Category Archives: Căn thức

Chuyên đề: Biến đổi biểu thức

RÚT GỌN BIẾN ĐỔI BIỂU THỨC CHỨA CĂN THỨC

Chuyên đề này đề cập tới các bài toán rút gọn biểu thức, chứng minh các đẳng thức, tính toán biểu thức,…Đây là chuyên đề quan trọng, rèn luyện kĩ năng biến đổi đại số cho các em, là kĩ năng ta sẽ dùng sau này.

Kiến thức là toàn bộ chương căn bậc hai, các hằng đẳng thức và kĩ năng biến đổi đã học ở lớp 8.

Các bạn có thể xem trước các bài cơ bản ở đây.

Dạng 1. Tính toán rút gọn

Ví dụ 1. Đặt $x = \sqrt{2}+\sqrt{3}$.
a) Chứng minh rằng $x^4 – 10x^2 + 1 = 0$.
b) Tìm giá trị của biểu thức $P(x) = (x^6 – 11x^4 + 11x^2 + 1)^{2019}$.

Lời giải

 

 

 

 

 

 

 

Ví dụ 2.  Cho $x$ thỏa $x \geq 2$. Rút gọn biểu thức $$A = \dfrac{{{x^3} – 3x + \left( {{x^2} – 1} \right)\sqrt {{x^2} – 4} – 2}}{{{x^3} – 3x + \left( {{x^2} – 1} \right)\sqrt {{x^2} – 4} + 2}}$$

Lời giải

Ví dụ 3.

a) Chứng minh rằng với mọi số nguyên dương n ta có: $$1 + \dfrac{1}{{{n^2}}} + \dfrac{1}{{{{\left( {n + 1} \right)}^2}}} = {\left( {1 + \dfrac{1}{n} – \dfrac{1}{{n + 1}}} \right)^2}$$
b) Tính tổng $$S = \sqrt {1 + \dfrac{1}{{{1^2}}} + \dfrac{1}{{{2^2}}}} + \sqrt {1 + \dfrac{1}{{{2^2}}} + \dfrac{1}{{{3^2}}}} + \cdots + \sqrt {1 + \dfrac{1}{{{{2021}^2}}} + \dfrac{1}{{{{2022}^2}}}} $$

Lời giải

Ví dụ 4. Rút gọn biểu thức: $$A = \dfrac{1}{{2\sqrt 1 + 1\sqrt 2 }} + \dfrac{1}{{3\sqrt 2 + 2\sqrt 3 }} + \cdots + \dfrac{1}{{2019\sqrt {2018} + 2018\sqrt {2019} }}$$

Lời giải

Dạng 1. Chứng minh đẳng thức

Ví dụ 5. Cho $a, b \ge 0, a^2>b$. Chứng minh $$\sqrt{a+\sqrt{b}}=\sqrt{\dfrac{a+\sqrt{a^2-b}}{2}}+\sqrt{\dfrac{a-\sqrt{a^2-b}}{2}}$$ và $$\sqrt{a-\sqrt{b}}=\sqrt{\dfrac{a+\sqrt{a^2-b}}{2}}-\sqrt{\dfrac{a-\sqrt{a^2-b}}{2}}$$

Lời giải

Ví dụ 6. Cho $a, b >0, c \neq 0$. Chứng minh rằng:
$$ \dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c} = 0 \Leftrightarrow \sqrt {a + b} = \sqrt {a + c} + \sqrt {b + c} $$

Lời giải

Ví dụ 7. Cho $xy + \sqrt {\left( {1 + {x^2}} \right)\left( {1 + {y^2}} \right)} = a > 1$. Tính $S = x\sqrt {1 + {y^2}} + y\sqrt {1 + {x^2}} $.

Lời giải

Ví dụ 8. Đặt $a_n = \sqrt[4]{2} + \sqrt[n]{4}, n = 2, 3…$. Chứng minh rằng $$ \dfrac{1}{a_5}+\dfrac{1}{a_6}+\dfrac{1}{a_{12}}+\dfrac{1}{a_{20}} = \sqrt[4]{8} $$

Lời giải

Ví dụ 9.  Chứng minh rằng nếu $\sqrt[3]{a} + \sqrt[3]{b} + \sqrt[3]{c} = \sqrt[3]{{a + b + c}}$ thì với mọi số nguyên dương lẻ n ta có $\sqrt[n]{a} + \sqrt[n]{b} + \sqrt[n]{c} = \sqrt[n]{{a + b + c}}$.

Lời giải

Dạng 3. Hữu tỉ và vô tỉ

Ví dụ 10. 

a) Chứng minh rằng $\sqrt{2}$ là số vô tỉ.

b) Cho $n$ và số tự nhiên và $m$ là số tự nhiên thỏa $n^2 < m < (n+1)^2$. Chứng minh $\sqrt{m}$ là một số vô tỉ.

Lời giải

Ví dụ 11. Chứng minh số
$A=\sqrt[3]{7+5\sqrt{2}}+\sqrt[3]{7-5\sqrt{2}}$ là một số nguyên.

Lời giải

Ví dụ 12. 

a) Chứng minh rằng nếu $a, b$ là các số hữu tỉ thỏa $a+b\sqrt{2} = 0$ thì $a = b= 0$.

b) Tìm các số $a, b$ hữu tỉ thỏa $\sqrt{a} +\sqrt{b} = \sqrt{2+\sqrt{3}}$.

 

Bài tập rèn luyện.

Bài 1. Với mọi $x \ge 2$. Chứng minh rằng $$\sqrt{\sqrt{x}+\sqrt{\dfrac{x^2-4}{x}}}+\sqrt{\sqrt{x}-\sqrt{\dfrac{x^2-4}{x}}}=\sqrt{\dfrac{2x+4}{\sqrt{x}}}$$

Bài 2. Rút gọn $A=\sqrt{\dfrac{1}{x^2+y^2}+\dfrac{1}{(x+y)^2}+\sqrt{\dfrac{1}{x^4}+\dfrac{1}{y^4}+\dfrac{1}{(x^2+y^2)^2}}}$

Bài 3. Cho $x,y<0$. Chứng minh $|\sqrt{xy}-\dfrac{x+y}{2}|+|\dfrac{x+y}{2}+\sqrt{xy}|=|x|+|y|.$
Bài 4. Cho các số $x,y,z>0$ và đôi một phân biệt. Chứng minh giá trị của $P$ không phụ thuôc vào $x,y,z$ với
$$P=\dfrac{x}{(\sqrt{x}-\sqrt{y})(\sqrt{x}-\sqrt{z})}+\dfrac{y}{(\sqrt{y}-\sqrt{z})(\sqrt{y}-\sqrt{x})}+\dfrac{z}{(\sqrt{z}-\sqrt{x})(\sqrt{z}-\sqrt{y})}.$$
Bài 5.  Cho $a=\sqrt{2}+\sqrt{7-\sqrt[3]{61+46\sqrt{5}}}+1$.

a) Chứng minh: $a^4-14a^2+9=0$.
b) Cho $f(x)=x^5+2x^4-14x^3-28x^2+9x+19$. Tính $f(a).$

Bài 6.  Cho $a=\sqrt[3]{38+17\sqrt{5}}+\sqrt[38]{38-17\sqrt{5}}$ và $f(x)=(x^3+3x+2018)^{2018}$. Tính $f(a).$
Bài 7.  Cho $x=1+\sqrt[3]{2}+\sqrt[3]{4}$. Tính $x^5-4x^4+x^3-x^2-2x+2018.$

Bài 8. Cho $f(n)=\dfrac{4n+\sqrt{4n^2-1}}{\sqrt{2n+1}+\sqrt{2n-1}}, n \in \mathbb{N}^*$. Tính $f(1)+f(2)+…+f(2018)$. %NTK

Bài 9.  Cho $f(n)=\dfrac{2n+1+\sqrt{n(n+1)}}{\sqrt{n}+\sqrt{n+1}}$. Tính $f(1)+f(2)+…+f(n).$ %NTK
Bài 10. Cho $x,y,z >0$ thoả $xyz=4$. Tính giá trị biểu thức $$A=\dfrac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+2}+\dfrac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\dfrac{2\sqrt{z}}{\sqrt{xz}+2\sqrt{z}+2}.$$

