O’)$.

II. VÍ DỤ

Ví dụ 1. Cho tam giác $ABC$, gọi $M, N, P$ là trung điểm các cạnh $BC, AC$ và $AB$. Các đường phân giác trong $AD, BE, CF$ cắt nhau tại $I$, đường tròn tâm $I$ nội tiếp tam giác và tiếp xúc với các cạnh $BC, AC, AB$ tại $X, Y, Z$.

  1. (Đường thẳng Euler). Chứng minh rằng trọng tâm, trực tâm và tâm đường tròn ngoại tiếp của tam giác $ABC$ cùng nằm trên một đường thẳng.
  2. Gọi $da$ là đường thẳng qua $M$ và song song với phân giác góc $A$, $d_b, d_c$ được định nghĩa tương tự. Chứng minh rằng $d_a, d_b$ và $d_c$ đồng quy tại một điểm.

Gợi ý

  • Gọi $G, H, O$ lần lượt là trọng tâm, trực tâm và tâm đưởng tròn ngoại tiếp tam giác $ABC$.
  • Xét phép vị tự tâm $G$, tỉ số $k = \dfrac{-1}{2}$. Khi đó $\Delta ABC \mapsto \Delta MNP$. $H$ là trực tâm tam giác $ABC$, $O$ là trực tâm tam giác $MNP$ nên $H \mapsto O$, suy ra $\overrightarrow{GO} = -\dfrac{1}{2}\overrightarrow{GH}$.
  • Vậy $ H,G, O$ theo thứ tự cùng thuộc một đường thẳng (đường thẳng Euler) và $GH = 2GO
    $

2.  Cũng sử dụng phép vị tự trên thì ta có $d_a, d_b, d_c $ song song với phân giác góc $A, B, $      nên $d_a, d_b, d_c$ là ảnh của phân giác các góc $A, B, C$ của tam giác $ABC$ qua phép vị tự       này. Do đó $d_a, d_b, d_c$ đồng quy.

Ví dụ 2. Cho tam giác $ABC$, đường tròn tâm $I$ nội tiếp tam giác và tiếp xúc với $BC, AC$ và $AB$ lần lượt tại $D, E, F$. Gọi $D’, E’, F’$là điểm đối xứng của $D, E, F$ qua $I$.

1. Chứng minh rằng $AD’, BE’$ và $CF’$ đồng quy $J$ .
2. Gọi G là trọng tâm tam giác. Chứng minh $I, J, G$ thẳng hàng và $GJ = 2GI$.

Gợi ý

  • Qua $D’$ vẽ đường thẳng song song với $BC$ cắt $AB, AC$ tại $U, V$. Xét phép vị tự $H(A;\dfrac{AU}{AB}): \Delta AUV \mapsto \Delta ABC$. Biến đường tròn tâm $I$ thành đường tròn $I_a$ bàng tiếp tam giác $ABC$.
  • Ta có $D’ \mapsto D_a$ là tiếp điểm của $(I_a)$ với $BC$.\\ Ta chứng minh được $BD = CD_a$. Chứng minh tương tự ta cũng có $CE = AE_a, BF = AF_a$. \\Mà các đường thẳng $AD, BE, CF$ đồng quy nên $AD_a, BE_a, CF_a$ đồng quy hay $AD’, BE’, CF’$ đồng quy tại $J$.
  •  Gọi $M$ là trung điểm $BC$ suy ra $M$ cũng là trung điểm của $DD_a$. Ta có $IM || D’D_a$.
  • Xét phép vị tự $H'(G;\dfrac{-1}{2}): A \mapsto M$. Mà $IM ||AD’$, suy ra $H’: AD’ \mapsto IM$.
  • Suy ra $J \mapsto I$. Do đó $G, I, J$ thẳng hàng và $GJ = 2GI$.

Ví dụ 3. (Chọn đội tuyển toán PTNK năm 2010) Cho tam giác ABC nội tiếp đường tròn (O). Gọi $I,I_1,I_2,I_3$ là tâm đường tròn nội tiếp và bàng tiếp các góc A, B, C tương tứng. Đường tròn ngoại tiếp tam giác $II_2 I_3$ cắt (O) tại hai điểm $M_1,N_1$. Gọi $J_1$ (khác A) là giao điểm của AI và (O). Ký hiệu $d_1$ là đường thẳng qua $J_1$ và vuông góc với $M_1 N_1$. Tương tự xác định các đường thẳng $d_2,d_3$. Chứng minh các đường thẳng $d_1,d_2,d_3$ đồng quy tại một điểm

Gợi ý

  • Dễ thấy đường tròn tâm $O$ ngoại tiếp tam giác $ABC$ là đường tròn Euler của tam giác $I_1I_2I_3$, nên $J_1$ là trung điểm của $II_1$.
  • Gọi $K_1$ là tâm đường tròn ngoại tiếp tam giác $II_2I_3$, và $K$ là tâm ngoại tiếp tam giác $I_1I_2I_3$ ta có $\overrightarrow{KK_1} = \overrightarrow{I_1I}$.
  • Suy ra $I_1K_1$ qua trung điểm của $IK$, mà $O$ là trung điểm $IK$ nên $I_1, O, K_1$ thẳng hàng. Mặt khác $OK_1 \bot M_1N_1$. Do đó $I_1K_1 \bot M_1N_1$, suy ra $I_1K_1 ||d_1$.
  • Xét phép vị tự $H(I;2): J_1 \mapsto I_1$ mà $d_a ||I_1O$ nên $H: d_a \mapsto I_1K_1$. Tương tự $d_b \mapsto I_2K_2, d_c \mapsto I_3K_3$.Do đó $d_a, d_b, d_c$ đồng quy.

[Phần 2]

Hàng điểm điều hòa – Phần 1

I. LÝ THUYẾT

Định nghĩa 1 Cho 4 điểm $A, B, C, D$ thẳng hàng. Khi đó tỉ số kép của 4 điểm $A, B, C, D$ kí hiệu là $(ABCD)$ và được tính bởi công thức
\[\left( {ABCD} \right) = \frac{{\overline {CA} }}{{\overline {CB} }}:\frac{{\overline {DA} }}{{\overline {DB} }}\]

Định nghĩa 2. Nếu tỉ số kép của 4 điểm $A, B, C, D$ bằng $-1$ thì 4 điểm $A, B, C, D$ được gọi là hàng điểm điều hòa. Kí hiệu là $(ABCD) = -1$.

Ví dụ 3. Cho tam giác $ABC$. Gọi $D, E$ là chân đường phân giác trong và phân giác ngoài của góc $A$. Khi đó $A, B, D, E$ là hàng điểm điều hòa.

Tính chất 4. Từ định nghĩa suy ra:

  1. $(ABCD) = (CDAB) = (BADC) = (DCBA)$
  2. $(ABCD) = 1/(BACD) = 1/(ABDC)$
  3. $(ABCD) = 1 -(ACBD) = 1 -(DBCA)$
  4. $(ABCD) = (A’BCD) \Leftrightarrow A \equiv A’$.

Tính chất 5. Trên trục số cho 4 điểm $A, B, C, D$. Khi đó các mệnh đề sau tương đương:

  • $A , B, C, D$ là hàng điểm điều hòa.
  • $\dfrac{{\overline {CA} }}{{\overline {CB} }} = – \frac{{\overline {DA} }}{{\overline {DB} }}$
  • $\dfrac{2}{{\overline {AB} }} = \dfrac{1}{{\overline {AC} }} + \dfrac{1}{{\overline {AD} }}$
  • ${\overline {IA} ^2} = \overline {IC} .\overline {ID}$ ($I$ là trung điểm của đoạn $AB$).
  • $\overline {AC} .\overline {AD} = \overline {AB} .\overline {AK} $ ($K$ là trung điểm của đoạn $CD$).

Định lý 6. Cho $A, B, C, D$ thuộc đường thẳng $(d)$. $S$ nằm ngoài $(d)$. Từ $C$ kẻ đường thẳng song song với $SD$ cắt $SA$, $SB$ tại $A’$ và $B’$. Khi đó: \[\left( {ABCD} \right) = \dfrac{{\overline {CA’} }}{{\overline {CB’} }}\]

Hệ quả 7. Bốn điểm $A, B, C, D$ là hàng điểm điều hòa khi và chỉ khi $C$ là trung điểm của $A’B’$.

Định nghĩa 8. Cho đường thẳng $(d)$ và $S$ ở ngoài $(d)$. Với mỗi điểm $M$ ($M$ không thuộc đường thẳng qua $S$ và song song với $(d)$ , $SM$ cắt $(d)$ tại $M’$. Vậy $M \to M’$ là phép chiếu xuyên tâm $S$ lên đường thẳng $(d)$.

Định lý 9. Cho 4 đường thẳng $a, b, c, d$ cắt nhau tại $S$. Một đường thẳng cắt $a, b, c, d$ lần lượt tại $A, B, C, D$. Khi đó ta có:
\[\left( {abcd} \right) = \left( {ABCD} \right) = \frac{{\sin \left( {\overrightarrow {SA} ,\overrightarrow {SC} } \right)}}{{\sin \left( {\overrightarrow {SA} ,\overrightarrow {SD} } \right)}}:\frac{{\sin \left( {\overrightarrow {SB} ,\overrightarrow {SC} } \right)}}{{\sin \left( {\overrightarrow {SB} ,\overrightarrow {SD} } \right)}}\]

Tính chất 10. Phép chiếu xuyên tâm bảo toàn tỉ số kép. Tức là qua phép chiếu xuyên tâm S lên đường thẳng $(d), A \to A’, B \to B’ , C \to C’, D \to D’$ thì: $(ABCD) = (A’B’C’D’)$.

Tính chất 11. Cho bốn đường thẳng $a, b, c, d$ cắt nhau tại $S$, một đường thẳng $\Delta$ cắt 4 đường thẳng tại 4 điểm $A, B, C, D$ thì $(ABCD)$ không phụ thuộc vào $\Delta$. Người ta gọi $(ABCD)$ là tỉ số kép của chùm 4 đường thẳng. Kí hiệu là $S(ABCD)$ hay $(abcd)$.

Định nghĩa 12.  Nếu $S(ABCD) = -1$ thì ta gọi $a, b, c, d$ là chùm điều hoà.

Tính chất 13. Từ tính chất của tỉ số kép ta có tính chất sau của chùm 4 đường thẳng: $$(a, b, c, d) = (a’, b, c, d) \Leftrightarrow a \equiv a’$$

Hệ quả 14. Nếu $S(ABCD) = S(A’BCD)$ thì $S, A, A’$ thẳng hàng.

Hệ quả 15. Cho hai đường thẳng $(d)$ và $(d’)$ cắt nhau tại $O$. Trên $(d)$ lấy các điểm $A, B, C$; trên $(d’)$ lấy các điểm $A’,B’, C’$ . Khi đó $(OABC) = (OA’B’C’)$ khi và chỉ khi $AA’, BB’$ và $CC’$ đôi một song song hoặc đồng qui.

Định lý 16. Cho chùm điều hòa $(abcd)$. Ta có $b \bot d$ khi và chỉ khi $b, d$ là phân giác trong và phân giác ngoài của góc tạo bởi $a$ và $c$.

