Phương pháp chứng minh phản chứng (Lớp 10)

Tính chất.  $A \Rightarrow B \Leftrightarrow \overline{B} \Rightarrow \overline{A}$ hoặc $A \Rightarrow B \Leftrightarrow \overline{B} \Rightarrow S$,  $S$ là mệnh đề hằng sai.

  • Phương pháp chứng minh phản chứng là một phương pháp chứng minh gián tiếp, để chứng  minh mệnh đề $A \Rightarrow B$ ta chứng minh mệnh đề tương đương với nó là $\overline{B} \Rightarrow \overline{A}$.
  • Điểm mạnh của phương pháp này là ta đã tạo thêm được giả thiết mới $\overline{B}$, để từ đó giúp ta suy luận tiếp để giải quyết được bài toán.
  • Tất nhiên việc viết lại mệnh đề $\overline{B}$ một cách chính xác là điều quan trọng, cái này chú ý một số quy tắt về mệnh đề.
  • Phương pháp này được sử dụng hầu hết trong các phân môn của toán là: đại số, số học, hình học, tổ hợp.

1. Các bài toán tổ hợp

Ví dụ 1. (Nguyên lý Dirichlet) Có $nk + 1$ viên bi, bỏ vào trong $k$ cái hộp. Chứng minh rằng có ít nhất một hộp có ít nhất là là $n+1$ viên bi.

Lời giải
  •  Giả sử tất cả các hộp chỉ chứa số lượng bị không vượt quá $n$ viên, khi đó tổng số viên bi không vượt quá $k \cdot n$, mâu thuẫn với số bi là $kn + 1$.
  • Vậy phải có một hộp chứa nhiều hơn $n$ viên bi.

 

Ví dụ 2. Có tồn tại hay không một cách điền các số $0,1, 2, 3, \cdots , 9$ vào các đỉnh của một đa giác 10 đỉnh sao cho hiệu hai số ở hai đỉnh kề nhau chỉ có thể nhận một trong các giá trị sau:$-5, -4, -3, 3, 4, 5$.

Lời giải
  • Giả sử có một cách ghi thỏa đề bài.
  • Khi đó ta thấy rằng các số $0, 1, 2, 8, 9$ không thể đứng cạnh nhau đôi một. Hơn nữa có đúng 10 số, vậy các số còn lại sẽ đứng xen kẽ giữa các số này.
  • Khi đó xét số 7, ta thấy số 7 chỉ có thể đứng bên cạnh số 2 trong các số $\{ 0, 1, 2, 8, 9 \}$, mâu thuẫn.
    Vậy không tồn tại cách ghi thỏa đề bài.

Ví dụ 3.  Điền các số 1,2,3,…,121 vào một bảng ô vuông kích thước $11 \times 11$ sao cho mỗi ô chứa một số. Tồn tại hay không một cách điền sao cho hai số tự nhiên liên tiếp sẽ được điền vào hai ô có chung một cạnh và các tất cả các số chính phương thì nằm trong cùng một cột?

Lời giải
  • Giả sử tồn tại một cách điền số vào các ô thỏa yêu cầu đặt ra. Khi đó bảng ô vuông được chia thành hai phần ngăn cách nhau bởi cột điền các số chính phương. Một phần chứa $11n$ ô vuông $1 \times 1$, và phần còn lại chứa $110-11n$ ô vuông $1 \times 1$ , với $0 \le n \le 5.$
  • Để ý rằng các số tự nhiên nằm giữa hai số chính phương liên tiếp $a^2$ và $(a+1)^2$ sẽ cùng nằm về một phần và dó đó các số tự nhiên nằm giữa $(a+1)^2$ và $(a+2)^2$ sẽ nằm ở phần còn lại.
  • Số lượng các số tự nhiên nằm giữa 1 và 4, 4 và 9, 9 và 16,…,100 và 121 lần lượt là $2,4,6,8,…,20$. Do đó một phần sẽ chứa $2+6+10+14+18=50$ số, phần còn lại chứa $4+8+12+16+20=60$ số.
  • Cả 50 và 60 đều không chia hết cho 11, mâu thuẫn. Vậy không tồn tại cách điền số thỏa yêu cầu đề bài.