Bài 11.  Cho các số dương $x,y,z$ thoả $\begin{cases} x+y+z=2&\\\sqrt{x}+\sqrt{y}+\sqrt{z}=2 \end{cases}$. Tính $$A=\sqrt{(1+x)(1+y)(1+z)}\left(\dfrac{\sqrt{x}}{x+1}+\dfrac{\sqrt{y}}{y+1}+\dfrac{\sqrt{z}}{z+1}\right).$$

Bài 12.  Cho các số $abc \ne 0$ thoả $a+b+c=0$. Chứng minh $$\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}=\big|\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\big|$$

Bài 13.  Cho $a,b,c>0$ thoả $a\sqrt{1-b^2}+b\sqrt{1-c^2}+c \sqrt{1-a^2}=\dfrac{3}{2}.$\ Chứng minh $a^2+b^2+c^2=\dfrac{3}{2}.$
Bài 14.  Tìm tất cả các số thực $a,b,c$ thoả $\sqrt[3]{a-b}+\sqrt[3]{b-c}+\sqrt[3]{c-a}=0.$ %105-38
Bài 15. Cho các số $a_1, a_2,…,a_n$ thoả $a_1=1, a_{n+1}=\dfrac{\sqrt{3}+a_n}{1-\sqrt{3}a_n}$. Tính $a_{2020}$.
Bài 16.  Chứng minh rằng nếu $\sqrt{x^2+\sqrt[3]{x^4y^2}}+\sqrt{y^2+\sqrt[3]{x^2y^4}}=a$ thì $$\sqrt[3]{x^2}+\sqrt[3]{y^2}=\sqrt[3]{a^2} $$

Rút gọn căn thức – Các biểu thức số

Trong bài này ta tổng hợp các kĩ năng thực hiện các phép tính toán, khai căn, phân tích thành tích, trục căn thức ở mẫu để làm các bài toán phức tạp hơn.

Chú ý khi làm bài. Trong các bài này ta có thể rút gọn các phân thức riêng lẻ trước nếu được bằng cách phân tích thành tích, tiếp theo thì trục căn thức và rút gọn các biểu thức trong ngoặc, không nên qui đồng vì tính toán sẽ rất phức tạp.

Ví dụ 1. Rút gọn

a) $\dfrac{6-6\sqrt{3}}{1-\sqrt{3}}+\dfrac{3\sqrt{3}+3}{\sqrt{3}+1}$.
b) $\dfrac{2-\sqrt{2}}{1-\sqrt{2}}+\dfrac{\sqrt{2}-\sqrt{6}}{\sqrt{3}-1}$.
c) $\dfrac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}+\dfrac{5-2\sqrt{5}}{2\sqrt{5}-4}$.
d) $\dfrac{3\sqrt{2}-6}{\sqrt{2}-1}+\dfrac{6\sqrt{2}-4}{\sqrt{2}-3}$.

Giải

a)  $\dfrac{6-6\sqrt{3}}{1-\sqrt{3}}+\dfrac{3\sqrt{3}+3}{\sqrt{3}+1}$.\\
Ta có:\\
$\begin{aligned}
&\dfrac{6-6\sqrt{3}}{1-\sqrt{3}}+\dfrac{3\sqrt{3}+3}{\sqrt{3}+1}\\
&=\dfrac{6\left(1-\sqrt{3}\right)}{1-\sqrt{3}}+\dfrac{3\left(\sqrt{3}+1\right)}{\sqrt{3}+1}\\
&=6+3\\
&=9
\end{aligned}$
b) $\dfrac{2-\sqrt{2}}{1-\sqrt{2}}+\dfrac{\sqrt{2}-\sqrt{6}}{\sqrt{3}-1}$.\\
Ta có:\\
$\begin{aligned}
&\dfrac{2-\sqrt{2}}{1-\sqrt{2}}+\dfrac{\sqrt{2}-\sqrt{6}}{\sqrt{3}-1}\\
&=\dfrac{\sqrt{2}\left(\sqrt{2}-1\right)}{-\left(\sqrt{2}-1\right)}+\dfrac{\sqrt{2}\left(1-\sqrt{3}\right)}{-\left(1-\sqrt{3}\right)}\\
&=-\sqrt{2}-\sqrt{2}\\
&=-2\sqrt{2}
\end{aligned}$
c) $\dfrac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}+\dfrac{5-2\sqrt{5}}{2\sqrt{5}-4}$.\\
Ta có:\\
$\begin{aligned}
&\dfrac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}+\dfrac{5-2\sqrt{5}}{2\sqrt{5}-4}\\
&=\dfrac{\sqrt{5}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}+\dfrac{\sqrt{5}\left(\sqrt{5}-2\right)}{2\left(\sqrt{5}-2\right)}\\
&=\sqrt{5}+\dfrac{\sqrt{5}}{2}\\
&=\dfrac{3\sqrt{5}}{2}
\end{aligned}$
d) $\dfrac{3\sqrt{2}-6}{\sqrt{2}-1}+\dfrac{6\sqrt{2}-4}{\sqrt{2}-3}$.\\
Ta có:\\
$\begin{aligned}
&\dfrac{3\sqrt{2}-6}{\sqrt{2}-1}+\dfrac{6\sqrt{2}-4}{\sqrt{2}-3}\\
&=\dfrac{3\sqrt{2}\left(1-\sqrt{2}\right)}{-\left(1-\sqrt{2}\right)}+\dfrac{2\sqrt{2}\left(3-\sqrt{2}\right)}{-\left(3-\sqrt{2}\right)}\\
&=-3\sqrt{2}-2\sqrt{2}\\
&=-5\sqrt{2}
\end{aligned}$

Ví dụ 2. Rút gọn

a) $\dfrac{6}{\sqrt{5}-1}+\dfrac{7}{1-\sqrt{3}}-\dfrac{2}{\sqrt{3}-\sqrt{5}}$.
b) $\dfrac{\sqrt{12}-6}{\sqrt{8}-\sqrt{24}}-\dfrac{3+\sqrt{3}}{\sqrt{3}}+\dfrac{4}{1-\sqrt{7}}$.
c) $\dfrac{1}{\sqrt{2}-\sqrt{3}}-\dfrac{1}{\sqrt{3}-\sqrt{5}}+\dfrac{1}{\sqrt{7}-\sqrt{5}}$.
d) $\left(\dfrac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\dfrac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\dfrac{1}{\sqrt{7}-\sqrt{5}}$.