Định lý 17. Cho đường $a, b, c$ cắt nhau tại $O$, và $a’,b’, c’$ cắt nhau tại $O’$. Gọi $d$ là đường thẳng đi qua hai điểm $OO’$. Gọi $A$ là giao của $a$ và $a’$; $B$ là giao của $b$ và $b’$; $C$ là giao của $c$ và $c’$. Khi đó $A, B, C$ thẳng hàng khi và chi khi $(abcd) = (a’b’c’d)$.

II. CÁC VÍ DỤ

  1. Một số ứng dụng của hàng điểm và phép chiếu xuyên tâm trong các định lý quen thuộc.

Đầu tiên là một số ví dụ về các hàng điểm điều hòa quen thuộc.

Ví dụ 1. Cho tứ giác $ABCD$. Gọi $O$ là giao điểm hai đường chéo $AC$ và $BD$; $I$ là giao điểm của hai cạnh bênh $AD$ và $BC$. $IO$ cắt $AB$ và $CD$ tại $MN$. Khi đó $I, O, M, N$ là hàng điểm điều hòa. Gọi $J$ là giao điểm của $AB$ và $CD$, khi đó $J, N, D, C$ cũng là hàng điểm điều hòa.

Cách 1

Cách 1. Ta có thể dùng định lý Ceva và Meneluas để tính toán các tỉ số.

  • Áp dụng định lý Menelaus cho tam giác $IOA$ cho cát tuyến $DNC$ ta có:
    \[\dfrac{{\overline {NO} }}{{\overline {NI} }}.\dfrac{{\overline {DI} }}{{\overline {DA} }}.\dfrac{{\overline {CA} }}{{\overline {CO} }} = 1\]
  • Tương tự cho tam giác $IOC$ ta có \[\dfrac{{\overline {MO} }}{{\overline {MI} }}.\dfrac{{\overline {BI} }}{{\overline {BC} }}.\dfrac{{\overline {AC} }}{{\overline {AO} }} = 1\]
  • Mặt khác áp dụng Menelaus cho tam giác $IAC$ ta có \[\dfrac{{\overline {BI} }}{{\overline {BC} }}.\dfrac{{\overline {OC} }}{{\overline {OA} }}.\dfrac{{\overline {DA} }}{{\overline {DI} }} = 1\]
  • Từ các điều trên ta có \[\dfrac{{\overline {NO} }}{{\overline {NI} }}:\dfrac{{\overline {MO} }}{{\overline {MI} }} = – 1\,\]
  • Nên $I, O, M, N$ là hàng điểm điều hòa.

Cách 2

Sử dụng phép chiếu xuyên tâm.

  • Ta có $(IOMN) = C(IOMN) = (BAMJ) = D(BAMJ) = (OIMN) = 1/(IOMN)$
  • Do đó $(IOMN) = – 1$ (Vì $(IOMN) \neq 1$
  • Vậy $(IOMN)$ là hàng điểm điều hòa.
  • Hơn nữa ta có $– 1 = (IOMN) = B(IOMN) = (CDJN)$
  • Vậy $J, N, D, C$ là hàng điểm điều hòa.

Ví dụ 2.   Cho tam giác $ABC$ ngoại tiếp đường tròn $(I)$. Đường tròn $(I)$ tiếp xúc với $BC, AB, AC$ lần lượt tại $D, E, F$. $EF$ cắt $BC$ tại $P$.
a. Khi đó $P, D, B, C$ là hàng điểm điều hòa.
b. Gọi $H$ là hình chiếu của $D$ trên $EF$. Chứng minh $HD$ là phân giác $\angle BHC$.

 

Gợi ý

a. Áp dụng Menelaus cho tam giác $ABC$ ta có $$ \dfrac{PB}{PC}.\dfrac{EC}{EA}.\dfrac{FA}{FB} = 1$$.
Suy ra $\dfrac{PB}{PC} = \dfrac{FB}{FC} = \dfrac{DB}{DC}$. Do đó $B, C, P, D$ là hàng điểm điều hòa.
b.  Ta có $H(BCPD) = -1$ mà $HD \bot HP$, suy ra $HD, HP$ lần lượt là phân giác ngoài và phân giác trong của $\angle BHC$.

Ngoài ra ta còn biết hàng điểm điều hòa như:

Tâm hai đường tròn và tâm vị tự ngoài và tâm vị tự trong của hai đường tròn đó tạo thành hàng điểm điều hòa.

Tâm đường tròn ngoại tiếp, tâm đường tròn Euler, trực tâm và trọng tâm tạo thành hàng điểm điều hòa. (Đây là trường hợp đặc biệt của tính chất trên)

 

Ta có thể sử dụng phép chiếu xuyên tâm để chứng minh các định lý sau.

Ví dụ 3. (Định lý Papus) Cho hai đường thẳng $\Delta$ và $\Delta ‘$. Trên $\Delta$ lấy các điểm $A, B, C$ và trên $\Delta’$ lấy các điểm $A’, B’, C’$. Gọi $M$ là giao của $AB’$ và $A’B$; $N$ là giao của $AC’$ và $A’C$ và $P$ là giao của $BC’$ và $B’C$. Chứng minh rằng $M, N, P$ thẳng hàng.

Gợi ý

  •  Gọi $K$ là giao điểm của $AC’$ và $A’B$; $I$ là giao điểm của $A’C$ và $BC’$.
  • Ta có $(BKMA’) = A(BKMA’) = A(CNLA’) = (CNLA’)$.
  • Và $(BC’PI) = C(BC’PI) = C(AC’HN) = B'(AC’HN) = (LA’CN) = (CNLA’)$.
  • Do đó $(BKMA’) = (BC’PI)$, suy ra $C’K, MP$ và $A’I$ đồng quy, hay $M, N, P$ thẳng hàng.

Ví dụ 4. (Định lý Pascal)  Cho đường tròn $(w)$. Trên $(w)$ lấy các điểm $A, B, C$ và $A’, B’, C’$. Gọi $M$ là giao của $AB’$ và $A’B$; $N$ là giao của $AC’$ và $A’C$ và $P$ là giao của $BC’$ và $B’C$. Chứng minh rằng $M, N, P$ thẳng hàng.

Gợi ý

  • Gọi $L$ là giao điểm của $AC’$ và $A’B$, $K$ là giao điểm của $A’C$ và $BC’$.
  • Xét tứ giác $A’BC’B’$. Ta có:
    $$(BLMA’) = A(BC’B’A’) = C(BC’B’A’) = (BC’PK)$$
  • Suy ra $C’L, PM$ và $A’K$ đồng quy. Vậy $M, N, P$ thẳng hàng.

Ví dụ 5. (Định lý Desargue)  Cho hai tam giác $ABC$ và $A’B’C’$. Gọi $P$ là giao điểm của $AB$ và $A’B’$; $Q$ là giao điểm của $AC$ và $A’C’$; $R$ là giao điểm của $BC$ và $B’C’$. Khi đó $P, Q , R$ thẳng hàng khi và chỉ khi $AA’, BB’, CC’$ đồng quy.

Gợi ý

  • Chiều thuận. Cho $M, N, P$ thẳng hàng, ta chứng minh $AA’, BB’, CC’$ đồng quy. Gọi $S$ là giao điểm của $AA’$ và $CC’$. Ta chứng minh $S, B, B’$ thẳng hàng.
  • Ta có $N(SAMA’) = M(SANA’) = N(SCMC’) = P(SCMC’)$. Mà $S$ là giao của $NS$ và $PS$, $B$ là giao của $MA$ và $PC$, $B’$ là giao của $MA’$ và $PC’$, suy ra $S, B’, B$ thẳng hàng. Hay $AA’, BB’, CC’$ đồng quy.
  • Chiều đảo. Áp dụng chiều thuận cho tam giác $AMA’$ và $CPC’$

 2. Áp dụng vào giải các bài toán.

Ví dụ 6. Cho tam giác $ABC$, đường tròn tâm $I$ nội tiếp tam giác tiếp xúc với $AC, AB, BC$ lần lượt tại $E$ , $F$ và $D$. $ID$ cắt $EF$ tại $K$. Chứng minh $AK$ đi qua trung điểm của $BC$.

Gợi ý

  • Gọi $M$ là giao điểm của $AK$ và $BC$, ta chứng minh $M$ là trung điểm $BC$.
  • Qua $A$ dựng đường thẳng $(d)$ song song với $BC$. Ta cần chứng minh $(d, AM, AB, AC) = -1$.
  • Gọi $J$ là giao điểm của $EF$ và $(d)$. Ta có $(d, AM, AB, AC) = (JKFE)$.
  • Gọi $H$ là giao điểm của $ID$ và $(d)$, ta có $AH \bot IH$, suy ra $H, A, E, F, I$ cùng thuộc đường tròn đường kính $AI$. Hơn nữa $IE = IF$, suy ra $\angle FHI = \angle EHI$. Từ đó ta có $HK, HJ$ là phân giác trong và phân giác ngoài của $\angle EHF$.
  • Do đó $(JKFE) = -1$.
  • Suy ra $(d, AM, AB, AC) = – 1$, vậy $M$ là trung điểm của $BC$.

Ví dụ 7. (BMO 2007) Cho tam giác $ABC$ vuông tại $A$, $D$ là một điểm trên cạnh $AC$. Gọi $E$ là điểm đối xứng của $A$ qua $BD$. Đường thẳng qua $D$ vuông góc với $BC$ cắt $CE$ tại $F$. Chứng minh $DE$ và $AF$ cắt nhau tại một điểm thuộc đường thẳng $BC$. 

Gợi ý

  • Gọi $I$ là giao điểm của $DF$ và $AE$, $J$ là giao điểm của $AF$ và $ED$, $K$ là giao điểm của $CB$ và $AE$.
  • Ta có $HK. HI = HD.HB = HE^2$, mà $H$ là trung điểm của $AE$ nên $(AEKI) = – 1$. Suy ra $B(AEKI) = – 1$.
  • Mặt khác, xét tứ giác $ADFE$ thì theo bài toán 1 ta có $C(AEJI) = – 1$.
  • Do đó $B(AEKI) = C(AEJI)$, suy ra $B, J, C$ thẳng hàng.

Ví dụ 8.  (IMO Shortlist 2006) Hai đường tròn $(O_1)$, $(O_2)$ tiếp xúc ngoài nhau tại $C$ và tiếp xúc trong với $(O)$ tại $D$ và $E$. Gọi $(d)$ là tiếp tuyến chung của $(O_1)$ và $(O_2)$ tại $C$. $AB$ là đường kính của $(O)$ sao cho $A$, $D$, $O_1$ cùng phía đối với $(d)$. Chứng minh rằng $AO_1, BO_2$ và $DE$ đồng quy.

