Đề thi và đáp án kì thi chọn đội tuyển thi Quốc gia trường Phổ thông Năng khiếu năm học 2015 -2016

Đề bài

Ngày thi thứ nhất

Bài 1.  Cho tập hợp:
$$A=\left\{ n\in \mathbb{N}\mid 1\le n\le 2015,\gcd (n,2016)=1 \right\}.$$
Hỏi có bao nhiêu số nguyên $a\in A$ sao cho tồn tại số nguyên $b$ mà $a+2016b$ là số chính phương?
Bài 2. Cho $a,b,c,d$ là các số thực thỏa mãn điều kiện:
$$\left\{\begin{array}{l}
a^2\le 1\\
a^2+b^2\le 5\\
a^2+b^2+c^2\le 14\\
a^2+b^2+c^2+d^2\le 30
\end{array} \right..$$

a)Chứng minh rằng $a+b+c+d\le 10$.
b) Chứng minh rằng $ad+bc\le 10$.

Bài 3.  Tìm tất cả các hàm số $f:\mathbb{R}\to \mathbb{R}$ thỏa mãn:
$$f\left( x-2f(y) \right)=5f(x)-4x-2f(y), \, \ \forall x,y\in \mathbb R.$$
Bài 4. Cho đường tròn $k$ và các điểm $B,C$ thuộc đường tròn sao cho $BC$ không phải là đường kính; $I$ là trung điểm $BC$. Điểm $A$ di động trên cung lớn $BC$ của $k$. Gọi $(\mathcal I_1)$ là đường tròn qua $I$ và tiếp xúc với $AB$ tại $B$, $(\mathcal I_2)$ là đường tròn qua $I$ và tiếp xúc với $AC$ tại $C$. Các đường tròn $(\mathcal I_1), (\mathcal I_2)$ cắt nhau tại $D$.

a) Chứng minh rằng đường tròn ngoại tiếp tam giác $AID$ luôn đi qua một điểm cố định.
b) Gọi $K$ là trung điểm $AD$, $E$ là tâm đường tròn qua $K$ và tiếp xúc với $AB$ tại $A$, $F$ là tâm đường tròn qua $K$ và tiếp xúc với $AC$ tại $A$. Chứng minh rằng góc $\angle EAF$ có số đo không đổi.

Ngày thi thứ hai

Bài 5. Cho dãy số $(x_n)$ được xác định bởi $x_n=\dfrac{1}{n\cos \frac{1}{n}}\ \forall n\in \mathbb N^*$. Tính giới hạn:
$$\lim_{n \to +\infty} \frac{{{x}_{1}}+{{x}_{3}}+{{x}_{5}}+\cdots+{{x}_{2n-1}}}{{{x}_{2}}+{{x}_{4}}+{{x}_{6}}+\cdots +{{x}_{2n}}}.$$
Bài 6. Tìm các giá trị của $b$ sao cho tồn tại $a$ để hệ phương trình sau có nghiệm $(x,y)$:
$$\left\{\begin{array}{l}
(x-1)^2+(y+1)^2=b \\
y=x^2+(2a+1)x+a^2
\end{array} \right..$$
Bài 7. Cho $n$ là số nguyên dương, $n\ge 2$ và $X=\left\{ 1,2,3,\ldots,n \right\}$. Gọi ${{A}_{1}},{{A}_{2}},\ldots,{{A}_{m}}$ và ${{B}_{1}},{{B}_{2}},\ldots,{{B}_{m}}$ là hai dãy các tập con khác rỗng của $X$ thỏa mãn điều kiện sau: với mỗi $i,j\in \left\{ 1,2,3,\ldots,m \right\}$, ${{A}_{i}}\cap {{B}_{j}}=\varnothing $ nếu và chỉ nếu $i=j.$
a) Chứng minh rằng với mỗi hoán vị $(x_1,x_2,\ldots,x_n)$ của tập hợp $X$, có không quá một cặp tập hợp $(A_i,B_i)$ với $i=1,2,3,\ldots,m$ sao cho nếu $x_k\in A_i$ và $x_l\in B_i$ thì ta phải có $k<l$.
b) Gọi $a_i,b_i$ lần lượt là số phần tử của tập hợp $A_i,B_i$ với $i=1,2,3,\ldots,m$. Chứng minh rằng:
$$\sum_{i=1}^{m}{\dfrac{1}{C_{{a_i+b_i}}^{a_i}}}\le 1.$$