Giải

a)$\dfrac{6}{\sqrt{5}-1}+\dfrac{7}{1-\sqrt{3}}-\dfrac{2}{\sqrt{3}-\sqrt{5}}$.
Ta có:
$\begin{aligned}
&\dfrac{6}{\sqrt{5}-1}+\dfrac{7}{1-\sqrt{3}}-\dfrac{2}{\sqrt{3}-\sqrt{5}}\\
&=\dfrac{6}{5-1}\left(\sqrt{5}+1\right)+\dfrac{7}{1-3}\left(1+\sqrt{3}\right)-\dfrac{2}{3-5}\left(\sqrt{3}+\sqrt{5}\right)\\
&=\dfrac{3}{2}\left(\sqrt{5}+1\right)-\dfrac{7}{2}\left(1+\sqrt{3}\right)+\sqrt{3}+\sqrt{5}\\
&=\dfrac{3\sqrt{5}}{2}+\dfrac{3}{2}-\dfrac{7}{2}-\dfrac{7\sqrt{3}}{2}+\sqrt{3}+\sqrt{5}\\
&=\dfrac{5\sqrt{5}}{2}-\dfrac{5\sqrt{3}}{2}-2\\
&=\dfrac{5}{2}\left(\sqrt{5}-\sqrt{3}\right)-2
\end{aligned}$
b) $\dfrac{\sqrt{12}-6}{\sqrt{8}-\sqrt{24}}-\dfrac{3+\sqrt{3}}{\sqrt{3}}+\dfrac{4}{1-\sqrt{7}}$.
Ta có:
$\begin{aligned}
&\dfrac{\sqrt{12}-6}{\sqrt{8}-\sqrt{24}}-\dfrac{3+\sqrt{3}}{\sqrt{3}}+\dfrac{4}{1-\sqrt{7}}\\
&=\dfrac{\sqrt{6}\left(\sqrt{2}-\sqrt{6}\right)}{2\left(\sqrt{2}-\sqrt{6}\right)}-\dfrac{\sqrt{3}\left(\sqrt{3}+1\right)}{\sqrt{3}}+\dfrac{4}{1-7}\left(1+\sqrt{7}\right)\\
&=\dfrac{\sqrt{6}}{2}-\left(\sqrt{3}+1\right)-\dfrac{2}{3}\left(1+\sqrt{7}\right)\\
&=-\dfrac{2}{3}\sqrt{7}+\dfrac{\sqrt{6}}{2}-\sqrt{3}-\dfrac{5}{3}
\end{aligned}$
c) $\dfrac{1}{\sqrt{2}-\sqrt{3}}-\dfrac{1}{\sqrt{3}-\sqrt{5}}+\dfrac{1}{\sqrt{7}-\sqrt{5}}$.\\
Ta có:\\
$\begin{aligned}
&\dfrac{1}{\sqrt{2}-\sqrt{3}}-\dfrac{1}{\sqrt{3}-\sqrt{5}}+\dfrac{1}{\sqrt{7}-\sqrt{5}}\\
&=\dfrac{1}{2-3}\left(\sqrt{2}+\sqrt{3}\right)-\dfrac{1}{3-5}\left(\sqrt{3}+\sqrt{5}\right)+\dfrac{1}{7-5}\left(\sqrt{7}+\sqrt{5}\right)\\
&=-\left(\sqrt{2}+\sqrt{3}\right)+\dfrac{1}{2}\left(\sqrt{3}+\sqrt{5}\right)+\dfrac{1}{2}\left(\sqrt{7}+\sqrt{5}\right)\\
&=-\sqrt{2}-\sqrt{3}+\dfrac{1}{2}\sqrt{3}+\dfrac{1}{2}\sqrt{5}+\dfrac{1}{2}\sqrt{7}+\dfrac{1}{2}\sqrt{5}\\
&=\dfrac{1}{2}\sqrt{7}+\sqrt{5}-\dfrac{1}{2}\sqrt{3}-\sqrt{2}
\end{aligned}$
d) $\left(\dfrac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\dfrac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\dfrac{1}{\sqrt{7}-\sqrt{5}}$.\\
Ta có:
$\begin{aligned}
&\left(\dfrac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\dfrac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\dfrac{1}{\sqrt{7}-\sqrt{5}}\\
&=\left[\dfrac{\sqrt{7}\left(\sqrt{2}-1\right)}{-\left(\sqrt{2}-1\right)}+\dfrac{\sqrt{5}\left(\sqrt{3}-1\right)}{-\left(\sqrt{3}-1\right)}\right].\left(\sqrt{7}-\sqrt{5}\right)\\
&=\left(-\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)\\
&=-(7-5)\\
&=-2
\end{aligned}$

Ví dụ 3. Rút gọn

a) $\left(\dfrac{12}{\sqrt{5}+1}-\dfrac{4}{\sqrt{5}+2}+\dfrac{20}{3+\sqrt{5}}\right)(10+3\sqrt{5})$.
b) $\left(\dfrac{24}{\sqrt{7}+1}+\dfrac{4}{3+\sqrt{7}}-\dfrac{3}{\sqrt{7}+2}\right)(4-\sqrt{7})$.
c) $\left(\dfrac{8}{\sqrt{3}-1}-\dfrac{4}{\sqrt{3}+1}+\dfrac{4}{\sqrt{5}+\sqrt{3}}\right):\sqrt{14+6\sqrt{5}}$.
d) $\left(\dfrac{7}{\sqrt{2}-1}+\dfrac{56}{\sqrt{2}-4}+\dfrac{3}{\sqrt{3}+\sqrt{2}}\right):\sqrt{12-6\sqrt{3}}$.

Giải

a) $\left(\dfrac{12}{\sqrt{5}+1}-\dfrac{4}{\sqrt{5}+2}+\dfrac{20}{3+\sqrt{5}}\right)(10+3\sqrt{5})$.
Ta có:
$\begin{aligned}
&\left(\dfrac{12}{\sqrt{5}+1}-\dfrac{4}{\sqrt{5}+2}+\dfrac{20}{3+\sqrt{5}}\right)(10+3\sqrt{5})\\
&=\left[\dfrac{12}{5-1}\left(\sqrt{5}-1\right)-\dfrac{4}{5-4}\left(\sqrt{5}-2\right)+\dfrac{20}{9-5}\left(3-\sqrt{5}\right)\right]\left(10+3\sqrt{5}\right)\\
&=\left[3\left(\sqrt{5}-1\right)-4\left(\sqrt{5}-2\right)+5\left(3-\sqrt{5}\right)\right]\left(10+3\sqrt{5}\right)\\
&=\left[3\sqrt{5}-3-4\sqrt{5}+8+15-5\sqrt{5}\right]\left(10+3\sqrt{5}\right)\\
&=\left(-6\sqrt{5}+20\right)\left(10+3\sqrt{5}\right)\\
&=2\left(10-3\sqrt{5}\right)\left(10+3\sqrt{5}\right)\\
&=2(100-45)\\
&=110
\end{aligned}$
b) $\left(\dfrac{24}{\sqrt{7}+1}+\dfrac{4}{3+\sqrt{7}}-\dfrac{3}{\sqrt{7}+2}\right)(4-\sqrt{7})$.
Ta có:
$\begin{aligned}
&\left(\dfrac{24}{\sqrt{7}+1}+\dfrac{4}{3+\sqrt{7}}-\dfrac{3}{\sqrt{7}+2}\right)(4-\sqrt{7})\\
&=\left[\dfrac{24}{7-1}\left(\sqrt{7}-1\right)+\dfrac{4}{9-7}\left(3-\sqrt{7}\right)-\dfrac{3}{7-4}\left(\sqrt{7}-2\right)\right]\left(4-\sqrt{7}\right)\\
&=\left[4\left(\sqrt{7}-1\right)+2\left(3-\sqrt{7}\right)-\left(\sqrt{7}-2\right)\right]\left(4-\sqrt{7}\right)\\
&=\left(4\sqrt{7}-4+6-2\sqrt{7}-\sqrt{7}+2\right)\left(4-\sqrt{7}\right)\\
&=\left(\sqrt{7}+4\right)\left(4-\sqrt{7}\right)\\
&=16-7
&=9
\end{aligned}$
c) $\left(\dfrac{8}{\sqrt{3}-1}-\dfrac{4}{\sqrt{3}+1}+\dfrac{4}{\sqrt{5}+\sqrt{3}}\right):\sqrt{14+6\sqrt{5}}$.
Ta có:
$\begin{aligned}
&\left(\dfrac{8}{\sqrt{3}-1}-\dfrac{4}{\sqrt{3}+1}+\dfrac{4}{\sqrt{5}+\sqrt{3}}\right):\sqrt{14+6\sqrt{5}}\\
&=\left[\dfrac{8}{3-1}\left(\sqrt{3}+1\right)-\dfrac{4}{3-1}\left(\sqrt{3}-1\right)+\dfrac{4}{5-3}\left(\sqrt{5}-\sqrt{3}\right)\right]:\left(3+\sqrt{5}\right)\\
&=\left[4\left(\sqrt{3}+1\right)-2\left(\sqrt{3}-1\right)+2\left(\sqrt{5}-\sqrt{3}\right)\right]:\left(3+\sqrt{5}\right)\\
&=\left(4\sqrt{3}+4-2\sqrt{3}+2+2\sqrt{5}-2\sqrt{3}\right):\left(3+\sqrt{5}\right)\\
&=\left(6+2\sqrt{5}\right):\left(3+\sqrt{5}\right)\\
&=2
\end{aligned}$
d) $\left(\dfrac{7}{\sqrt{2}-1}+\dfrac{56}{\sqrt{2}-4}+\dfrac{3}{\sqrt{3}+\sqrt{2}}\right):\sqrt{12-6\sqrt{3}}$.\\
Ta có:
$\begin{aligned}
&\left(\dfrac{7}{\sqrt{2}-1}+\dfrac{56}{\sqrt{2}-4}+\dfrac{3}{\sqrt{3}+\sqrt{2}}\right):\sqrt{12-6\sqrt{3}}\\
&=\left[\dfrac{7}{2-1}\left(\sqrt{2}+1\right)+\dfrac{56}{2-16}\left(\sqrt{2}+4\right)+\dfrac{3}{3-2}\left(\sqrt{3}-\sqrt{2}\right)\right]:\left(3-\sqrt{3}\right)\\
&=\left[7\left(\sqrt{2}+1\right)-4\left(\sqrt{2}+4\right)+3\left(\sqrt{3}-\sqrt{2}\right)\right]:\left(3-\sqrt{3}\right)\\
&=\left(7\sqrt{2}+7-4\sqrt{2}-16+3\sqrt{3}-3\sqrt{2}\right):\left(3-\sqrt{3}\right)\\
&=\left(-9+3\sqrt{3}\right):\left(3-\sqrt{3}\right)\\
&=-3
\end{aligned}$

Bài tập rèn luyện

Bài 1. Rút gọn

a) $\dfrac{\sqrt{160}-\sqrt{80}}{\sqrt{8}-\sqrt{2}}-\dfrac{\sqrt{40}-\sqrt{15}}{2\sqrt{2}-\sqrt{3}}$.
b) $\left(\dfrac{5-2\sqrt{5}}{2-\sqrt{5}}-2\right)\left(\dfrac{5+3\sqrt{5}}{3+\sqrt{5}}-2\right)$.
c) $\left(\dfrac{\sqrt{216}}{3}-\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}\right)\dfrac{1}{\sqrt{6}}$.
d) $\left(\dfrac{\sqrt{343}}{21}-\dfrac{28+4\sqrt{7}}{\sqrt{63}+3}\right)\dfrac{\sqrt{7}}{7}$.