Gợi ý

  • Ta có $\triangle DO_1C \backsim \triangle DOB$ (c.g.c), suy ra $\angle O_1DC =\angle ODB$, suy ra $D, C, B$ thẳng hàng.
  • Chứng minh tương tự ta cũng có $A, C, E$ thẳng hàng. Hơn nữa nếu $Z, Y$ là giao của $O_1O_2$ với $(O_1)$ và $(O_2)$ thì $Z$ thuộc $AD$ và $Y$ thuộc $EB$.
  • Do đó $\angle AEB = \angle ADB = 90^\circ$. Do đó $C$ là trực tâm của tam giác $MAB$ ($M$ là giao điểm của $AD$ và $BE$). Suy ra $M \in (d)$.
  • Gọi $P, H$ là giao điểm của $MC$ và $DE$ và $AB$. Khi đó ta có $(MCPH) = – 1$, suy ra $A(DPCH) = -1$ (1)
  • Mặt khác xét chùm $A(DO_1CH)$, đường thẳng qua $O_1$ song song với $AH$ cắt $AD$ và $AC$ tại $Z$ và $C$ và $O_1$ là trung điểm của $CZ$ nên $A(DO1CH) = – 1$ (2)
  • Từ (1) và (2) ta có $A, O_1, P$ thẳng hàng.
  • Chứng minh tương tự ta cũng có $B, O_2, P$ thẳng hàng.
  • Do đó ta có $AO_1, BO_2, DE$ đồng quy tại $P$.

Bài tập.

  1. Tam giác $ABC$ nội tiếp đường tròn $(O)$. $P$ thuộc tia đối của tia $AO$. Đường thẳng $b, c$ đối xứng với $PB$ qua $AB$ và $PC$ qua $AC$. Chứng minh giao điểm của $b$ và $c$ thuộc trên một đường cố định.
  2. Cho tam giác $ABC$ nội tiếp đường tròn tâm $O$ đường kính $BC$ ($AB < AC$). Gọi $E$ là điểm đối xứng của $A$ qua $BC$ và $D$ là giao điểm của tiếp tuyến tại $A$ với $BC$. Gọi $X$ là hình chiếu của $A$ trên $BE$, $M$ là trung điểm $AX$. Gọi $Z$ là giao điểm của $BM$ và $(O)$. Chứng minh rằng $CD$ là tiếp tuyến của đường tròn $(AZD)$.
  3. Cho tam giác $ABC$ nội tiếp đường tròn $(O)$. $E$ là một điểm di động trên $(O)$. $AE$ cắt các tiếp tuyến tại $B, C$ của $(O)$ tương ứng tại $M, N$. $BN$ cắt $CM$ tại $F$. Chứng minh rằng đường thẳng $EF$ luôn đi qua một điểm cố định khi $E$ di động trên $(O)$.
  4. Cho đường tròn $(O)$, một điểm $A$ nằm ngoài đường tròn. Từ $A$ vẽ hai tiếp tuyến $AB$ và $AC$ đến $(O)$ ($B, C$ là hai tiếp điểm), và hai cát tuyến $AMQ, ANP $đến $(O) $($M$ nằm giữa $A, Q$ và $N $ nằm giữa $A, P$). Chứng minh rằng $BC, PM, QN $ đồng quy.
  5. Cho $(O)$ và một điểm cố định nằm ngoài $(O)$; kẻ tiếp tuyến $MB$ và một cát tuyến $MAC$ bất kì. Một đường thẳng $d$ song song với $MB$ cắt $BA; BC$ tại $N$ và $P$. Chứng minh rằng trung điểm $I$ của $NP$ thuộc một đường cố định.

 

Đường thẳng qua điểm cố định. VMO 2014.

Bài toán. (PoP1.12) (VMO 2014) Cho tam giác nhọn $ABC$ nội tiếp đường tròn $(O)$, trong đó $B, C$ cố định và $A$ thay đổi trên $(O)$. Trên các tia $AB$ và $AC$ lần lượt lấy các điểm $M$ và $N$ sao cho $MA = MC$ và $NA = NB$. Các đường tròn ngoại tiếp các tam giác $AMN$ và $ABC$ cắt nhau tại $P$ ($P \neq A$). Đường thẳng $MN$ cắt đường thẳng $BC$ tại $Q$.

  1. Chứng minh rằng ba điểm $A, P, Q$ thẳng hàng.
  2. Gọi $D$ là trung điểm của $BC$. Các đường tròn có tâm là $M, N$ và cùng đi qua $A$ cắt nhau tại $K$ ($K \neq A$). Đường thẳng qua $A$ vuông góc với $AK$ cắt $BC$ tại $E$. Đường tròn ngoại tiếp tam giác $ADE$ cắt $(O)$ tại $F (F \neq A)$. Chứng minh rằng đường thẳng $AF$ đi qua một điểm cố định.

Gợi ý

1.

  • Ta có $MA = MC$ và $NA = NB$ nên tam giác $MAC$ cân tại $M$ và tam giác $NAB$ cân tại $N$.
  • Do đó $\angle BMC = \angle BAC + \angle MAC = 2\angle BAC = \angle BOC$ hay tứ giác $BMOC$ nội tiếp.
  • Tương tự thì tứ giác $BONC$ nội tiếp nên $BMNC$ nội tiếp.
  • Khi đó $QM.QN = QB.QC$, lại có $APMN, APBC$ nội tiếp nên $A, P, Q$ thẳng hàng.

2.

  • Tam giác $AMN$ có $OM \bot AN, ON \bot AM$ nên $AO \bot MN$. Mặt khác $AK \bot MN$ nên $A, O, K$ thẳng hàng.
  • Ta có $\angle OAE = \angle ODE = 90^o$ nên $AODE$ nội tiếp, do đó $\angle OAE = \angle OFE = 90^o$. Hơn nữa $OA = OF$ nên $A, F$ đối xứng qua $OE$.
  • Giả sử $OE$ cắt $AF$ tại $H$ thì $EH.EO = EA^2= EB.EC$ nên $BHOC$ nội tiếp, lại có $\angle OHA = 90^o$ nên $AH$ đi qua $G$ là điểm chính giữa cung $BC$ không chứa $O$ của đường tròn ngoại tiếp tam giác $OBC$.
  • Vậy $AF$ luôn đi qua điểm $G$ cố định.

Hình học tĩnh và động (Phần 2)

3. Động trong mô hình

Bên cạnh việc vận dụng các phép biến hình, trong quá trình giải quyết hoặc tìm ra các bài toán hình học, những học sinh nhạy bén có thể phát hiện ra những mô hình quen thuộc, những bài toán đã biết trước được lồng trong hình vẽ của mình hoặc đã được thay đổi khéo léo để trở thành những bài toán mới. Điều này cho thấy rằng nếu chúng ta chịu khó biến hoá linh hoạt với các mô hình dù là đã rất quen biết thì vẫn có thể có được những phát hiện mới vừa toàn diện, vừa sâu sắc về một vấn đề nào đó đang xem xét.

7

Điều kiện đối song thường được sử dụng rộng rãi dưới dạng sau:  Cho $latex A, C$ thuộc tia $latex Ox$ và $latex B, D$ thuộc tia $latex Oy$. Khi đó $latex AB$ và $latex CD$ đối song khi và chỉ khi tứ giác $latex ACBD $nội tiếp.

Bây giờ ta chọn một mô hình quen biết để thực hiện động tác đối song. Kết quả thu được sẽ thú vị và có phần nào “bất ngờ” nếu mô hình này cũng liên quan đến hình đối xứng qua đường phân giác

Một mô hình như vậy có thể là bài tập như sau:

Ví dụ 3.1. Cho tam giác $latex ABC$ nội tiếp đường tròn (O). Kí hiệu $latex N$ là giao điểm của các tiếp tuyến tại B và C của (O). Lúc đó AN đối xứng với trung tuyến AM qua phân giác trong góc A (hay NA đối song với AM)

8

Đây là một tính chất hình học rất quen thuộc trong tam giác và ta hãy thực hiện phép đối song cho nó. Trước hết ta dựng đường thẳng $latex B’C’$ đối song với $latex BC$ bằng cách vẽ đường tròn qua $latex B, C$ cắt $latex AB, AC$ tại $latex C, B$. Rõ ràng theo cấu trúc đối song thì kí hiệu  $latex M’, N’$ trong tam giác $latex AB’C’$ có vai trò như $latex M, N$ trong tam giác $latex ABC$ thì $latex AM’$ cùng phương với $latex AN$ và $latex AN’$ cùng phương với $latex AM$. Tức là $latex A, M’, N$ và $latex A, N’, M$ thẳng hàng. Từ đó ta có:

Bài toán 3. Cho tam giác $latex ABC$ có A thay đổi còn B và C cố định. Một đường tròn thay đổi đi qua B và C cắt AB, AC tại $latex C’$ và $latex B’$. Chứng minh rằng trung tuyến $latex AM’$ của $latex AB’C’$ luôn đi qua một điểm cố định.

Còn nếu thay đổi hình vẽ đi một ít nhằm “giấu” đi tam giác $latex ABC$ và cách làm phép đối song khá lộ liễu ở trên, ta có thể phát biểu bài toán như sau:

Bài toán 4. Cho hai đường tròn (O) và (O’) cắt nhau tại B và C. A là điểm thay đổi trên (O). Hai đường thẳng AB, AC cắt (O’) tại C’ và B’. Gọi M’ là trung điểm của đoạn B’C’. Chứng minh rằng đường thẳng AM’ luôn đi qua một điểm cố định.

9

       Rõ ràng $latex AM’$ đi qua giao điểm N của hai tiếp tuyến tại B và C của (O). Cách phát biểu này làm cho bài toán trở nên thanh thoát hơn đồng thời khó hơn một chút, nhưng nếu ta thử nhìn bằng con mắt chuyển động đối song thì không có gì phức tạp cả.

4. Lời kết

Thay cho lời kết về sự cần thiết của việc quan sát các đối tượng hình học dưới con mắt vận động của phép biến hình của mô hình đã quen biết, xin phép được nói đôi điều về bài toán số 2 của kỳ thi Olympic Toán quốc tế (IMO) lần thứ 48 được tổ chức tại Việt Nam năm 2007.

Bài toán 5. Cho 5 điểm A, B, C, D, E sao cho ABCD là hình bình hành và BCED là tứ giác nội tiếp. Cho $latex l$ là một đường thẳng qua A cắt cạnh BC và đường thẳng BD tương ứng tại F và G. Giả sử $latex EF = EC = EG$. Chứng minh rằng $latex l$ là phân giác góc $latex \widehat{BAD}$.

Các phát biểu này có phần nào hơi rối và có thể làm cho thí sinh ít nhiều lúng tung trong việc nắm bắt yêu cầu và bản chất của bài toán sẽ là rõ ràng và “dễ chịu” hơn nếu phát biểu lại:

Cho hình bình hành ABCD. Gọi $latex l$ là một đường thẳng đi qua A, cắt cạnh BC và đường thẳng DC tại F, G. Gọi E là tâm đường tròn ngoại tiếp tam giác CFG. Chứng minh rằng nếu DCED nội tiếp thì $latex l$ là phân giác $latex \widehat{DAB}$.

Dưới con mắt xây dựng một bài toán thì đây là một bài toán đảo. Nó được đặt ra từ bài toán khá nhẹ nhàng như sau: Nếu $latex l$ là phân giác $latex \widehat{DAB}$ thì tứ giác BCED nội tiếp.