Bài 8.  Cho tam giác $ABC$ nhọn nội tiếp đường tròn tâm $O$. Đường tròn tâm $I$ đi qua $B,C$ lần lượt cắt các tia $BA,CA$ tại $E,F.$

a) Giả sử các tia $BF,CE$ cắt nhau tại $D$ và $T$ là tâm đường tròn $(AEF)$. Chứng minh rằng $OT\parallel ID.$
b) Trên $BF,CE$ lần lượt lấy các điểm $G,H$ sao cho $AG\perp CE,AH\perp BF.$ Các đường tròn $(ABF),(ACE)$ cắt $BC$ tại $M,N$ khác $B,C$ và cắt $EF$ tại $P,Q$ khác $E,F$. Gọi $K$ là giao điểm của $MP,NQ$. Chứng minh rằng $DK\perp GH$.

Hết

Giải

Bài 1.

Cho số nguyên dương $n>1$, ta quy ước gọi một số nguyên dương $a < n$ là thặng dư chính phương theo modulo $n$ nếu $\gcd(a,n)=1$ và tồn tại số nguyên $x$ sao cho $a\equiv {{x}^{2}} \pmod n .$ \medskip

Đặt $s(n)$ là số các số như thế. Ta sẽ chứng minh hai bổ đề dưới đây: \medskip

Bổ đề 1. Cho $p$ là số nguyên tố và $k$ là số nguyên dương. Khi đó:

Nếu $p=2$ thì $s({{2}^{k}})={{2}^{\max (k-3,0)}}$.
Nếu $p>2$ thì $s({{p}^{k}})=\dfrac{{{p}^{k}}-{{p}^{k-1}}}{2}$.

Bổ đề 2. $s(n)$ là hàm nhân tính, tức là $s(ab)=s(a)s(b)$ với $\gcd(a,b)=1$. \medskip

Thật vậy, \medskip

Trước hết, ta biết rằng $s(p)=\frac{p-1}{2}$ với $p$ là số nguyên tố lẻ. Ta sẽ tính $s({{p}^{k}})$ với $k\in {{\mathbb{Z}}^{+}}$. Xét một thặng dư chính phương $a$ của $p$, khi đó tồn tại $x$ sao cho $$a\equiv {{x}^{2}}\pmod{p}.$$ Đặt $a={{x}^{2}}+pq$ thì hiển nhiên $$a\equiv {{x}^{2}}+pq \pmod {{p}^{k}}\Leftrightarrow a-pq\equiv {{x}^{2}} \pmod {{p}^{k}}$$ và khi đó, ta có ${{p}^{k-1}}$ cách chọn $q$ để các số $a-pq$ là các thặng dư chính phương theo modulo ${{p}^{k}}$. Suy ra
$$s({{p}^{k}})={{p}^{k-1}}s(p)=\frac{{{p}^{k}}-{{p}^{k-1}}}{2}.$$ Xét số nguyên tố $p=2$, với $k=1,2,3,$ dễ dàng kiểm tra được $s({{2}^{k}})=1$. \medskip

Ta xét $k\ge 4$, tương tự trên, ở bước chọn $q$, ta chỉ có 2 cách nên $s({{2}^{k}})=2s({{2}^{k-1}})$. Từ đó bằng quy nạp, ta có được $$s({{2}^{k}})={{2}^{k-3}},k\ge 4.$$ Tiếp theo, xét hai số $a,b$ nguyên dương nguyên tố cùng nhau. Gọi $A$ là tập hợp các thặng dư chính phương theo modulo $ab$ và $B$ là tập hợp các số là thặng dư chính phương chung của $a,b.$ \medskip

Nếu $x\in A$ thì tồn tại $y$ sao cho $x\equiv {{y}^{2}} \pmod{ab}$. Rõ ràng khi đó,
$$x\equiv {{y}^{2}}\pmod a, \, x\equiv {{y}^{2}}\pmod b$$
(chú ý rằng nếu $x>a$, ta có thể chọn ${x}'$ sao cho ${x}'<a$ và $x\equiv {x}'\pmod a$; tương tự với $b$).
Do đó, $x\in B$, tức là $x\in A\Rightarrow x\in B$ nên $\left| A \right|\le \left| B \right|$. \medskip