Bài 2. Rút gọn

a) $\dfrac{5\sqrt{2}-2\sqrt{5}}{\sqrt{5}-\sqrt{2}}+\dfrac{6}{2-\sqrt{10}}$.
b) $\dfrac{3}{\sqrt{5}-\sqrt{2}}-\dfrac{2}{2-\sqrt{2}}+\dfrac{1}{\sqrt{3}+\sqrt{2}}$.
c) $\dfrac{-4}{\sqrt{7}-\sqrt{5}}+\dfrac{1}{\sqrt{3}-1}+\dfrac{4-2\sqrt{5}}{\sqrt{5}-2}$.
d) $\dfrac{5}{3-\sqrt{7}}-\dfrac{2}{\sqrt{2}+\sqrt{3}}+\dfrac{-1}{\sqrt{2}-1}$.

Bài 3. Rút gọn

a) $\dfrac{(\sqrt{3}-\sqrt{5})^2+4\sqrt{15}}{\sqrt{3}+\sqrt{5}}$.
b) $(\sqrt{5}+2)\dfrac{(\sqrt{5}+2)^2-8\sqrt{5}}{\sqrt{5}-2}$.
c) $\dfrac{(\sqrt{2}+1)^2-4\sqrt{2}}{\sqrt{2}-1}\cdot(\sqrt{2}+1)$.
d) $\dfrac{(\sqrt{3}-\sqrt{2})^2+4\sqrt{6}}{(\sqrt{3}+\sqrt{2})^2}\cdot(\sqrt{3}-\sqrt{2})$.

Căn bậc hai – Tính chất cơ bản phần 2

Bài 1. Khai triển các biểu thức sau

a) $(\sqrt{x}-1)^2+(\sqrt{x}+1)^2$.
b) $(\sqrt{x}+2)(\sqrt{x}-3)-(\sqrt{x}+1)(2\sqrt{x}-5)$.
c) $(2\sqrt{x}-3)^2+3(\sqrt{x}-1)(\sqrt{x}+2)$.
d) $(3-\sqrt{x})(3+\sqrt{x})+(\sqrt{x}-2)^2$.

Giải

a) $(\sqrt{x}-1)^2+(\sqrt{x}+1)^2$

$= {{(\sqrt{x}-1)}^2}+{{(\sqrt{x}+1)}^2}$

$=x-2\sqrt{x}+1+x+2\sqrt{x}+1=2x+2$.
b) $(\sqrt{x}+2)(\sqrt{x}-3)-(\sqrt{x}+1)(2\sqrt{x}-5)$
$=(\sqrt{x}+2)(\sqrt{x}-3)-(\sqrt{x}+1)(2\sqrt{x}-5)$

$=x-\sqrt{x}-6-2x+3\sqrt{x}+5$

$=-x+2\sqrt{x}-1=-{{\left(\sqrt{x}-1\right)}^2}$.
c) $(2\sqrt{x}-3)^2+3(\sqrt{x}-1)(\sqrt{x}+2)$
$={{(2\sqrt{x}-3)}^2}+3(\sqrt{x}-1)(\sqrt{x}+2)$

$=4x-12\sqrt{x}+9+3\left(x+\sqrt{x}-2\right)$

$=7x-9\sqrt{x}+3$.
d) $(3-\sqrt{x})(3+\sqrt{x})+(\sqrt{x}-2)^2$

$=(3-\sqrt{x})(3+\sqrt{x})+{{(\sqrt{x}-2)}^2}$

$=9-x+x-4\sqrt{x}+4$

$=13-4\sqrt{x}$.

Bài 2. Rút gọn các biểu thức sau:
a) $A=(\sqrt{x}+2)(5-\sqrt{x})-(\sqrt{x}+3)(\sqrt{x}+1)-(3x+4\sqrt{x}+5)$. $(x \geq 0)$
b) $B=(2\sqrt{a}+\sqrt{b})(\sqrt{a}+1)-(2-\sqrt{a b})(\sqrt{a}-1)$. ($a, b \geq 0$)

Giải

a) $A=(\sqrt{x}+2)(5-\sqrt{x})-(\sqrt{x}+3)(\sqrt{x}+1)-(3x+4\sqrt{x}+5)$
$A=(\sqrt{x}+2)(5-\sqrt{x})-(\sqrt{x}+3)(\sqrt{x}+1)-(3x+4\sqrt{x}+5)$
$A=x+3\sqrt{x}+10-\left(x+4\sqrt{x}+3\right)-3x-4\sqrt{x}-5$
$A=x+3\sqrt{x}+10-x-4\sqrt{x}-3-3x-4\sqrt{x}-5$
$A=-3x-5\sqrt{x}+2$

b) $B=(2\sqrt{a}+\sqrt{b})(\sqrt{a}+1)-(2-\sqrt{a b})(\sqrt{a}-1)$
$B=(2\sqrt{a}+\sqrt{b})(\sqrt{a}+1)-(2-\sqrt{ab})(\sqrt{a}-1)$
$B=2a+2\sqrt{a}+\sqrt{ab}+\sqrt{b}-\left(2\sqrt{a}-2-a \sqrt{b}+\sqrt{ab}\right)$

$B=2a+2\sqrt{a}+\sqrt{ab}+\sqrt{b}-2\sqrt{a}+2+a \sqrt{b}-\sqrt{ab}$
$B=2a+\sqrt{b}+2+a \sqrt{b}$

Bài 3. Phân tích các đa thức sau thành nhân tử:

a) $A=x-\sqrt{x}-2$.
b) $B=x-y+3\sqrt{x}-3\sqrt{y}$.
c) $C=\sqrt{a b}+2\sqrt{a}-\sqrt{b}-2$.
d) $D=x\sqrt{x}+x-2\sqrt{x}$.

Giải

a)  $A=x-\sqrt{x}-2={{\left(\sqrt{x}\right)}^2}-1 \left(\sqrt{x}+1\right)$

$=\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+1\right)$

$=\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)$.
b) $B=x-y+3\sqrt{x}-3\sqrt{y}=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)+3\left(\sqrt{x}-\sqrt{y}\right)$

$=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}+3\right)$.

c)$C=\sqrt{ab}+2\sqrt{a}-\sqrt{b}-2=\sqrt{a}.\sqrt{b}+2\sqrt{a}-\sqrt{b}-2$

$=\sqrt{b}\left(\sqrt{a}-1\right)+2\left(\sqrt{a}-1\right)$

$=\left(\sqrt{a}-1\right)\left(\sqrt{b}+2\right)$.
d)
$D=x\sqrt{x}+x-2\sqrt{x}$
$=x\sqrt{x}-\sqrt{x}+x-\sqrt{x}$
$=\sqrt{x}(x-1)+\sqrt{x}\left(\sqrt{x}-1\right)$
$=\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)+\sqrt{x}\left(\sqrt{x}-1\right)$
$=\sqrt{x}\left(\sqrt{x}-1\right)\left(2\sqrt{x}+1\right)$

Bài 4. Rút gọn các biểu thức sau:
a) $\dfrac{x-2\sqrt{x}+1}{\sqrt{x}-1}$.
b) $\dfrac{x-4\sqrt{x}+4}{x-2\sqrt{x}}$.
c) $\dfrac{x\sqrt{x}+8}{\sqrt{x}+2}-x-4$.
d) $\dfrac{x-4\sqrt{x}-5}{\sqrt{x}+1}$.