Vì vậy, ý tưởng đầu tiên là đi chứng minh đảo (và đây cũng là ý của đáp án). Tuy nhiên, việc so sánh góc như ở bài toán thuận sẽ không mang lại kết quả. Vì thế, cần chuyển sang suy luận kiểu phản chứng: giả sử l// không phải là phân giác (tức là tam giác CFG// không cân) thì sẽ dẫn đến mâu thuẫn. Cách giải này ít được các thí sinh làm theo và làm đúng. Nó cũng không đẹp và không làm rõ được bản chất của hình vẽ. Trong khá nhiều cách giải được tìm ra, hai cách sau đây là hay nhất và điều lý thú là một cách thì sử dụng lối nắm bắt mô hình trong bài toán (cách giải 1), còn cách kia lại dựa vào phép biến hình để xử lý vấn đề (cách giải 2).

Cách giải 1. (Mô hình đường thẳng Simson)

10

Hạ $latex EI, EJ$ vuông góc với $latex CF, CG$. Thế thì $latex I, J$ là trung điểm của $latex FC$ và $latex GC$ nên đường thẳng $latex IJ$ (song song với $latex l$) đi qua trung điểm $latex K$ của AC và cũng là trung điểm BC. Mặt khác, do tứ giác EBDG nội tiếp nên $latex IJ$ chính là đường thẳng Simson của điểm E đối với tam giác BDC. Suy ra $latex EK \bot BD$ nên tam giác EBD cân tại E. Từ đây không khó suy ra tam giác CFG cân tại C và điều phải chứng minh.

Cách giải 2. (Phép biến hình).  Ở đây sẽ sử dụng phép vị tự quay; so với phép quyay, nó cũng không khác biệt lắm và các kết quả như các mệnh đề 1, 2, 3 ở trên đây đều có thể mở rộng tương tự.

11

Xét phép vị tự quay S biến đoạn BC thành đoạn DG. Do $latex \dfrac{FB}{FC} = \dfrac{CD}{CA}$ nên S biến F thành C. Suy ra S biến trung điểm $latex I$ của đoạn FC thành trung điểm $latex J$ của CG. Theo mệnh đề tương tự với mệnh đề 3, tâm O của S phải đồng thời thuộc đường tròn nội tiếp các tam giác CBD và CIJ nên O trùng với E. Suy ra tam giác EBD đồng dạng với tam giác EIH nên tam giác EBD cân tại E và bài toán được giải quyết.

Hết


[Phần 1]                         

Hình học tĩnh và động(Phần 1)

Tôi là một người may mắn vì từng là học trò và là đồng nghiệp của thầy Lê Bá Khánh Trình tại trường PTNK. Sau các năm học và giảng dạy tại trường, tôi học hỏi được ở thầy nhiều điều, đối với tôi thầy là thầy giáo giỏi và sống rất giản dị. Ở trường PTNK hiện nay, thầy là tổ trưởng tổ toán đồng thời phụ trách môn hình học của các lớp chuyên và đội tuyển. Thầy chưa xuất bản quyển sách nào cho riêng mình về hình học, chỉ có những bài giảng được trình bày trong các hội thảo hay trại hè. Tôi có được bản viết tay một bài báo hay của thầy, bài viết được trình bày trong hội thảo toán học sơ cấp và đăng trong kỷ yếu trại hè năm 2009. Tôi xin được đăng lại để các bạn yêu thích hình học tham khảo.

  1. Hình học tĩnh hay động

Trong bài này, tôi muốn trình bày một đôi điều riêng tư về môn hình học phổ thông (hay còn được gọi là hình học sơ cấp) dưới hai cách nhìn có phần nào khác biệt nhau. Trước hết, thông dụng hơn cả là cách nhìn của một người quan tâm đến việc giải các bài toán hình học. Cách nhìn này thường yêu cầu xem xét, phân loại các bài toán khác nhau, trình bày kinh nghiệm giải quyết chúng và tìm ra các mối liên quan giữa chúng với các bài toán đã biết. Cách nhìn này thường được quan tâm hàng đầu và thường là nội dung chính trong các bài viết, các tài liệu về toán phổ thông. Bên cạnh đó, tôi cũng muốn trình bày các vấn đề ở đây dưới một cách nhìn khác, cách nhìn của người muốn tìm tòi, phát hiện ra các bài toán mới, những bài toán không chỉ mới về nội dung mà còn có tác dụng tích cực trong việc rèn luyện tư duy và các kỹ năng cần thiết của người học, đặc biệt là đối với những học sinh giỏi. Đây là công việc đòi hỏi ở chúng ta nhiều công phu không kém gì công việc giải quyết các bài toán. Tuy nhiên, ở nước ta dường như công việc này còn chưa được quan tâm đúng mức. Đây đó, được ưa chuộng hơn cả vẫn là sử dụng các bài toán hay, mẫu mực đã có hoặc tận dụng các đề toán mới được công bố ở các nước khác. Cách làm này khá tiện lợi, hợp lý và hiệu quả nhưng thực tế có hai nguy cơ:

  • Một là, nếu sử dụng các bài toán đã được công bố trong các kỳ thi, việc đánh giá sẽ thiếu công bằng và chính xác;
  • Hai là, đáp án của nhiều bài toán do vô tình hay hữu ý, đã ít nhiều bị biến dạng. Điều này có thể làm cho cách trình bày trở nên ngắn gọn hơn nhưng đồng thời cũng đã làm mất đi những ý tưởng trong sáng và tự nhiên ban đầu khi những bài toán đó được xây dựng nên. Vì thế, nếu sử dụng lại các đáp án một cách máy móc, thiếu sự biên tập cần thiết thì rất có thể chúng sẽ có tác dụng tiêu cực đến việc rèn luyện tư duy của người học.

Với những suy nghĩ đó, tôi nghĩ chắc cũng đã đến lúc chúng ta cần tăng cường sự quan tâm và đầu tư nhiều công sức hơn nữa cho công việc “sáng tác” này. Một công việc không dễ dàng nhưng chắc chắn sẽ rất thú vị và bổ ích. Bây giờ, đã đến lúc đi thẳng vào chủ đề của bài này: Hình học tĩnh hay động? Nếu chỉ nhìn các bài toán mà chúng ta vẫn thường giải quyết hoặc tìm tòi thì hình học vừa tĩnh lại vừa động. Hình học tĩnh trong những bài toán mà ở đó, các yếu tố như điểm, đường thẳng, đường tròn,… đều không thay đổi và yêu cầu đặt ra ở đây thường là chứng minh các tính chất hình học hoặc tính toán các đại lượng nào đó trong hình vẽ đã cho. Còn hình học sẽ động trong những bài toán mà ở đó, bên cạnh các yếu tố cố định, không thay đổi có 1 vài yếu tố thay đổi và yêu cầu ở đây thường là tìm quĩ tích, tìm các điểm cố định hoặc tìm giá trị lớn nhất, nhỏ nhất của một đại lượng hình học. Tuy nhiên, đây chỉ là cái nhìn ban đầu. Trên quan điểm của những người mong muốn đi tìm lời giải cho các bài toán khó và cả trên quan điểm của những người mong muốn phát hiện ra những bài toán hình học mới, theo tôi, hình học luôn luôn cần vận động, vận động ngay cả trong những bài toán mà các yếu tố được cho đều cố định, không đổi. Bởi vì chính cách nhìn, cách tư duy trong các yếu tố của hình vẽ không ngừng biến động, tuơng tác, thậm chí toàn bộ cả hình vẽ đều không thay đổi sẽ giúp chúng ta tìm ra đúng những lời giải đẹp nhất và phản ánh trọn vẹn nhất bản chất hình học của một bài toán.

  2.   Động trong biến hình

Một trong những công cụ quan trọng hàng đầu để thực hiện việc biến đổi các yếu tố trong một hình chính là phép biến hình. Không phải ngẫu nhiên mà hiện nay, những lời giải hay nhất của nhiều bài toán hình học cũng như rất nhiều phát hiện hình học thú vị thường nhận được trên cơ sở vận động ý tưởng và kỹ thuật của các phép biến hình.

Thế nhưng để có thể vận dụng chúng một cách hiệu quả, trước hết phải có được một nền tảng tương đối vững chắc về biến hình mà cụ thể là phải nắm bắt được một vài mệnh đề quan trọng và làm quen được với một số tình huống tiêu biểu cho việc thực hiện các động tác biến hình hợp lý.

Vậy đó là những mệnh đề nào, những tình huống nào? Trong khuôn khổ bài này, tôi chỉ xin phép trình bày những gì liên quan đến phép quay, một loại phép biến hình tuy đơn giản nhưng lại có mức độ áp dụng cao và mang lại rất nhiều kết quả phong phú. Tương tự, không khác biệt với phép quay bao nhiêu là phép vị tự quay. Thông thường, phép vị tự quay đem lại các kết quả tổng quát hơn và nâng cao độ phức tạp của bài toán mà vẫn giữ nguyên ý tưởng ban đầu của phép quay.

Nhưng trước khi phát biểu ra đây các mệnh đề, tình huống cần thiết được nhắc ở trên, xin phép được nói qua một chút cái gọi là “cảm hứng” thúc đẩy tôi viết ra những dòng này. “Cảm hứng” đó nảy sinh từ việc xem xét giáo trình Hình học nâng cao lớp 11 vừa được đưa vào giảng dạy từ vài năm học vừa qua, trong đó điểm đáng lưu ý nhất là phần các phép biến hình được trình bày đầy đủ hơn và đặc biệt là đã được phân bố ngay vào đầu năm học (trước đây, phần này chỉ được giảng dạy vào cuối năm lớp 10). Rõ ràng, với sự thay đổi này, hội đồng biên soạn sách giáo khoa cho thấy ý định rất nghiêm túc của mình là tăng cường hơn nữa sự chú ý cho phần các phép biến hình và đây thực sự là điều rất nên làm.

Các phép biến hình chính là mảng kiến thức mà ở đó, học sinh có thể làm được với những ý tưởng và những kỹ năng thích hợp nhất cho việc tiếp thu các kiến thức của toán học hiện đại. Những ý tưởng và những kỹ năng đó là gì? Đó là ý tưởng ánh xạ rất rõ nét trong cách trình bày và hệ thống các phép biến hình. Đó là ý tưởng phân loại và mô tả đầy đủ các lớp phép biến hình (mà tiêu biểu nhất là các phép dời hình). Và tất nhiên, quan trọng hơn cả là qua việc vận dụng các phép biến hình để giải toán, tư duy hình học của học sinh sẽ được nâng lên ở một cấp độ mới. Thay vì chỉ biết tính toán và so sánh các đại lượng hình học (góc, độ dài, diện tích,… ) để từ đó đi đến một chứng minh như trước đây, nay với việc sử dụng các phép biến hình, các em sẽ được tập quan sát những vận động, những tương tác giữa các yếu tố, những cấu trúc tiềm ẩn trong một hình vẽ để rồi từ đó rút ra được những chứng minh, những kết luận sâu sắc, nêu bật toàn diện bản chất của hình vẽ đó.