Tiếp theo, xét $x\in B$. Khi đó tồn tại $r,s$ sao cho
$x\equiv {{r}^{2}}\pmod a,\text{ }x\equiv {{s}^{2}}\pmod b$.
Theo định lý thặng dư Trung Hoa, tồn tại số nguyên $z$ sao cho $$z\equiv r\pmod a, \, z\equiv s\pmod b.$$ Khi đó $$x\equiv {{z}^{2}}\pmod a, \, x\equiv {{z}^{2}}\pmod b$$ nên
$$x\equiv {{z}^{2}} \pmod{ab}.$$ Do đó: $x\in A$, tức là $x\in B\Rightarrow x\in A$ nên $\left| A \right|\ge \left| B \right|$. Từ đây ta có $$\left| A \right|=\left| B \right| \text{ hay } s(a)s(b)=s(ab).$$ Vậy $s(n)$ là hàm nhân tính. \medskip

Các bổ đề đều được chứng minh. \medskip

Trở lại bài toán, ta thấy rằng $2016={{2}^{5}}\cdot {{3}^{2}}\cdot 7.$ Rõ ràng bài toán yêu cầu đếm số thặng dư chính phương theo modulo $2016$.
Theo bổ đề 2 thì $$s(2016)=s({{2}^{5}})s({{3}^{2}})s(7).$$ Theo bổ đề 1 thì $$s({{2}^{5}})={{2}^{2}}=4,s({{3}^{2}})=\frac{{{3}^{2}}-3}{2}=3,s(7)=\frac{7-1}{2}=3.$$ Do đó, số các số $a$ cần tìm là $4\cdot 3\cdot 3=36.$

Bài 2. 

(a) Dự đoán dấu bằng xảy ra khi $a=1,b=2,c=3,d=4$ nên ta có các đánh giá sau $
{{a}^{2}}+1\ge 2a
{{b}^{2}}+4\ge 4b
{{c}^{2}}+9\ge 6c
{{d}^{2}}+16\ge 8d
$

Do đó, ta có
$24(a+b+c+d)\le 3({{d}^{2}}+16)+4({{c}^{2}}+9)+6({{b}^{2}}+4)+12({{a}^{2}}+1)$
$=3{{d}^{2}}+4{{c}^{2}}+6{{b}^{2}}+12{{a}^{2}}+120 $

$=3({{a}^{2}}+{{b}^{2}}+{{c}^{2}}+{{d}^{2}})+({{a}^{2}}+{{b}^{2}}+{{c}^{2}})+2({{a}^{2}}+{{b}^{2}})+6{{a}^{2}}+120$

$\le 3\cdot 30+14+2\cdot 5+6\cdot 1+120=240$
Suy ra $a+b+c+d\le 10.$ \medskip

(b) Ta có $$16{{a}^{2}}+{{d}^{2}}\ge 8ad \text{ và } 9{{b}^{2}}+4{{c}^{2}}\ge 12bc.$$

Từ đó suy ra

$24(ad+bc)\le 3(16{{a}^{2}}+{{d}^{2}})+2(9{{b}^{2}}+4{{c}^{2}})$
$=3({{a}^{2}}+{{b}^{2}}+{{c}^{2}}+{{d}^{2}})+5({{a}^{2}}+{{b}^{2}}+{{c}^{2}})+10({{a}^{2}}+{{b}^{2}})+30{{a}^{2}}$
$\le 3\cdot 30+5\cdot 14+10\cdot 5+30\cdot 1=240$
Suy ra $ad+bc\le 10.$

Bài 3.

Gọi () là điều kiện đề bài cho.
Trong (
) thay $x=y=0$, ta có $$f(-2f(0))=3f(0).$$ Đặt $f(0)=a$ thì $f(-2a)=3a$.
Trong () thay $x=0$ và $y=-2a$, ta có $$f(-2f(-2a))=5a-2f(-2a)\Leftrightarrow f(-6a)=-a.$$ Trong (), thay $x=-2a,y=-6a$, ta có
$$\begin{aligned}
& f(-2a-2f(-6a))=5f(-2a)-4x-2f(-6a) \\
& \Leftrightarrow f(0)=15a+8a+2a.
\end{aligned}$$ Từ đây ta có $a=25a$ nên $a=0,$ tức là $f(0)=0$. \medskip

Trong $(*),$ thay $y=0$, ta có $$f(x)=5f(x)-4x\Leftrightarrow f(x)=x.$$ Thử lại ta thấy thỏa. Vậy hàm số cần tìm chính là $f(x)=x,\forall x\in \mathbb{R}.$

Bài 4.