Giải

a)Ta có $\dfrac{x-2\sqrt{x}+1}{\sqrt{x}-1}=\dfrac{{{\left(\sqrt{x}-1\right)}^2}}{\left(\sqrt{x}-1\right)}=\sqrt{x}-1$.
b) Ta có $\dfrac{x-4\sqrt{x}+4}{x-2\sqrt{x}}=\dfrac{{{\left(\sqrt{x}-2\right)}^2}}{\sqrt{x}\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}-2}{\sqrt{x}}=1-\dfrac{2}{\sqrt{x}}$.
c) Ta có $\dfrac{x\sqrt{x}+8}{\sqrt{x}+2}-x-4=\dfrac{x\sqrt{x}+8-x\sqrt{x}-2\sqrt{x}-4\sqrt{x}-8}{\sqrt{x}+2}=\dfrac{-6\sqrt{x}}{\sqrt{x}+2}$.
d) Ta có $\dfrac{x-4\sqrt{x}-5}{\sqrt{x}+1}=\dfrac{\left(\sqrt{x}-5\right)\left(\sqrt{x}+1\right)}{\sqrt{x}+1}=\sqrt{x}-5$.

Bài tập rèn luyện

Bài 1. Khai triển

a) $(\sqrt{a}+2)^2 – (\sqrt(a)-1)^2$.

b) $\sqrt{b}(\sqrt{b}+1)^2 – 2b(\sqrt{b}+3)$.

c) $(\sqrt{x}-1)(\sqrt{y}+4)- 2(2\sqrt{x}+1)(2-\sqrt{y})$.

d) $(\sqrt{x}-1)^3 – 3(\sqrt{x}+2)(\sqrt{x}-1) – 2x(\sqrt{x}-1)$.

Bài 2. Cho $x = \sqrt{3} – \sqrt{2}$.
a) Tính giá trị của biểu thức $A = x^2 -4x+1$.
b) Tính giá trị của biểu thức $B = x^4 -x^2+1$.
Bài 3. Rút gọn các biểu thức sau:
a) $\dfrac{{a\sqrt a – 1}}{{\sqrt a – 1}} – \sqrt a $
b) $\dfrac{{x\sqrt x + 8}}{{\sqrt x + 2}} – 2\sqrt x $
Bài 4. Rút gọn các biểu thức sau:

a)  $\dfrac{{a – 1}}{{\sqrt a + 1}} + \dfrac{{4 – a}}{{\sqrt a + 2}}$.
b) $\dfrac{x-3\sqrt{x}+2}{\sqrt{x}-2}+\dfrac{x-5\sqrt{x}+4}{\sqrt{x}-1}$.

 

Căn bậc hai – Tính chất cơ bản

Định lý 1. Với mọi $A$ ta có hằng đẳng thức $\sqrt{A^2} = |A|$

Tính chất 1. Cho $A, B$ là các số không âm. Khi đó ta có các đẳng thức sau:

a) $\sqrt{AB} = \sqrt{A} \sqrt{B}$.
b) $\sqrt{\dfrac{A}{B}} = \dfrac{\sqrt{A}}{\sqrt{B}}$ ($B > 0$)
c) $\sqrt{A^2B}= |A|\sqrt{B}$

Các ví dụ.

Ví dụ 1. Viết về dạng $A\sqrt{B}$ các biểu thức sau:
a) $3 \sqrt{8}- 4\sqrt{18} + 5\sqrt{32} – \sqrt{50}$
b) $\sqrt{125} – 2\sqrt{20} -3\sqrt{80} + 4\sqrt{45}$
c) $5\sqrt{48} – 4\sqrt{27} – 2\sqrt{75} + \sqrt{108}$

Giải

Ví dụ 2. Khai căn các biểu thức sau:
a)  $\sqrt{(\sqrt{2}-1)^2}$
b) $\sqrt{(\sqrt{3}-2)^2}$
c) $\sqrt{(\sqrt{9}-2\sqrt{2})^2}$

Ví dụ 3. Thực hiện các phép toán sau, đưa về dạng $A + B\sqrt{C}$
a)  $(1+\sqrt{2})^2$
b) $(3-\sqrt{2})^2 + (4+\sqrt{8})^2$.
c) $(1+\sqrt{3})(4-\sqrt{3})^2$.
d) $(2-\sqrt{3})^3(1+\sqrt{27})$

Ví dụ 4. Cho $x =1+ \sqrt{2}$.
a)  Tính $x^2 – 2x + 3$.
b) Tính $x^3 – 3x$.
c) Tính $(x^3-2x^2-x+2)^{2021}$.

Bài tập rèn luyện.

Bài 1. Rút gọn các biểu thức sau:
a)$2\sqrt{24} – 2\sqrt{54} + 3\sqrt{6}- \sqrt{150}$
b) $2\sqrt{28} + 2\sqrt{63} – 3\sqrt{175}+ \sqrt{112}$
c) $10\sqrt{28} + 2\sqrt{275} – 3\sqrt{343} – \dfrac{3}{2}\sqrt{396}$
d)$\dfrac{3}{2} \sqrt{6} + 2 \sqrt{\dfrac{2}{3}} -4\sqrt{\dfrac{3}{2}}$

Bài 2.  So sánh
a) $1+\sqrt{3}$ và $2\sqrt{2}$
b) $\sqrt{2016}+\sqrt{2018}$ và $2\sqrt{2017}$
c) $\sqrt{2015}-\sqrt{2014}$ và $\sqrt{2014} -\sqrt{2013}$
d) $\sqrt{1009}+\sqrt{1008}$ và $\sqrt{2017}$

Bài 3.  Thực hiện phép tính và rút gọn:
a) $(3-\sqrt{2})(7 +3\sqrt{8}) – 15\sqrt{2}$.
b) $(3-\sqrt{5})^2(3+\sqrt{5}) + (1+\sqrt{5})(1-\sqrt{5})$.
c) $(3-\sqrt{2})^3 + (5-\sqrt{2})(6+2\sqrt{2})$.
d) $(4+\sqrt{27})(2-\sqrt{3}) + (1+\sqrt{3})^3$.

Bài 4.  Cho $a = \sqrt{5} – 1$.
a)Tính $a^2 + 4a$.
b) Chứng minh $a^2 + 2a – 4 = 0$.
c) Tính giá trị của biểu thức $(a^3+2a^2-4a+2)^{10}$.
d) Chứng minh $1 < a < 2$.

Bài 5. Cho $x = \sqrt{3}+\sqrt{5}$.
a) Tính $x^3$.
b) Chứng minh $x^4-16x^2 + 4 = 0$.

Bài 6. Tìm $x$ biết $\sqrt{x}$ là số tự nhiên và $A = \dfrac{\sqrt{x}-4}{\sqrt{x}+1}$ là số nguyên.

Bài 7. Cho $x$ là số dương. Chứng minh rằng $$x-\sqrt{x}+1$$ là số dương.

Bài 8. Cho $a > 0$ và $4{a^2} + a\sqrt 2 – \sqrt 2 = 0$. \
Chứng minh rằng : $\dfrac{{a + 1}}{{\sqrt {{a^4} + a + 1} – {a^2}}} = \sqrt 2 $

Căn bậc ba

1. Khái niện căn bậc ba

Định nghĩa: Căn bậc ba của một số $a$ là một số $x$ sao cho $x^3=a$

Ví dụ 1: $2$ là căn bậc ba của $8$ vì $2^3=8$.

$-5$ là căn bậc ba của $-125$ vì $(-5)^3=-27$.

Ta công nhận kết quả sau: Mỗi số $a$ đều có duy nhất một căn bậc ba.

Kí hiệu căn bậc ba của số $a$ là: $\sqrt[3]{a}$,   số $3$ gọi là chỉ số của căn.