Những ý định như vậy là rất đúng đắn và chắc cũng đã được hội đồng biên soạn sách giáo khoa đem ra cân nhắc kỹ lưỡng trước khi quyết định việc phân bố lại chương trình sách giáo khoa nâng cao về hình học. Chỉ tiếc một điều, theo nhận xét chủ quan của tôi, là nội dung trình bày trong sách giáo khoa lớp 11 có lẽ vẫn còn chưa đủ để học sinh rèn luyện, nắm bắt và vận dụng công cụ biến hình ở mức độ cần thiết, ít ra là chưa cho phép các em làm quen được với ba ý tưởng quan trọng và bổ ích được kể ra ở trên.
Vậy nên cần bổ sung những điều gì? Xin điểm qua một vài điều tôi cho là quan trọng nhất và nhân tiện, đây cũng chính là trả lời cho câu hỏi đặt ra ở đầu phần này. Đó là phát biểu các mệnh đề, các tình huống chính mà bất cứ ai khi học các phép toán biến hình (cụ thể là phép quay) đều phải biết để có thể vận dụng thực sự tốt công cụ này.

2.1. Sự tồn tại của phép quay. Trước hết, để giúp cho học sinh hiểu rõ và tự tin hơn khi sử dụng các phép biến hình, nên trang bị cho các em các mệnh đề về tồn tại duy nhất của một phép biến hình trong những tình huống đơn giản và thông dụng nhất. Đối với phép quay, mệnh đề sau đáp ứng đủ các yêu cầu đó.

1Mệnh đề 2.1. Cho hai đoạn thẳng AB và A’B’ sao cho AB = A’B’ và $latex \overrightarrow{AB} \neq \overrightarrow{A’B’}$. Khi đó, tồn tại duy nhất một phép quay R biết AB thành A’B’ tương ứng.

Mệnh đề này cho phép ta chỉ cần quan sát thấy có hai đoạn thẳng bằng nhau là có thể liên tưởng ngay đến một phép quay và sẵn sàng vận dụng nó nếu có thêm các điều kiện thích hợp chứ không phải chờ đến khi có được hai tam giác, hai hình bằng nhau mới bắt đầu nghĩ đến phép quay. Ngoài ra, mệnh đề này còn là cơ sở để mô tả đầy đủ các phép dời hình (sẽ đề cập ở dưới). Tuy nhiên, nó chỉ có ý nghĩa giúp ta làm quen với tình huống. Muốn mang lại hiệu quả thực sự phải bổ sung thêm một ít về việc xác định phép quay tồn tại nói trên.

Mệnh đề 2.2. (Mệnh đề 1 bổ sung) Phép quay R có góc quay là $latex \alpha = \widehat{(\overrightarrow{AB}, \overrightarrow{A’B’})} $ và tâm $latex O$ đồng thời nằm trên các trung trực của AA’ và BB’ cũng như các cung tròn (đơn) chứa các điểm nhìn đoạn $latex AA’, BB’$ dưới một góc có hướng bằng $latex \alpha$

Bổ sung này cho ta một cái nhìn khá toàn diện về tình huống đang xét (xem hình vẽ); nhưng để có được sự quan sát đầy đặn và sâu sắc hơn nữa, cần trang bị thêm:

Mệnh đề 2.3. Ta giữ các giả thiết như mệnh đề 2.1 và mệnh đề 2.2. (1) giả sử các đường thẳng AB và A’B’ cắt nhau tại P, khi đó các tứ giác $latex APOA’, BPOB’$ nội tiếp. (2) Giả sử các đường thẳng $latex AA’, BB’$ cắt nhau tại Q, khi đó các tứ giác $latex ABOQ, A’B’OQ$ nội tiếp.

Các mệnh đề này rõ ràng là chứng minh không khó (nên xin bỏ qua ở đây). Còn lợi ích mà chúng có thể mang lại thì lại khá phong phú. Xin bắt đầu bằng một bài tập khá quen thuộc trong đó việc vận dụng ý tưởng biến hình là rất tự nhiên và đơn giản.

Ví dụ 2.4. Cho tam giác ABC cân tại A . Trên cạnh AB và AC lần lượt lấy các điểm M,N sao cho AM = CN. Chứng minh đường tròn ngoại tiếp tam giác AMN luôn đi qua một điểm cố định khác A.

2Lời giải. Xét phép quay biết đoạn thẳng AM tương ứng thành đoạn thẳng CN. Tâm quay O theo mệnh đề 2.2 là giao điểm của đường trung trực và cung tròn quỹ tích những điểm K sao cho:

 $latex \widehat{(\overrightarrow{KA}, \overrightarrow{KC})} = \widehat{(\overrightarrow{AM}, \overrightarrow{CN} )}$,

nên tâm quay O cố định. Cuối cùng do AM và CN cắt nhau tại A, nên tứ giác AMON nội tiếp. Vậy đường tròn ngoại tiếp tam giác AMN đi qua điểm O cố định.

Bài tập này rất thích hợp cho việc làm quen với các ứng dụng của phép quay. Nó chỉ có một khiếm khuyết là nếu tam giác ABC cân thì điểm O cần tìm chính là tâm đường tròn ngoại tiếp tam giác ABC . Do đó, nhiều học sinh có thể mày mò, dự đoán và chứng minh kết quả trên mà không cần sử dụng phép quay. Thực ra, để khắc phục điều này, có thể xem tam giác ABC không cân và còn tổng quát hơn là bài tập sau mà cách giải không có gì thay đổi.

Ví dụ 2.5. Trên hai tia $latex Ox$ và $latex Oy$ của góc $latex xOy$, hai điểm A, B. M, N là hai điểm thay đổi trên $latex Ox, Oy $ sao cho $latex AM = BN$ (M khác phía O đối với A, còn N cùng phía O đối với B). Chứng minh rằng đường tròn ngoại tiếp tam giác OMN luôn đi qua điểm cố định khác O.

3

Nếu bổ sung vào bài tập này thêm một vài yếu tố với những mối quan hệ tương tự (Chẳng hạn lấy thêm các điểm P, Q trên $latex Ox, Oy$ cũng với tính chất AP = BQ để phép quay được xét cũng biến P thành Q) và thay đổi chút ít cách phát biểu cũng như vận dụng tính chất còn lại (tính chất 2) của mệnh đề 2. Ta nhận được:

Bài toán 1. Cho tứ giác ABCD có AB = CD và các điểm M, N trên AB, CD sao cho AM = DN. Giả sử MN cắt AD và BC lần lượt tại P, Q. Chứng minh rằng tồn tại một điểm O có cùng phương tích với tất cả bốn đường tròn ngoại tiếp các tam giác PSAM, PDM, QBM, QCN.

4

Lời giải. Gọi O là tâm của phép quay R biến AB tương ứng thành CD và M thành N. Theo mệnh đề 3 (tính chất 2) các tứ giác AMOP, ANOP, BMOQ, CNOQ đều nội tiếp. Khi đó O nằm trên 4 đường tròn ngoại tiếp các tam giác PAM, PAN, BMQ và CNQ nên có cùng phương tích đối với  các đường tròn này.

2.2. Tích của hai phép quay. Điều cần bổ sung thứ hai liên quan đến bản chất ánh xạ của các phép biến hình. Một khi đã định nghĩa chúng như các ánh xạ thì lẽ tự nhiên cũng cần phải đề cập đến tích của hai phép biến hình. Vậy tích của hai phép quay là gì?

Mệnh đề 2.6. Cho hai phép quay $latex R_1(O_1, \alpha_1), R_2(O_2, \alpha_2)$. Nếu $latex \alpha_1 + \alpha_2 \neq 2k\pi$ thì tích $latex R = R_2.R_1$ là một phép quay với  góc quay $latex \alpha = \alpha_1 + \alpha_2$. Tâm $latex O$ của phép quay được xác định dựa vào điều kiện sau:

$latex \widehat{(\overrightarrow{O_1O}; \overrightarrow{O_1O_2})} = \dfrac{\alpha_1}{2}, \widehat{(\overrightarrow{O_2O}; \overrightarrow{O_2O_1})} = \dfrac{\alpha_2}{2}$

5Chứng minh. Việc R là phép quay có thể suy ra ngay từ mệnh đề 1. Còn tâm O chính là điểm bất động duy nhất qua tích $latex R = R_2.R_1$. Nếu chọn điểm O như trên và lấy $latex O’$ đối xứng của $latex O$ qua $latex O_1O_2$ thì ta có $latex R_1(O) = O’, R_2(O’) = O$, suy ra $latex R(O) = O$. Vậy điểm O được xác định như trên chính là tâm quay.

Bài tập sau có thể xem là ứng dụng mẫu mực của việc vận dụng tích 2 phép quay:

Ví dụ 2.7. Bên ngoài tam giác ABC và trên các cạnh dựng các tam giác $latex BCA_1, CAB_1, ABC_1$ cân lần lượt tại $latex A_1, B_1, C_1$ với góc $latex \widehat{BA_1C} = 260^o$ và các góc  $latex \widehat{CB_1A} = \widehat{AC_1B} = 100^o$. Tính góc $latex \widehat{B_1A_1C_1}$

6Bài tập này được giải quyết hết sức nhanh gọn và sáng sủa từ mệnh đề trên. Trước hết, nhận xét rằng: $latex R(A_1; – 160^o) = R(B_1; 100^o)o R(C_1; 100^o)$

Theo tính chất tâm của tích hai phép quay thì: $latex \widehat{(\overrightarrow{C_1A_1}, \overrightarrow{C_1B_1})} = \widehat{(\overrightarrow{B_1C_1},\overrightarrow{B_1A_1})} = \dfrac{100^o}{2} = 50^o$

Vì vậy $latex \widehat{B_1A_1C_1} = 80^o$

Tất nhiên với đề bài như trên, một số học sinh vẫn có thể đi “tính được” góc $latex \widehat{B_1A_1C_1}$ với một khối lượng tính toán hết sức cồng kềnh và với kỹ thuật tính toán đáng nể. Nếu bây giờ biết tấu bài tập này đi một chút bằng cách cất đi điểm mấu chốt $latex A_1$ và gắn têm tính di động cho các điểm $latex B_1C_1$ thì có thể nhận được phương án sau:

Bài toán 2. Cho tam giác ABC nội tiếp đường tròn (O) có B, C cố định, còn A thay đổi trên (O). Bên ngoài tam giác, trên các cạnh AB, AC dựng các tam giác $latex ABC_1, ACB_1$ lần lượt cân tại $latex C_1, B_1$ với  $latex \widehat{AC_1B}=\widehat{AB_1C}=100^o$. Chứng minh rằng trung trực của $latex B_1C_1$ luôn đi qua một điểm cố định. $latex \angle$

Rõ ràng điểm cố định cần tìm chính là điểm A 1// trong bài tập trên nay đã được “giấu” đi. Và chính vị trí không dễ đoán của A 1// đã làm cho bài toán trở nên vô cùng khó khăn cho những ai chưa nắm được ý tưởng về tích của hai phép quay.