(a) Gọi $O$ là tâm của đường tròn $k.$ Không mất tính tổng quát, giả sử tia $AD$ nằm giữa hai tia $AO,AB,$ các trường hợp còn lại tương tự.

Ta có: $$\angle IDB=\angle ABC,\angle IDC=\angle ACB$$ nên $$\angle BAC+\angle BDC=\angle BAC+\angle ABC+\angle ACB=180{}^\circ .$$ Do đó, tứ giác $ABDC$ nội tiếp hay $D\in (O).$ Ta thấy $$\begin{aligned}
& \angle DAO+\angle OID \\
& =\angle BAC-(\angle DAB+\angle OAC)+360{}^\circ -(90{}^\circ +\angle DIC) \\
& =\angle BAC-\left( \angle ICD+90{}^\circ -\angle ABC \right)+270{}^\circ -\angle DIC \\
& =\angle BAC+\angle ABC-(\angle ICD+\angle DIC)+180{}^\circ \\
& =(180{}^\circ -\angle ACB)-\left( 180{}^\circ -\angle IDC \right)+180{}^\circ \\
& =\angle IDC-\angle ACB+180{}^\circ =180{}^\circ.
\end{aligned} $$

Do đó, $AOID$ nội tiếp hay đường tròn $(AID)$ đi qua $O$ cố định. \medskip

(b) Ta có: $$\angle EAC=90{}^\circ -\angle BAC,\angle FAB=90{}^\circ -\angle BAC$$ nên
$$\angle EAF=180{}^\circ -2\angle BAC+\angle BAC=180{}^\circ -\angle BAC.$$

Do đó, góc $\angle EAF$ có số đo không đổi.

Bài 5.

Trước hết, ta chứng minh bổ đề sau: \medskip

Bổ đề. Giá trị của biểu thức $\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}$ tiến tới vô cực khi $n\to +\infty.$ \medskip

Thật vậy, xét hàm số $f(x)=\ln (1+x)-x$ với $x>0$. Ta có $$f'(x)=\frac{1}{1+x}-1<0$$ nên đây là hàm nghịch biến, suy ra $f(x)<f(0)=0$ hay $\ln (1+x)<x,\forall x>0$. Thay $x$ bởi $\frac{1}{n}$, ta được
$$\ln \left( 1+\frac{1}{n} \right)<\frac{1}{n}\Leftrightarrow \frac{1}{n}>\ln (1+n)-\ln n.$$ Do đó, $$\frac{1}{1}+\frac{1}{2}+\frac{1}{3}++\frac{1}{n}>\ln 2-\ln1+\ln3-\ln2+\cdots+ln(n+1)-\ln n=\ln (n+1).$$ Vì $\ln (n+1)\to +\infty $ khi $n\to +\infty $ nên $$\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}\to +\infty.$$
Trở lại bài toán, đặt $$y_n=\frac{x_1+x_3+x_5+\cdots+x_{2n-1}}{x_2+x_4+x_6+\cdots+x_{2n}}$$ với $n\ge 1.$

Ta thấy vì $\frac{1}{n}\in \left( 0;\frac{\pi }{2} \right)$ nên $\cos \frac{1}{n}>0$, suy ra $$x_n=\frac{1}{n\cos \frac{1}{n}}>0,n\ge 1. $$
Xét hàm số $f(t)=\frac{t}{\cos t}$ với $t\in \left( 0;\frac{\pi }{2} \right)$ thì ${f}'(t)=\frac{\cos t+t\sin t}{{{\cos }^{2}}t}>0$ nên đây là hàm đồng biến. Chú ý rằng $x_n=f\left( \frac{1}{n} \right)$, mà $\frac{1}{n}$ là dãy giảm nên $x_n$ cũng là dãy giảm. \medskip