Ví dụ 2: Tìm căn bậc ba của mỗi số sau:

a) $27$;

b) $-216$;

c) $0$

d) $\dfrac {-1}{64}$

Giải

a) $\sqrt [3] {27}=\sqrt [3]{3^3}=3$

b) $\sqrt [3]{-216}=\sqrt [3]{(-6)^3}=-6$

c) $\sqrt [3]{0}=\sqrt [3]{0^3}=0$

d) $\sqrt [3]{\dfrac {-1}{64}}=\sqrt [3]{\left( \dfrac {-1}{4}\right)^3}=\dfrac {-1}{4}$

2. Tính chất

Ta có các tính chất sau của căn bậc ba:

a) $a<b \Leftrightarrow \sqrt[3]{a} <\sqrt[3]{b}$

b) $\sqrt [3]{ab}=\sqrt[3]{a}\sqrt[3]{b}$

c) Với $b\ne 0$, ta có $\sqrt [3]{\dfrac {a}{b}}=\dfrac {\sqrt [3]{a}}{\sqrt [3]{b}}$

Ví dụ 3: Tính các căn bậc ba sau:

a) $\sqrt[3]{27.64}$

b) $\sqrt[3]{\dfrac{125}{8}}$

Lời giải:

a) $\sqrt[3]{27.64}=\sqrt[3]{27}.\sqrt[3]{64}=3.4=12$

b) $\sqrt[3]{\dfrac{125}{8}}=\dfrac{\sqrt[3]{125}}{\sqrt[3]{8}}=\dfrac{5}{2}$

Ví dụ 4: So sánh các số sau:

a) $3$ và $\sqrt[3]{26}$

b) $-4$ và $\sqrt[3]{-63}$

Lời giải:

a) Ta có: $3=\sqrt[3]{27}$ mà $27>26$ do đó $\sqrt[3]{27}>\sqrt[3]{26}$

Vậy $3>\sqrt[3]{26}$

b) Ta có: $-4=\sqrt[3]{-64}$ mà $-64<-63$ dó đó $\sqrt[3]{-64}<\sqrt[3]{-63}$

Vậy $-4<\sqrt[3]{-63}$

Bài tập

Bài 1: Tính các căn bậc ba sau:

a) $\sqrt[3]{343}$

b) $\sqrt[3]{\dfrac{-64}{27}}$

c) $\sqrt[3]{0,216}$

d) $\sqrt[3]{-1331}$

Bài 2:  TÍnh:

a) $\sqrt[3]{64}-\sqrt[3]{512}+3\sqrt[3]{27}$

b) $\sqrt[3]{4}.\sqrt[3]{54}-\dfrac{2}{5}\dfrac{\sqrt[3]{375}}{\sqrt[3]{3}}$

c) $\sqrt[3]{40x^3y}-x\sqrt[3]{135y}$

d) $\sqrt{12-6\sqrt 3}-\sqrt[3]{26-15\sqrt 3}$

Bài 3: So sánh các số sau:

a) $3$ và $\sqrt[3]{\dfrac{4096}{125}}$

b) $4\sqrt[3]{5}$ và $5\sqrt[3]{3}$

Bài 4: Tính giá trị các biểu thức sau:

a) $A=\dfrac{x}{4}-\sqrt[3]{\dfrac{x^2}{3}}$ với $x=-3$

b) $B=2x-\sqrt[3]{24x^2}-\sqrt[3]{16y}$ với $x=3$ và $y=-4$

Bài 5: Tìm $x$ biết:

a) $\sqrt[3]{7x+36}=4$

b) $2+\sqrt[3]{2x-3}=0$

Rút gọn biến đổi căn thức nâng cao

Ví dụ 1: Rút gọn các biểu thức sau:

a) $\left( \dfrac {\sqrt {x}-1}{\sqrt {x}+1} -\dfrac {\sqrt {x}+1}{\sqrt {x}-1}\right).\left( \sqrt {x} -\dfrac {1}{\sqrt {x}}\right) $ với $x> 0$, $x \ne 1$

b) $\dfrac {15\sqrt {x}-11}{x+2\sqrt {x}-3} +\dfrac{3\sqrt {x}-2}{1-\sqrt {x}}-\dfrac {3}{\sqrt {x}+3}$ với $x\ge 0$, $x\ne 1$

c) $\left( {\dfrac{\sqrt a }{\sqrt a – 1} – \dfrac{1}{a – \sqrt a }} \right):\left( {\dfrac{1}{\sqrt a + 1} + \dfrac{2}{a – 1}} \right)$ với $a>0$, $a\ne 1$

d) $\left( \dfrac{\sqrt x-\sqrt y}{1+\sqrt {xy}}+\dfrac{\sqrt x+\sqrt y}{1-\sqrt {xy}}\right) :\left( \dfrac{ x+y+2xy}{1-xy}+1\right) $ với $x\ge 0$, $y\ge 0$, $xy\ne 1$

Giải

a) $\left( \dfrac{\sqrt x – 1}{\sqrt x + 1} – \dfrac{\sqrt x + 1}{\sqrt x – 1} \right).\left( \sqrt x – \dfrac{1}{\sqrt x } \right)$

$= \dfrac{\left( \sqrt x – 1 \right)^2 – \left( \sqrt x + 1 \right)^2}{\left( \sqrt x + 1 \right)\left( \sqrt x – 1\right)}. \dfrac{x – 1}{\sqrt x } $

$ = \dfrac{ – 4\sqrt x }{x – 1}.\dfrac{x – 1}{\sqrt x } = – 4$

b)$\dfrac {15\sqrt {x}-11}{x+2\sqrt {x}-3} +\dfrac{3\sqrt {x}-2}{1-\sqrt {x}}-\dfrac {3}{\sqrt {x}+3}$

$=\dfrac {15\sqrt {x}-11}{\left( \sqrt x-1\right) \left( \sqrt x+3\right) }-\dfrac{\left( 3\sqrt x-2\right) \left(\sqrt x+3\right) }{\left( \sqrt x-1\right) \left( \sqrt x+3\right) }-\dfrac{3\left( \sqrt x-1\right) }{\left( \sqrt x-1\right) \left( \sqrt x+3\right)}$

$=\dfrac{-3x+5\sqrt x-2}{\left( \sqrt x-1\right) \left( \sqrt x+3\right) }=\dfrac{-\left( \sqrt x-1\right) \left( 3\sqrt x-2\right) }{\left( \sqrt x-1\right) \left( \sqrt x+3\right)} =\dfrac{2-3\sqrt x}{\sqrt x+3}$

c) $\left( {\dfrac{\sqrt a }{\sqrt a – 1} – \dfrac{1}{a – \sqrt a }} \right):\left( {\dfrac{1}{\sqrt a + 1} + \dfrac{2}{a – 1}} \right)$

$=\dfrac{a-1}{\sqrt a\left( \sqrt a-1\right) }:\dfrac{\sqrt a-1+2}{\left( \sqrt a+1\right) \left( \sqrt a-1\right) }$

$=\dfrac{a-1 }{\sqrt a\left( \sqrt a-1\right) }.\dfrac{\left( \sqrt a+1\right) \left( \sqrt a-1\right) }{\sqrt a+1}=\dfrac{a-1}{\sqrt a}$

d) $\left( \dfrac{\sqrt x-\sqrt y}{1+\sqrt {xy}}+\dfrac{\sqrt x+\sqrt y}{1-\sqrt {xy}}\right) :\left( \dfrac{ x+y+2xy}{1-xy}+1\right) $

$=\dfrac{\left( \sqrt x-\sqrt y\right) \left( 1-\sqrt {xy}\right) +\left( \sqrt x+\sqrt y\right) \left( 1+\sqrt {xy}\right) }{\left( 1+\sqrt {xy}\right) \left( 1-\sqrt {xy}\right) }:\dfrac{ x+y+xy+1}{1-xy}$

$=\dfrac{2\sqrt x+2y\sqrt x}{1-xy}.\dfrac{1-xy}{x+y+xy+1}$

$=\dfrac{2\sqrt x\left( y+1\right) }{\left( x+1\right) \left( y+1\right) }=\dfrac{2\sqrt x}{x+1}$

Ví dụ 2: Chứng minh với mọi giá trị của $x$ để biểu thức có nghĩa thì giá trị của:

$A=\left( \dfrac{\sqrt x+1}{2\sqrt x-2}+\dfrac{3}{x-1}-\dfrac{\sqrt x+3}{2\sqrt x+2}\right) .\dfrac{4x-4}{5}$

không phụ thuộc vào $x$.