2.3. Về các phép dời hình khác. Để kết thúc phần này, xin nêu ra điều cần bổ sung cuối cùng để cho nội dung về phép biến hình được cân đối, hoàn chỉnh. Chúng ta biết rằng lớp các phép biến hình được trình bày đầy đủ nhất chính là lớp các phép dời hình. Chúng có thể được mô tả rất trọn vẹn thông qua các phép dời hình cơ sở là tịnh tiến, quay và đối xứng trục. Vậy nên chăng sau khi đã học xong các phép biến hình cụ thể này, chúng ta sẽ khái quát bằng khái niệm các phép dời hình và kết thúc bằng một mệnh đề mô tả đầy đủ lớp các phép dời hình để làm sáng tỏ bản chất khá đơn giản của chúng. Đây thường là sơ đồ mẫu mực khi trình bày về một lớp các phép biến đổi nào đó trong các lĩnh vực khác của toán học.
Mệnh đề mô tả các phép dời hình ở đây rất gọn, đơn giản và có thể suy ra trực tiếp từ Mệnh đề 1 ở trên. Nhưng trước khi phát biểu nó, theo tôi nên phân loại các phép dời hình thành các phép dời hình thuận (là các phép dời hình bảo toàn định hướng) và các phép dời hình ngược (thay đổi định hướng). Điều này cũng gần giống như việc phân biệt hai tam giác bằng nhau thuận và bằng nhau nghịch mà học sinh đã rất quen thuộc. Việc phân loại các phép dời hình như vậy sẽ không gây ra khó khăn nào mà trái lại, nó còn có thể giúp học sinh hiểu và cảm nhận rõ ràng hơn về định hướng (cụ thể là chiều “quay” của một tam giác) trong các phép biến hình.
Đối với các phép dời hình thuận (quan trọng nhất và được xem xét kỹ lưỡng nhất) ta có sự mô tả đầy đủ sau:

Mệnh đề 2.8. Một phép dời hình thuận chỉ có thể là một phép tịnh tiến hoặc một phép quay.

Đối với các phép dời hình nghịch thì khó khăn hơn một chút:

Mệnh đề 2.9. Một phép dời hình nghịch có thể được biểu diễn như là tích một phép tịnh tiến với một phép đối xứng trục.

Trong phần bài tập của bộ sách giáo khoa Hình học nâng cao lớp 11, dạng tích này cũng được xét đến và được gọi là phép “đối xứng trượt”. Theo tôi, Mệnh đề 2.9 có thể không nhất thiết phải trình bày hoặc chỉ cần nhắc qua và đưa ra như một bài tập. Nhưng Mệnh đề 2.8 thì nên phát biểu như một lời đúc kết của phần các phép dời hình để sao cho khi học xong phần này, học sinh có cảm giác nắm bắt trọn vẹn, rõ ràng, không còn chút gì mơ hồ về các phép dời hình.

(Còn nữa) [Phần 2]

 

Phương tích trục đẳng phương

I. Định nghĩa và tính chất.

Định lý 1.1. Cho đường tròn tâm $O$ bán kính $R$ và điểm $M$ cố định, $OM = d$. Một đường thẳng thay đổi qua $M$ cắt đường tròn tại hai điểm $A, B$. Khi đó $\overline{MA}.\overline{MB} = d^2 – R^2$.

Định nghĩa 1.2 . Giá trị không đổi $\overline{MA}.\overline{MB} = d^2 – R^2$ trong định lý 1.1 được gọi là phương tích của điểm $M$ đối với đường tròn $(O)$ và kí hiệu là $\mathscr{P}_{M/(O)}$. Ta có \[\mathscr{P}_{M/(O)}= \overline{MA}.\overline{MB} = d^2 – R^2\]

Định lý 1.3. Hai đường thẳng $AB, CD$ cắt nhau tại $M$. Khi đó $A, B, C, D$ cùng thuộc một đường tròn khi và chỉ khi $\overline{MA}.\overline{MB} =\overline{MC}.\overline{MD} $

Tính chất 1.4 

  1. Khi $M$ nằm trên $(O)$ thì ${{\mathscr{P}}_{M/\left( O \right)}} = 0$.
  2. Khi $M$ nằm trên $(O)$ thì ${{\mathscr{P}}_{M/\left( O \right)}} = 0$.
  3. Khi $M$ nằm ngoài đường tròn $(O)$ và $MT$ là tiếp tuyến của $(O)$ thì ${{\mathscr{P}}_{M/\left( O \right)}} = M{T^2}$.
  4. Nếu $A, B$ cố định và $\overline {AB} .\overline {AM}$ không đổi thì $M$ cố định.

Định nghĩa 1.5. Nếu đường tròn suy biến thành điểm, tức là đường tròn có bán kính bằng 0 thì phương tích của điểm $M$ đến đường tròn đó bằng $d^2$, với $d$ là khoảng cách từ $M$ đến điểm đó.

Định lý 1.6.  Cho hai đường tròn không đồng tâm $(O_1; R_1)$ và $(O_2; R_2)$. Tập hợp các điểm $M$ mà phương tích của $M$ đối với hai đường tròn bằng nhau là một đường thẳng.

Định nghĩa 1.7. Đường thẳng trong định lý 2 được gọi là trục đẳng phương của hai đường tròn.

Tính chất 1.8. Cho hai đường tròn $(O)$ và $(I)$. Từ định lý 1.3 ta suy ra được các tính chất sau:

  1. Trục đẳng phương của hai đường tròn vuông góc với đường thẳng nối tâm.
  2. Nếu hai đường tròn cắt nhau tại $A$ và $B$ thì $AB$ chính là trục đẳng phương của chúng.
  3. Nếu điểm $M$ có cùng phương tích đối với $(O)$ và $(I)$ thì đường thẳng qua $M$ vuông góc với $OI$ là trục đẳng phương của hai đường tròn.
  4. Nếu hai điểm $M, N$ có cùng phương tích đối với hai đường tròn thì đường thẳng $MN$ chính là trục đẳng phương của hai đường tròn.
  5. Nếu 3 điểm có cùng phương tích đối với hai đường tròn thì 3 điểm đó thẳng hàng.
  6. Nếu $(O)$ và $(I)$ tiếp xúc nhau tại $A$ thì đường thẳng qua $A$ và vuông góc với $OI$ chính là trục đẳng phương của hai đường tròn.

Định lý 1.9.  Cho 3 đường tròn $(C_1), (C_2)$ và $(C_3)$. Khi đó 3 trục đẳng phương của các cặp đường tròn trùng nhau hoặc song song hoặc cùng đi qua một điểm, điểm đó được gọi là tâm đẳng phương của ba đường tròn.

Định nghĩa 1.10. Điểm đồng quy trong định lý trên được gọi là tâm đẳng phương của ba đường tròn.

Tính chất 1.11. Từ định lý trên, ta có:

  1. Nếu 3 đường tròn đôi một cắt nhau thì các dây cung chung cùng đi qua một điểm.
  2. Cho 3 đường tròn $w_1, w_2, w_3$ có tâm lần lượt là $O_1, O_2, O_3$. Gọi $d_{ij}$ là trục đẳng phương của $w_i, w_j$. Khi đó nếu $d_{12}$ và $d_{13}$ cắt nhau tại $P$ thì $P$ là tâm đẳng phương của 3 đường tròn. Khi đó trục đẳng phương $d_{23}$ là đường thẳng qua $P$ và vuông góc với $O_2O_3$.

II. Các ví dụ. 

Ví dụ 1. (Công thức Euler) Cho tam giác $ABC$ có đường tròn ngoại tiếp là $(O;R)$ và đường tròn nôi tiếp là $(I;r)$. Chứng minh rằng \[OI = \sqrt{R^2-2Rr}\]

Gợi ý

 

 

Ta có $\mathscr{P}_(I/(O)) = IA.ID = R^2- OI^2$, suy ra $OI^2 = R^2 – IA.ID$.

Ta có $\mathscr{P}_(I/(O)) = IA.ID = R^2- OI^2$, suy ra $OI^2 = R^2 – IA.ID$.

Vẽ đường kính $DE$. Ta có tam giác $AFI$ và $ECD$ đồng dạng, suy ra $AI.CD = IF.DE$. Mà $CD = ID, IF = r, DE = 2R$, suy ra $IA.ID = 2Rr$.

Vậy $OI^2 = R^2 – 2Rr \Rightarrow IO = \sqrt{R^2-2Rr}$.

Ví dụ 2.(Định lý Brocard) Cho tứ giác $ABCD$ nội tiếp đường tròn $(O)$. Các đường thẳng $AD$ và $BC$ cắt tại $E$; $AB$ và $CD$ cắt nhau tại $F$.

  1. Chứng minh $\mathscr{P}_{E/(O)} + \mathscr{P}_{F/(O)} = EF^2$.
  2. Gọi $I$ là giao điểm của $AC$ và $BD$. Chứng minh $OI \bot EF$.

Gợi ý

    1. Gọi $K$ là giao điểm của $(AFD)$ và $EF$. Ta có $\angle EKA = \angle ADC = \angle ABE$, suy ra $EKAB$ nội tiếp.
      Gọi $K$ là giao điểm của $(AFD)$ và $EF$. Ta có $\angle EKA = \angle ADC = \angle ABE$, suy ra $EKAB$ nội tiếp.
      Khi đó $\mathscr{P}_{E/(O)} + \mathscr{P}_{F/(O)} = EA.AD + FD.FC = EK.EF + FK.KE = EF^2$.
    2. Ta có $\angle FKD + \angle EKB = \angle DCB + \angle BCD = 2 \angle C = \angle AOB$, suy ra $KBOD$ nội tiếp.
      Chứng minh tương tự ta cũng có $KAOC$ nội tiếp. Khi đó tâm đẳng phương của $(O), (KBOD), (KAOC)$ đồng quy tại $I$. Hay $O, I, K$ thẳng hàng
      Hơn nữa $KO, KF$ lần lượt là phân giác trong và phân giác ngoài của $BKD$ nên vuông góc.

Vậy $OI \bot EF$ tại $K$.

Ví dụ 3. (Chọn đội tuyển PTNK 2008) Cho tam giác $ABC$ có đỉnh $A$ cố định và $B, C$ thay đổi trên đường thẳng $d$ cố định sao cho nếu gọi $A’$ là hính chiếu của $A$ lên $d$ thì $\overline {A’B} .\overline {A’C} $ âm và không đổi. Gọi $M$ là hình chiếu của $A’$ lên $AB$. Gọi $N$ là hình chiếu của $A’$ lên $AC$, $K$ là giao điểm của các tiếp tuyến của đường tròn ngoại tiếp tam giác $A’MN$ tại $M$ và $N$. Chứng minh rằng $K$ thuộc một đường thẳng cố định.

Gợi ý

Gọi $O$ là tâm đường tròn ngoại tiếp tam giác $A’MN$ và $I$ là giao điểm của $OK$ và $MN$. Ta thấy $O$ là trung điểm của $AA’$.
Gọi $D$ và $P$ là giao điểm của $AA’$ với $(ABC)$ và $MN$.
Dễ thấy $\overline {AM} .\overline {AB} = {\overline {AA’} ^2} = \overline {AN} .\overline {AC} $, suy ra tứ giác BMNC nội tiếp, $ \Rightarrow \widehat {AMN} = \widehat {ACB}$.
Mà $\widehat {ADB} = \widehat {ACB}$
Nên $\widehat {AMN} = \widehat {ADB}$. Suy ra MPDB nội tiếp.
Do đó ta có $\overline {AP} .\overline {AD} = \overline {AM} .\overline {AB} = {\overline {AA’} ^2}$.
Mà $A, A’$ và $D$ cố định suy ra $P$ cố định.
Gọi H là hình chiếu của $K$ trên $AA’$.
Ta có $\overline {AP} .\overline {AH} = \overline {AI} .\overline {AK} = I{N^2} = \dfrac{1}{4}A{A’^2}$
Mà $A, P, A’$ cố định suy ra $H$ cố định.
Vậy $K$ thuộc đường thẳng qua $H$ và vuông góc với $AA’$.