Suy ra $x_1>x_2,x_3>x_4,\ldots,x_{2n-1}>x_{2n}$ nên $y_n>1$. \medskip

Ngoài ra, ta cũng có $x_3<x_2,x_5<x_4,\ldots,x_{2n-1}<x_{2n-2}$ nên $y_n< \frac{x_1+x_2+x_4+\cdots+x_{2n-2}}{x_2+x_4+\cdots+x_{2n}}$

$= 1-\frac{x_1-x_{2n}}{x_2+x_4+\cdots+x_{2n}}<1-\frac{x_1}{x_2+x_4+\cdots+x_{2n}}$

Dễ thấy rằng $$x_2+x_4+\cdots+x_{2n}=\sum\limits_{i=1}^{n}{\frac{1}{2i\cos \frac{1}{2i}}}\ge \sum\limits_{i=1}^{n}{\frac{1}{2i}}=\frac{1}{2}\sum\limits_{i=1}^{n}{\frac{1}{i}}.$$

Theo bổ đề trên thì $\sum\limits_{i=1}^{n}{\frac{1}{i}}$ tiến tới vô cực nên $$\lim \left( x_2+x_4+\cdots+x_{2n} \right)=+\infty .$$

Do đó $$\lim \left( 1-\frac{x_{1}}{x_2+x_4+\cdots+x_{2n}} \right)=1-0=1.$$ Theo nguyên lý kẹp, ta có $\lim x_n=1.$

Bài 6.

Đặt $X=x-1,Y=y+1$, thay vào, ta có
$$\begin{aligned}
& \left\{ \begin{aligned}
& {{X}^{2}}+{{Y}^{2}}=b \\
& Y-1={{(X+1)}^{2}}+(2a+1)(X+1)+{{a}^{2}} \\
\end{aligned} \right. \
& \Leftrightarrow \left\{ \begin{aligned}
& {{X}^{2}}+{{Y}^{2}}=b \\
& Y={{X}^{2}}+(2a+3)X+{{a}^{2}}+2a+3.
\end{aligned} \right. \\
\end{aligned}$$
Ta đưa về tìm điều kiện của $b$ để tồn tại $a$ mà hệ trên có nghiệm $(X,Y).$ Do $$Y-(X+2)={{X}^{2}}+2(a+1)X+{{(a+1)}^{2}}={{\left( X+a+1 \right)}^{2}}\ge 0$$ nên $Y\ge X+2$. Suy ra $Y-X\ge 2>0$, tức là ${{(X-Y)}^{2}}\ge 4.$ Ta có
$$b={{X}^{2}}+{{Y}^{2}}=\frac{{{(X-Y)}^{2}}+{{(X+Y)}^{2}}}{2}\ge \frac{{{(Y-X)}^{2}}}{2}\ge 2.$$ Mặt khác, với $b\ge 2$, nếu chọn $X=-(a+1)$ thì có $Y=X+2=1-a$. Khi đó, ta có
$${{X}^{2}}+{{Y}^{2}}={{(a+1)}^{2}}+{{(a-1)}^{2}}=2({{a}^{2}}+1)=b.$$ Như thế, với $a$ thỏa mãn $2({{a}^{2}}+1)=b$ thì hệ có nghiệm là $$(X,Y)=(-a-1,1-a).$$ Dễ dàng thấy rằng do $b\ge 2$ nên luôn tồn tại $a$ như thế. \medskip

Vậy các giá trị cần tìm của $b$ là $b\ge 2$.

Bài 7.

(a) Giả sử ngược lại, tồn tại $2$ cặp $(A_i,B_i)$ và $(A_j,B_j)$ thỏa mãn điều kiện đề bài đã cho. \medskip

Vì $i\ne j$ nên theo giả thiết, $$\left| A_i \cap B_j \right|\ge 1,\left| A_j\cap B_i \right|\ge 1.$$ Đặt $x_r\in A_i\cap B_j,x_s\in A_j\cap B_i$ với $1\le r,s\le n$ thì:

Do $x_r\in B_j$ nên với mọi $x_k\in A_j$, ta đều có $k<r.$
Do $x_r\in A_i$ nên với mọi $x_k\in B_i$, ta đều có $k>r$.