Giải

$A=\left( \dfrac{\sqrt x+1}{2\sqrt x-2}+\dfrac{3}{x-1}-\dfrac{\sqrt x+3}{2\sqrt x+2}\right) .\dfrac{4x-4}{5}$

$A=\dfrac{\left( \sqrt x+1\right)^2+3.2-\left( \sqrt x+3\right) \left( \sqrt x-1\right) }{2\left( \sqrt x+1\right) \left( \sqrt x-1\right) }.\dfrac{4x-4}{5}$

$A=\dfrac{9}{2\left( x-1\right) }.\dfrac{4\left( x-1\right) }{5}=\dfrac {18}{5}$

Vậy biểu thức $A$ không phụ thuộc vào $x$.

Ví dụ 3: Cho biểu thức $A=\left( 1:\dfrac{\sqrt {1+x}}{3}+\sqrt {1-x}\right) :\left( \dfrac {3}{\sqrt {1-x^2}}+1\right) $

a) Chứng minh $A=\sqrt {1-x}$.

b) Tính $x$ khi $A=\dfrac{1}{2}$.

Giải

a) $A=\left( 1:\dfrac{\sqrt {1+x}}{3}+\sqrt {1-x}\right) :\left( \dfrac {3}{\sqrt {1-x^2}}+1\right) $

$A=\left( \dfrac {3}{\sqrt {1+x}}+\sqrt {1-x}\right) :\dfrac {3+\sqrt {1-x^2}}{\sqrt {1-x^2}}$

$A=\dfrac {3+\sqrt {1-x^2}}{\sqrt {1+x}}.\dfrac {\sqrt {1-x^2}}{3+\sqrt {1-x^2}}$

$A=\dfrac {\sqrt {1-x}.\sqrt {1+x}}{\sqrt {1+x}}=\sqrt {1-x}$

Vậy $A=\sqrt {1-x}$

b) $A=\dfrac{1}{2}$

$ \Rightarrow \sqrt {1-x}=\dfrac{1}{2}$

$\Rightarrow 1-x=\dfrac {1}{4}$

$\Rightarrow x=\dfrac {3}{4}$ $(n)$

Vậy $x=\dfrac {3}{4}$

Bài tập:

Bài 1: Rút gọn các biểu thức sau:

a) $\left( 2+\dfrac {a-\sqrt a}{\sqrt a-1}\right) \left( 2-\dfrac {a+\sqrt a}{\sqrt a+1}\right) $ với $a\ge 0$, $a\ne 1$

b) $\left( \dfrac {y}{\sqrt y}-\dfrac {\sqrt y}{\sqrt y+1}\right) :\dfrac {\sqrt y}{y+\sqrt y}$ với $y>0$

c) $\left( \dfrac {x\sqrt x+1}{x\sqrt x+x+\sqrt x+1}-\dfrac {\sqrt x}{x+1}\right) :\dfrac {\sqrt x-1}{x+1}$ với $x\ge 0$, $x\ne 1$

d) $\left( \dfrac {1}{\sqrt x}-\dfrac {1}{x}\right):\left( \dfrac {\sqrt x+1}{\sqrt x-2}-\dfrac {\sqrt x+2}{\sqrt x-1}\right) $ với $x>0$, $x\ne 1$, $x\ne 4$

e) $\dfrac {\sqrt x+7x+13}{x+3\sqrt x-10}+\dfrac {\sqrt x+5}{2-\sqrt x}-\dfrac {\sqrt x-4}{\sqrt x+5}$ với $x\ge 0$, $x\ne 4$

f) $\left( \dfrac {\left( 16-\sqrt a\right) \sqrt a}{a-4}+\dfrac {3+2\sqrt a}{2-\sqrt a}-\dfrac {2-3\sqrt a}{\sqrt a+2}\right) :\dfrac {1}{a+4\sqrt a+4}$ với $a\ge 0$, $a\ne 4$

Bài 2: Chứng minh rằng biểu thức sau không phụ thuộc vào giá trị của $x$, $y$

$A=\dfrac {\sqrt y}{\sqrt x-\sqrt y}-\dfrac {x\sqrt x-y\sqrt x}{x+y}.\left( \dfrac {\sqrt x}{\left( \sqrt x-\sqrt y \right)^2}-\dfrac {\sqrt y}{x-y}\right) $

Bài 3: Cho biểu thức $P=\left( \dfrac {\sqrt x+1}{\sqrt x-2}-\dfrac {2}{x-4}\right) \left( \sqrt x-1+\dfrac {\sqrt x-4}{\sqrt x}\right) $

a) Chứng minh $P=\sqrt x+3$.

b) Tìm tất cả các giá trị của $x$ sao cho $P=x+3$.

Bài 4: Cho biểu thức $P=\dfrac {3x+\sqrt x}{x+\sqrt x}+\dfrac{ 3\left( x-\sqrt x+1\right) }{x\sqrt x+1}$ với $x>0$

a) Rút gọn biểu thức $P$.

b) Chứng minh $P<4$.

Bài 5: Cho biểu thức $P=\left( \dfrac {\sqrt x}{2}-\dfrac {1}{2\sqrt x}\right) \left( \dfrac {x-\sqrt x}{\sqrt x+1}-\dfrac {x+\sqrt x}{\sqrt x-1}\right) $

Rút gọn biểu thức $P$. Tìm $x$ để $P>-6$.

Rút gọn biến đổi căn thức chứa biến và các bài toán liên quan

Ví dụ 1: Cho biểu thức:

$P=\left( \dfrac {2\sqrt x}{\sqrt x+3}+\dfrac {\sqrt x}{\sqrt x-3}-\dfrac {3x+3}{x-9}\right) :\left( \dfrac {2\sqrt x-2}{\sqrt x-3}-1\right) $

a) Rút gọn $P$.

b) Tìm giá trị nhỏ nhất của $P$.

Giải

a) $P=\left( \dfrac {2\sqrt x}{\sqrt x+3}+\dfrac {\sqrt x}{\sqrt x-3}-\dfrac {3x+3}{x-9}\right) :\left( \dfrac {2\sqrt x-2}{\sqrt x-3}-1\right) $

$P=\dfrac {2\sqrt x\left( \sqrt x-3\right) +\sqrt x\left( \sqrt x+3\right) -3x-3}{\left( \sqrt x-3\right) \left( \sqrt x+3\right) }:\dfrac {2\sqrt x-2-\sqrt x+3}{\sqrt x-3}$

$P=\dfrac {-3\sqrt x-3}{\left( \sqrt x+3\right) \left( \sqrt x-3\right) }.\dfrac {\sqrt x-3}{\sqrt x+1}$

$P=\dfrac {-3}{\sqrt x+1}$

b) Ta có: $P=\dfrac {-3}{\sqrt x+1}\ge -3$, $\forall x\ge 0$

Vậy giá trị nhỏ nhất của $P$ bằng $-3$  khi $x=0$

Ví dụ 2: Cho biểu thức:

$M=\left( \dfrac {\sqrt x}{\sqrt x+2}-\dfrac {x+4}{x-4}\right) :\left( \dfrac {2\sqrt x-1}{x-2\sqrt x}-\dfrac {1}{\sqrt x}\right) $ ($x>0$, $x\ne 4$)

a) Rút gọn $M$.

b) Tìm các giá trị nguyên của $x$ để $M$ nhận giá trị nguyên.

Giải

a) $M=\left( \dfrac {\sqrt x}{\sqrt x+2}-\dfrac {x+4}{x-4}\right) :\left( \dfrac {2\sqrt x-1}{x-2\sqrt x}-\dfrac {1}{\sqrt x}\right) $

$M=\dfrac {\sqrt x\left( \sqrt x-2\right) -x-4}{\left( \sqrt x+2\right) \left( \sqrt x-2\right) }:\dfrac {2\sqrt x-1-\sqrt x+2}{\sqrt x\left( \sqrt x-2\right)} $

$M=\dfrac {-2\sqrt x-4}{\left( \sqrt x+2\right) \left( \sqrt x-2\right) }.\dfrac {\sqrt x\left( \sqrt x-2\right) }{\sqrt x+1}$

$M=\dfrac {-2\sqrt x}{\sqrt x+1}$

b) Ta có: $M=\dfrac {-2\sqrt x}{\sqrt x+1}=\dfrac {-2\left( \sqrt x+1\right) +2}{\sqrt x+1}=-2+\dfrac {2}{\sqrt x+1}$

$M$ nhận giá trị nguyên khi $\left( \sqrt x+1\right)  \in \{1;2\}$ ($x>0$, $ x\in \mathbb{Z}$)

Với  $\sqrt x+1=1 \Leftrightarrow x=0$  $(l)$

Với  $\sqrt x+1=2 \Leftrightarrow x=1$  $(n)$

Vậy với $x=1$ thì $M$ nhận giá trị nguyên là $-1$

Bài tập:

Bài 1: Cho biểu thức:

$P=\dfrac {x^2-\sqrt x}{x+\sqrt x+1}-\dfrac {2x+\sqrt x}{\sqrt x}+\dfrac {2\left( x-1\right) }{\sqrt x-1}$

Rút gọn $P$ và tìm giá trị nhỏ nhất của $P$.