Ví dụ 4. (Chọn đội tuyển Việt Nam 2006) Cho tam giác ABC là tam giác nhọn và không phải tam giác cân nội tiếp trong đường tròn tâm O bán kính R. Một đường thẳng d thay đổi sao cho vuông góc với OA và luôn cắt tia AB, AC. Gọi M, N lần lượt là giao điểm của d và AB, AC. Giả sử BN và CM cắt nhau tại K, AK cắt BC tại P.

  1. Chứng minh rằng đường tròn ngoại tiếp tam giác $MNP$ luôn đi qua một điểm cố định.
  2. Gọi $H$ là trực tâm của tam giác $AMN$. Đặt $BC = a$ và $I$ là khoảng cách từ $A$ đến $KH$. Chứng minh $KH$ đi qua trực tâm của tam giác $ABC$, từ đó suy ra $l \leq \sqrt{4R^2-a^2}$.

Gợi ý

 

1. Gọi $Q$ là giao điểm của $MN$ và $BC$, $E$ là trung điểm $BC$. Xét tứ giác BMPC thì ta biết rằng $Q, P, B, C$ là hang điểm điều hòa,suy ra $(QPBC) = – 1$.Ta có $EP .EQ  = EB^2$, suy ra $QE .QP  = QE^2 – QE .PE  = QE^2 – EB^2 = OQ^2 – OB^2 = QB.QC $.

Mà tứ giác $BMNC$ cũng nội tiếp vì có $\widehat {NCB} = \widehat {xAB} = \widehat {AMN}$ (Ax là tia tiếp tuyến của (O)). Suy ra $QM .QN  = QB .QC$.

Từ đó suy ra $QM .QN  = QP .QE $, suy ra tứ giác $MNEP$ nội tiếp, suy ra đường tròn ngoại tiếp tam giác $MNP$ luôn đi qua điểm $E$ cố định.

2. Giả sử 3 đường cao AD, BF và CJ của tam giác ABC cắt nhau tại I; ba đường cao MX, AY, NZ của tam giác AMN cắt nhau tại H. Ta cần chứng minh K, I, H thẳng hàng.

Xét đường tròn tâm $(O_1)$ đường kính BN và tâm $(O_2)$ đường kính CM. Ta thấy: $\begin{array}{l} KC .KM  = KB .KN \\ IC .IJ  = IB .IF \\ HM .HX  = HN .HZ  \end{array}$

Suy ra $K, I, H$ cùng thuộc trục đẳng phương của $(O_1)$ và $(O_2)$ nên thẳng hàng. Từ đó suy ra $AL \le AI$.

Mà $AI = 2.OE = 2\sqrt {{R^2} – \frac{{B{C^2}}}{4}}  = \sqrt {4{R^2} – {a^2}} $. Nên $AL = l \le \sqrt {4{R^2} – {a^2}} $

Ví dụ 5. Cho tam giác $ABC$ nội tiếp đường tròn $(O)$, $M$ là trung điểm $BC$, $M’ $ là giao điểm của $AM$ và $(O)$. Tiếp tuyến tại $M’$ cắt đường thẳng qua $M$ vuông góc với $AO$ tại $X$, các điểm $Y, Z$ được xác định tương tự. Chứng minh rằng $X, Y, Z$ thẳng hàng.

Gợi ý

  • Gọi $H$ là trực tâm tam giác $ABC$, $N$ là trung điểm $AH$. Khi đó $MN$ là đường kính của đường tròn euler.
  • Dễ thấy $AOMN$ là hình bình hành. Mà $AO \bot MX$, suy ra $MN \bot MX$. Do đó $MX$ là tiếp tuyến của đường tròn euler.
  • Ta có $\angle XMM’ = 90^o – \angle OAX = \angle OM’X – \angle OM’A = \angle XM’M$. Suy ra tam giác $XMM’$ cân tại $X$.
  • Do đó $\mathscr{P}_{X/(F)} = XM^2 = XM’^2 = \mathscr{P}_{(O))}$. Do đó $X$ thuộc trục đẳng phương của (F) và $(O)$.
  • Chứng minh tương tự ta cũng có $Y, Z$ thuộc trục đẳng phương của (F) và (O), do đó $X, Y, Z$ thẳng hàng.

Ví dụ 6. (PTNK 2015) Cho tam giác ABC nhọn nội tiếp đường tròn tâm O. Đường tròn tâm I qua B và C lần lượt cắt các tia BA, CA tại E và F.

  1. Giả sử các tia $BF, CE$ cắt nhau tại $D$ và $T$ là tâm đường tròn $(AEF)$. Chứng minh rằng $OT // ID$.
  2. Trên $BF, CE$ lần lượt lấy các điểm $G, H$ sao cho $AG \bot CE,AH\bot BF$. Các đường tròn $(ABF), (ACE)$ cắt $BC$ tại các điểm $M, N$ (khác $B$ và $C$) và cắt $EF$ tại $P, Q$ (khác $E$ và $F$). Gọi $K$ là giao điểm của $MP$ và $NQ$. Chứng minh DK vuông góc với GH.

Gợi ý

a.

  • Gọi $(AEF)$ cắt $(O)$ tại $R$ thì $ARBC$ nội tiếp, do đó $AR, EF, BC$ tại $S$ là tâm đẳng phương của $(O), (I), (T)$.
  • Theo định lý Brokard (ví dụ 3), ta có $ID \bot AS$, mặc khác $OT \bot AS$ nên $ID ||OT$.

b. 

  • Ta có $\angle MPQ = \angle CEQ = \angle CNQ$ nên $MPQN$ nội tiếp.
  • Khi đó $KM.KP = KN.KQ$, mặt khác $DB.DF  = DE.DC$ nên $DK$ là trục đẳng phương của $(ABF)$ và $(ACE)$, do đó $AD$ đi qua $K$.
  • Hơn nữa tam giác $AGH$ có $DG \bot AH$ và $DH \bot AG$ nên $AD \bot GH$. Vậy $DK \bot GH$.

Ví dụ 7. (VMO 2015) Cho đường tròn $(O)$ và hai điểm $B, C$ cố định trên $(O)$, $BC$ không là đường kính. Một điểm $A$ thay đổi trên $(O)$ sao cho tam giác $ABC$ nhọn. Gọi $E, F$ lần lượt là chân đường cao kẻ từ $B, C$ của tam giác $ABC$. Cho $(I)$ là đường tròn thay đổi đi qua $E, F$ và có tâm là $I$.Giả sử $(I)$ cắt cạnh $BC$ tại hai điểm $M, N$. Gọi $H$ là trực tâm tam giác $ABC$ và $P, Q$ là các giao điểm của $(I)$ với đường tròn ngoại tiếp tam giác $HBC$. Đường tròn $(K)$ đi qua $P, Q$ và tiếp xúc với $(O)$ tại điểm $T$ ($T$ cùng phía $A$ đối với $PQ$). Chứng minh rằng đường phân giác trong của góc $\angle MTN$ luôn đi qua một điểm cố định.

Gợi ý

  • Vẽ tia tiếp tuyến $Tx$ của $(O)$ và $(TPQ)$, thì $Tx$ là trục đẳng phương của $(O)$ và $(TPQ)$.
  • Xét 3 đường tròn $(O), (TPQ)$ và $(HBC)$ thì trục đẳng phương đồng quy tại một điểm nên $PQ, BC, Tx$ đồng quy tại điểm, đặt tên là $X$.
  • Lại có trục đẳng phương của $(BEFC), (I), (HBC)$ đồng quy, nên $X$ thuộc $EF$. \item Do đó ta có $XT^2 = XB.XC = XF.XE = XM.XN$ nên $XT$ tiếp xúc với $(TMN)$.
  • Ta có $\angle XTB + \angle BTM = \angle XTM = \angle XNT = \angle ACB + \angle CTN$ nên $\angle BTM = \angle CTN$.
  • Gọi $S$ là điểm chính giữa cung $BC$ không chứa $A$ của $(O)$ thì $\angle BTM + \angle MTS = \angle BTS = \angle CTS = \angle CTN = \angle CTN + \angle NTS$ hay là $\angle MTS = \angle NTS$.

Vậy phân giác giác $\angle MTN$ luôn đi qua $S$ cố định.

Ví dụ 8. (IMO shortlist 2011) Cho tam giác $ABC$ nội tiếp đường tròn $(O)$, gọi $B’, C’$ là trung điểm của cạnh $AB$ và $AC$. Đường tròn $(I)$ qua $B’, C’$ và tiếp xúc với $(O)$ tại $X$ (khác $A$). Gọi $D$ là chân đường cao hạ từ $A$ của tam giác $ABC$ và $G$ là trọng tâm tam giác $ABC$. Chứng minh rằng $X, D, G$ thẳng hàng.

Gợi ý

  • Gọi $P$ là giao điểm của tiếp tuyến tại $A$ và tại $X$ của $(O)$.
  • Gọi $P$ là giao điểm của tiếp tuyến tại $A$ và tại $X$ của $(O)$.  Phương tích của $P$ đối với $(AB’C’), (B’C’X), (ABC)$ bằng nhau.  Suy ra $P$ thuộc trục đẳng phương của $(B’C’X)$ và $B’C’A)$, suy ra $P$ thuộc $B’C’$.
  • $A, D$ đối xứng qua $B’C’$ nên ta có $PA = PD$ (tính chất đối xứng) nên $PD$ là tiếp tuyến của $B’C’D$.
  • Vẽ $AY||BC$, chứng minh được $D, G, Y$ thẳng hàng.
  • $XD$ cắt $(O)$ tại $Y’$ ta có $\angle ADY’ + \angle AY’D = \dfrac{1}{2} \angle APX + \angle ACX = \dfrac{1}{2} \angle APX + \dfrac{1}{2} AOX = 90^o$. \\ Suy ra $AY’||BC$
  • Vậy $Y \equiv Y’$ và $X, D, G$ thẳng hàng.

Ví dụ 9. (IMO SL 2009) Cho tam giác $ABC$, đường tròn tâm $I$ nội tiếp tam giác tiếp xúc với $AB, AC$ tại $D, E$. Vẽ các hình bình hành $BDMC$ và $CENB$. Gọi $G$ là giao điểm của $BE$ và $CD$. Chứng minh tam giác $GNM$ cân.