Ví dụ 4. Cho $F ={E_1, E_2, …, E_k }$ là một họ các tập con có $r$ phần tử của tập $X$. Nếu giao của $r+1$ tập bất kì của $F$ là khác rỗng, chứng minh rằng giao của tất cả các tập thuộc $F$ là khác rỗng.

Lời giải
  • Giả sử ngược lại, giao tất cả các tập thuộc $F$ bằng rỗng.
  • Xét tập $E_1 = \{x_1, \cdots, x_r\}$. Do giao tất cả các tập thuộc $F$ là rỗng, nên với $x_k$ tồn tại một tập $E_{i_k}$ mà $x \notin E_{i_k}, \forall k = \overline{1,r}$.
  • Khi đó xét giao của họ gồm $r+1$ tập $E_1, E_{i_1}, \cdot, E_{i_r}$ thì bằng rỗng, mâu thuẫn.Vậy giao của tất cả các tập thuộc $F$ là khác rỗng.

Ví dụ 5.  Cho $A$ và $B$ là các tập phân biệt và hợp của $A$ và $B$ là tập các số tự nhiên. Chứng minh rằng với mọi số tự nhiên $n$ tồn tại các số  phân biệt $a,b > n$ sao cho ${a,b,a + b } \subset A$ hoặc ${a,b,a+b} \subset B$.

Lời giải
  • Nếu $A$ hoặc $B$ là tập hợp hữu hạn phần tử thì chỉ cần chọn $a, b$ lớn hơn phần tử lớn nhất của $A$ hoặc $B$ ta có điều cần chứng minh.
  • Nếu $A, B$ là tập vô hạn, giả sử tồn tại $n$ sao cho với mọi $a, b$ thì $a, b, a+b$ không cùng thuộc $A$ hoặc $B$. (1)
  • a chọn các số $x, y, z \in A$ sao cho $x < y < z$  và $z-y, y-x > n$.
  • Do (1) nên các số $y-x, z-y,z-x \in B$, suy ra $z-y+y-x = z-x \in A$ (mâu thuẫn).
    Vậy điều giả sử là sai, tức là ta có điều cần chứng minh.

Bài tập rèn luyện.

Bài 1. Trong mặt phẳng tọa độ thì một điểm mà hoành độ và tung độ đều là các số nguyên được gọi là điểm nguyên. Chứng minh rằng không tồn tại tam giác đều nào mà các đỉnh đều là điểm nguyên.

Bài 2. Cho $S$ là tập vô hạn các phần tử và $P(S)$ là họ các tập con của $S$. Chứng minh rằng không tồn tại một song ánh từ $S$ và $P(S)$.

Bài 3. Cho $A$ là tập con có 19 phần tử của tập ${1, 2, \cdots, 106}$ sao cho không có hai phần tử nào có hiệu bằng $6, 9, 12, 15, 18$. Chứng minh rằng có 2 phần tử thuộc $A$ có hiệu bằng 3.

Bài 4. Một hình vuông $n \times n$ ô được tô bởi hai màu đen trắng, sao cho trong 4 ô góc thì 3 ô được tô màu đen, 1 ô được tô màu trắng. Chứng minh rằng trong hình vuông có ô vuông $2 \times 2 $ mà có số ô màu đen là số lẻ.

Bài 5.  Tập $S$ được gọi là một tập cân nếu lấy từ $S$ ra một phần tử bất kì thì các phần tử còn lại của $S$ có thể chia ra làm hai phần có tổng bằng nhau. Tìm số phần tử nhỏ nhất của một tập cân.

(còn nữa)

Leave a Reply

Your email address will not be published. Required fields are marked *