Từ đây suy ra $$A_j \subset \left\{ x_1,x_2,\ldots,x_{r-1} \right\},B_i\subset \left\{x_{r+1},x_{r+2},\ldots,x_n \right\}.$$

Điều này cho thấy $A_j\cap B_i=\varnothing $, mâu thuẫn với giả thiết. Vậy tồn tại không quá $1$ cặp $(A_i,B_i)$ thỏa mãn điều kiện đã cho. \medskip

(b) Gọi $T$ là tập hợp các cách chọn hai dãy $$A_1,A_2,\ldots,A_m \text{và} B_1,B_2,\ldots,B_m$$ thỏa mãn điều kiện là: với mỗi $i,j\in \left\{ 1,2,3,\ldots,n \right\}$, $A_i\cap B_j=\varnothing $ nếu và chỉ nếu $i=j.$ \medskip

Gọi $T_i\subset T$ là các cách chọn sao cho sao cho cặp $(A_i,B_i)$ thỏa mãn điều kiện là: cặp $(A_i,B_i)$ với $i=1,2,3,\ldots,n$ sao cho nếu $x_k \in A_i$ và $x_l\in B_i$ thì $x_k<x_l$ (ở đây ta xét thứ tự ban đầu của các phần tử của $X$). \hfill (*) \medskip

Theo câu (a) thì $T_i \cap T_j=\varnothing $ với $i\ne j$ nên ta có $$\left| T_1 \right|+\left| T_2 \right|+\cdots +\left| T_m \right|=\left| T_1 \cup T_2 \cup \ldots \cup T_m \right|\le T.$$ Tiếp theo, với $1\le i\le m$, xét một tập hợp $S\subset X$ và $\left| S \right|=a_i+b_i$. Khi đó, tương ứng với $S$, có đúng $1$ cách chọn $(A_i,B_i)$ thỏa mãn tính chất $(*)$ – tức là $A_i$ sẽ nhận $a_i$ số nhỏ nhất trong tập $S,$ $B_i$ là lấy phần còn lại. \medskip

Trong khi đó, nếu không có điều kiện $(*),$ ta có thể chọn tùy ý $C_{a_i+b_i}^{a_i}$ phần tử trong $S$ và $A$ và số còn lại cho $B.$ \medskip

Do đó, ta có
$\left| T_i \right|=\frac{\left| T \right|}{C_{a_i+b_i}^{a_i}} $ với $i=1,2,\ldots,m.$

Từ đây suy ra

$$\sum\limits_{i=1}^{m}\frac{\left| T \right|}{C_{a_i+b_i}^{a_i}}\le \left| T \right|\Leftrightarrow \sum\limits_{i=1}^{m}\frac{1}{C_{a_i+b_i}^{a_i}}\le 1$$

Ta có đpcm.

Bài 8. 

(a) Giả sử $EF$ cắt $BC$ ở $L$ và $(T),(O)$ cắt nhau tại $J$ khác $A.$ Suy ra $AJ$ chính là trục đẳng phương của $(T),(O).$ Do đó $OT\bot AJ$. \medskip

Khi đó,
[LB\cdot LC=LE\cdot LF] nên $L$ thuộc trục đẳng phương của $(T),(O)$. Suy ra $A,J,L$ thẳng hàng. Theo định lý Brocard cho tứ giác $BEFC$ nội tiếp trong đường tròn $(I)$ thì $I$ chính là trực tâm của tam giác $ADL.$ \medskip

Vì thế nên $ID\bot AL$, mà $OT\bot AJ$ nên $ID\parallel OT$. \medskip

(b) Dễ dàng thấy rằng $D$ là trực tâm của tam giác $AGH$ nên $AD\bot GH$. Ta sẽ chứng minh rằng $A,D,K$ thẳng hàng. \medskip

Ta có $DB\cdot DF=DE\cdot DC$ nên $D$ có cùng phương tích tới $(ABF),(AEC)$. Suy ra $AD$ chính là trục đẳng phương của $2$ đường tròn này. \medskip

Bằng biến đổi các góc nội tiếp, ta thấy rằng
$$\angle MPQ=\angle MBF=\angle CEF=\angle CNQ.$$ Suy ra $MNPQ$ nội tiếp, dẫn đến $KM\cdot KP=KN\cdot KQ$, tức là $K$ cũng có cùng phương tích tới $2$ đường tròn $(ABF),(AEC)$. \medskip

Từ đó suy ra $A,D,K$ thẳng hàng. Do đó, $DK$ vuông góc với $GH.$

Leave a Reply

Your email address will not be published. Required fields are marked *