Gợi ý

  • Đường tròn tâm $I_a$ bàng tiếp góc $A$ tiếp xúc với $AB, AC$ lần lượt tại $X$ và $Y$.
  • Ta có $BN = CE = p  – c = AX – AD = DX$ và $EN = BC = a = p-(p-a) = AY = YE$.
  • Khi đó $\mathscr{P}_{E/(I_a)} = EY^2 = EN^2$ và $\mathscr{P}_{B/(I_a)} = BX^2 = BN^2$.
  • Do đó $BE$ là trục đẳng phương của $(I_a)$ và đường tròn điểm $N$.
  • Chứng minh tương tự ta cũng có $CD$ là trục đẳng phương của $(I_a)$ và đường tròn điểm $M$.
  • $G$ là giao điểm của $BE$ và $CD$, suy ra $G$ là tâm đẳng phương của $(I_a)$ và hai đường tròn điểm $M, N$. Vậy $GM = GN$, hay tam giác $GMN$ cân.

III. Bài tập rèn luyện.

  1. Cho đường tròn $(O)$. $A, B$ là hai điểm cố định đối xứng nhau qua $O$, $M$ là điểm chuyển động trên $(O)$. $MA, MB$ giao với $(O)$ tại $P$ và $Q$. Chứng minh rằng $\dfrac{{\overline {AM} }}{{\overline {AP} }} + \dfrac{{\overline {BM} }}{{\overline {BQ} }}$ nhận giá trị không đổi.  [Gợi ý]
  2. Cho tam giác $ABC$ nhọn, kẻ đường cao $AD, BE, CF$ cắt nhau tại $H$. Cho $K$ là một điểm tùy ý trên cạnh $BC$ và khác $B,C$ kẻ đường kính $KM$ củaCho tam giác $ABC$ nhọn, kẻ đường cao $AD, BE, CF$ cắt nhau tại $H$. Cho $K$ là một điểm tùy ý trên cạnh $BC$ và khác $B,C$ kẻ đường kính $KM$ của đường tròn ngoại tiếp tam giác $BFK$ và đường kính $KN$ của đường tròn ngoại tiếp tam giác $CEK$. Chứng minh rằng ba điểm $M, H, N$ thẳng hàng. [Gợi ý]
  3. Cho tam giác $ABC$ nhọn, $\angle B > \angle C$. Gọi $M$ là trung điểm đoạn $BC$ và $E, F$ lần lượt là chân đường cao từ $B$ và $C$. Gọi $K, L$ lần lượt là trung điểm của $ME$, $MF$. Gọi $T$ là giao điểm của $KL$ sao cho $TA||BC$. Chứng minh $TA = TM$. [Gợi ý]
  4. Cho tam giác $ABC$ nội tiếp đường tròn $(O)$, một đường thẳng qua $(O)$ song song với $BC$, cắt $AB$, $AC$ lần lượt tại $F, E$. Đường tròn ngoại tiếp các tam giác $(BFO)$ và $(CEO)$ cắt nhau tại điểm thứ 2 là $D$ và cắt $BC$ tại $L, K$. Gọi $M$ là giao của $BE$ và $CF$. Gọi $N$ là giao của $FL$ và $EK$. Chứng minh rằng $D, M, N$ thẳng hàng. [Gợi ý]
  5. (IMO 2000) Cho hai đường tròn $w_1$ và $w_2$ cắt nhau tại $M$ và $N$. Gọi $l$ là tiếp tuyến chung của $w_1, w_2$ sao cho $l$ gẩn $M$ hơn $N$. Gọi tiếp điểm của $l$ với $w_1$ là $A$, với $w_2$ là $B$. Đường thẳng qua $M$ song song với $l$ cắt $w_1$ tại $C$ và cắt $w_2$ tại $D$. Đường thẳng $CA$ và $DB$ cắt nhau tại $E$; đường thẳng $AN$ và $CD$ cắt nhau tại $P$; $BN$ và $CD$ cắt nhau tại $Q$. Chứng minh rằng $EP = EQ$. [Gợi ý]
  6. Cho tam giác $ABC$ nội tiếp đường tròn $(O)$ với góc $A$ nhọn. Gọi $D$ là điểm chính giữa của cung nhỏ $BC$ và $E, F$ lần lượt là trung điểm của $AC, AB$. Giả sử $DE, DF$ cắt lại với $(O)$ tại điểm thứ hai tương ứng là $Y$, $Z$. Đường tròn $(AEY)$ cắt $(AFZ)$ tại điểm thứ hai $M$. Gọi $N$ là trung điểm của $BC$ và đường tròn $(DNM)$ giao với $BC$ tại điểm thứ hai $X$. Chứng minh rằng $AX$ là tiếp tuyến của $(O)$. [Gợi ý]
  7. (China 2010) Lấy $AB$ là dây cung của đường tròn tâm $O$, $M$ là điểm chính giữa cung $AB$ và $C$ là điểm nằm ngoài đường tròn $(O)$. Từ $C$ vẽ hai tiếp tuyến đến $(O)$ tại tiếp điểm $S, T$. Gọi $E$ là giao điểm của $MS$ và$ AB$, $F$ là giao điểm của $MT$ và $AB$. Từ $E, F$ vẽ các đường thẳng vuông góc với $AB$, cắt $OS$ và $OT$ lần lượt tại $X$ và $Y$. Một đường thẳng qua $C$ cắt $(O)$ tại $P$ và $Q$, $MP$ cắt $AB$ tại $R$. Chứng minh rằng $XY$ đi qua tâm đường tròn ngoại tiếp tam giác $PQR$. [Gợi ý]
  8. Cho hai đường tròn $(C_1)$ và $(C_2)$ tiếp xúc ngoài với nhau tại tiếp điểm $M$. Gọi $AB$ là một tiếp tuyến chung của $()C1)$ và $(C_2)$ với $A, B$ phân biệt lần lượt là các tiếp điểm. Trên tia tiếp tuyến chung Mx của hai đường tròn ($Mx$ không cắt $AB$) lấy điểm $C$ khác $M$. Gọi $E$ và $F$ lần lượt là giao điểm thứ hai của $CA$ với $(C_1)$ và $CB$ với $(C_2)$. Chứng minh rằng tiếp tuyến của $(C_1)$ tại $E$, tiếp tuyến của $(C_2)$ tại $F$ và $Mx$ đồng quy. [Gợi ý]
  9. Cho tam giác $ABC$ là tam giác nhọn, không cân nội tiếp đường tròn tâm O. Gọi $AD, BE, CF$ là ba đường phân giác trong của tam giác $ABC$. Gọi $L, M,N$ lần lượt là trung điểm của $AD, BE, CF$. Gọi $(O_1), (O_2), (O_3)$ lần lượt là các đường tròn đi qua $L$, tiếp xúc với $OA$ tại $A$; đi qua $M$, tiếp xúc với $OB$ tại $B$; đi qua $N$ tiếp xúc với $OC$ tại $C$. Chứng minh rằng $(O_1), (O_2), (O_3)$ có đúng hai điểm chung và đường thẳng nối hai điểm đó đi qua trọng tâm tam giác $ABC$. [Gợi ý]
  10.  Cho tam giác $ABC$ và điểm $D$ thay đổi trên cạnh $BC$. Đường tròn ngoại tiếp tam giác $ABD$ cắt $AC$ tại $E$, đường tròn ngoại tiếp tam giác $ACD$ cắt $AB$ tại $F$. Gọi $H$ là trực tâm.
    • (a) Đường tròn ngoại tiếp tam giác $AEF$ và đường tròn đường kính $AH$ cắt nhau tại điểm thứ hai là $P$. Chứng minh $AP$ đi qua trung điểm của $BC$.
    • (b) Chứng minh trực tâm tam giác $PEF$ thuộc một đường thẳng cố định. [Gợi ý]
  11. Cho tam giác $ABC$ nhọn. Đường tròn đường kính $AB$ cắt đường cao $CD$ tại hai điểm $M$ và $N$, $M$ nằm ngoài tam giác; đường tròn đường kính $AC$ cắt đường cao $BE$ tại hai điểm $P$ và $Q$, $Q$ nằm ngoài tam giác.
    • (a) Chứng minh 4 điểm $M, N, P, Q$ cùng thuộc một đường tròn.
    • (b) Chứng minh $MP, NQ$ và $BC$ đồng quy. [Gợi ý]
  12. (VMO 2014) Cho tam giác nhọn $ABC$ nội tiếp đường tròn $(O)$, trong đó $B, C$ cố định và $A$ thay đổi trên $(O)$. Trên các tia $AB$ và $AC$ lần lượt lấy các điểm $M$ và $N$ sao cho $MA = MC$ và $NA = NB$. Các đường tròn ngoại tiếp các tam giác $AMN$ và $ABC$ cắt nhau tại $P$ ($P \neq A$). Đường thẳng $MN$ cắt đường thẳng $BC$ tại $Q$.
    • (a) Chứng minh rằng ba điểm $A, P, Q$ thẳng hàng.
    • (b) Gọi $D$ là trung điểm của $BC$. Các đường tròn có tâm là $M, N$ và cùng đi qua $A$ cắt nhau tại $K$ ($K \neq A$). Đường thẳng qua $A$ vuông góc với $AK$ cắt $BC$ tại $E$. Đường tròn ngoại tiếp tam giác $ADE$ cắt $(O)$ tại $F (F \neq A)$. Chứng minh rằng đường thẳng $AF$ đi qua một điểm cố định. [Gợi ý]

IMO 2010 – Chứng minh tam giác cân

Đề bài. (IMO 2010) Cho hai đường tròn $w_1$ và $w_2$ cắt nhau tại $M$ và $N$. Gọi $l$ là tiếp tuyến chung của $w_1, w_2$ sao cho $l$ gẩn $M$ hơn $N$. Gọi tiếp điểm của $l$ với $w_1$ là $A$, với $w_2$ là $B$. Đường thẳng qua $M$ song song với $l$ cắt $w_1$ tại $C$ và cắt $w_2$ tại $D$. Đường thẳng $CA$ và $DB$ cắt nhau tại $E$; đường thẳng $AN$ và $CD$ cắt nhau tại $P$; $BN$ và $CD$ cắt nhau tại $Q$. Chứng minh rằng $EP = EQ$.

Gợi ý

Gọi $F$ là giao điểm của $NM$ và $AB$. Ta có $\mathscr{P}_{F/(w_1)} = FA^2, \mathscr{P}_{F/(w_1)} = FB^2$ mà $MN$ là trục đẳng phương của $w_1$ và $w_2$, suy ra $FA = FB$.

Gọi $F$ là giao điểm của $NM$ và $AB$. Ta có $\mathscr{P}_{F/(w_1)} = FA^2, \mathscr{P}_{F/(w_1)} = FB^2$ mà $MN$ là trục đẳng phương của $w_1$ và $w_2$, suy ra $FA = FB$.

$PQ||AB$, suy ra $M$ là trung điểm của $PQ$.

Ta có $\angle FBA = \angle FDM = \angle ABM$ và $\angle FAB = \angle BAM$. Suy ra $\triangle AEM = \triangle BEM$.  Suy ra $BE = BM, AE = AM$ và $AB$ là trung trực của $EM$, suy ra $EM \bot AB$. Do đó $EM \bot PQ$.

$EM \bot PQ$ và $MP = MQ$ nên tam giác $EPQ$ cân.