Bài 2: Cho biểu thức:

$A=\dfrac {15\sqrt x-11}{x+2\sqrt x-3}-\dfrac {3\sqrt x-2}{\sqrt x-1}-\dfrac {2\sqrt x+3}{\sqrt x+3}$

Rút gọn $A$ và tìm giá trị lớn nhất của $A$.

Bài 3: Cho biểu thức:

$P=\dfrac {1}{\sqrt x-1}-\dfrac {x\sqrt x-\sqrt x}{x+1}\left( \dfrac {1}{x-2\sqrt x+1}+\dfrac {1}{1-x}\right) $

a) Rút gọn biểu thức $P$. Tìm $x$ để $P=-\dfrac {2}{5}$.

b) Tìm $x$ nguyên để $\sqrt x$, $\dfrac {1}{P}$ cũng là số nguyên.

Bài 4:  Cho biểu thức:

$A=\left( \dfrac {1}{x+\sqrt x}-\dfrac {2-\sqrt x}{\sqrt x+1}\right) :\left( \dfrac {1}{x}+x-2\right) $

Rút gọn biểu thức $A$. Tìm số chính phương $x$ để $3A$ là số nguyên.

Bài 5:  Cho biểu thức:

$A=\dfrac {7}{\sqrt x+8}$ và $B=\dfrac {\sqrt x}{\sqrt x-3}+\dfrac {2\sqrt x-24}{x-9}$ với $x\ge 0$, $x\ne 9$

a) Chứng minh $B=\dfrac {\sqrt x+8}{\sqrt x+3}$.

b) Tìm $x$ để biểu thức $P=A.B$ có giá trị là số nguyên$.

Bài 6:  Cho biểu thức:

$M=\left( 2+\dfrac {x+\sqrt x}{\sqrt x+1}\right) \left( 1-2\sqrt x-x+\dfrac {1-x\sqrt x}{1-\sqrt x}\right) $

a) Tìm điều kiện của $x$ để biểu thức $M$ có nghĩa. Rút gọn biểu thức $M$.

b) Tìm giá trị của $x$ để biểu thức $P=\dfrac {2}{M}$ nhận giá trị là số nguyên.

Bài 7: Rút gọn biểu thức:

$T=\dfrac {2\sqrt a+\sqrt b}{\sqrt {ab} +2\sqrt a-\sqrt b-2}-\dfrac {2-\sqrt {ab}}{\sqrt {ab}+2\sqrt a+\sqrt b+2}$

với $a, b\ge 0$, $a\ne 1$. Tìm giá trị lớn nhất của $T$ khi $a$ là số tự nhiên khác $1$.

Rút gọn căn thức đơn giản

Ví dụ: Rút gọn các biểu thức sau:

a) $3\sqrt 8 – \sqrt {48} – 2\sqrt {\dfrac{4}{3}} + 4\sqrt {\dfrac{9}{2}} $.

b) $10\sqrt {28a} + 2\sqrt {175a} – 3\sqrt {343a} + \sqrt {112a} $ với $a \ge 0$.

c) $\sqrt {20 + 2\sqrt {19} }  – \sqrt {30 + 2\sqrt {29} } $.

d) $\sqrt {17 – 4\sqrt {9 – 4\sqrt 5 } } $.

e) $\sqrt {6 – 2\sqrt 6 + 2\sqrt 2 – 2\sqrt 3 } $

Giải

a) $3\sqrt 8 – \sqrt {48} – 3\sqrt {\dfrac{4}{3}} + 4\sqrt {\dfrac{9}{2}}$

$= 3\sqrt {2^2.2} – \sqrt {4^2.3} – 3\dfrac{\sqrt {2^2} }{\sqrt 3 } + 4\dfrac{\sqrt {3^2} }{\sqrt 2 }$
$= 6\sqrt 2 – 4\sqrt 3 – 3\dfrac{2\sqrt 3 }{3} + 4\dfrac{3\sqrt 2 }{2} = 12\sqrt 2 – 6\sqrt 3 $

b) $10\sqrt {28a} + 2\sqrt {175a} – 3\sqrt {343a} + \sqrt {112a} $
$= 10\sqrt {{2^2}7a} + 2\sqrt {{5^2}7a} – 3\sqrt {{7^2}7a} + \sqrt {{4^2}7a} $
$= 20\sqrt {7a} + 10\sqrt {7a} – 21\sqrt {7a} + 4\sqrt {7a} = 13\sqrt {7a} $

c) $\sqrt {20 + 2\sqrt {19} } – \sqrt {30 + 2\sqrt {29} } = \sqrt {19 + 2\sqrt {19} + 1} – \sqrt {29 + 2\sqrt {29} + 1} $
$= \sqrt {\left( {\sqrt {19} + 1} \right)^2} – \sqrt {\left( {\sqrt {29} + 1} \right)^2} = \left| {\sqrt {19} + 1} \right| – \left| {\sqrt {29} + 1} \right|$
$= \sqrt {19} + 1 – \sqrt {29} – 1 = \sqrt {19} – \sqrt {29}$.

d) $\sqrt {17 – 4 \sqrt {9 – 4\sqrt 5 } } = \sqrt {17 – 4\sqrt {4 – 2.2\sqrt 5 + 5} } $

$= \sqrt {17 – 4\sqrt {\left( {2 – \sqrt 5 } \right)^2} } = \sqrt {17 – 4.\left| {2 – \sqrt 5 } \right|} $
$= \sqrt {17 – 4\left( {\sqrt 5 – 2} \right)} = \sqrt {25 – 4\sqrt 5 } $.

e)$\sqrt {6 – 2\sqrt 6 + 2\sqrt 2 – 2\sqrt 3 } = \sqrt {3 + 2 + 1 – 2\sqrt 6 + 2\sqrt 2 – 2\sqrt 3 } $
$= \sqrt {\left ( \sqrt 3  \right )^2 + \left ( \sqrt 2  \right )^2 + 1^2 – 2\sqrt 3 .\sqrt 2 + 2\sqrt 2 .1 – 2\sqrt 3 .1} $
$= \sqrt {\left ( \sqrt 3 – \sqrt 2 – 1 \right )^2} = \left | \sqrt 3 – \sqrt 2 – 1 \right | = \sqrt 2 + 1 – \sqrt 3$.

Bài tập :

Bài 1: Rút gọn các biểu thức sau:

a) $2\sqrt {24} – 2\sqrt {54} + 3\sqrt 6 – \sqrt {150} $.

b) $\dfrac{3}{2}\sqrt 6 + 2\sqrt {\dfrac{2}{3}} – 4\sqrt {\dfrac{3}{2}} $.

c) $10\sqrt {72} – \dfrac{5}{3}\sqrt {162} + \sqrt {128} – 2\sqrt {50} + \sqrt {98} $.

d) $5\sqrt {12} – 2\sqrt {48} + 6\sqrt {75} – \sqrt {108} $.

e) $\dfrac{3}{2}\sqrt {12} + \dfrac{7}{5}\sqrt {75} – \dfrac{9}{{10}}\sqrt {300} + \dfrac{{11}}{6}\sqrt {108} $.

Bài 2: Rút gọn các biểu thức sau:

a) $\sqrt {31 – 8\sqrt {15} } + \sqrt {24 – 6\sqrt {15} } $.

b)$\sqrt {49 – 5\sqrt {96} } – \sqrt {49 + 5\sqrt {96} } $.

c) $\sqrt {15 – 6\sqrt 7 } + \sqrt {43 – 12\sqrt 7 } $.

d) $\sqrt {8 – 2\sqrt {15} } – \sqrt {23 – 4\sqrt {15} } $.

Bài 3: Rút gọn các biểu thức sau:

a) $\sqrt {10 + 2\sqrt 6 + 2\sqrt {10} + 2\sqrt {15} } $.

b)$\sqrt {6 + 2\sqrt 2 + 2\sqrt 3 + 2\sqrt 6 } $.

c) $\sqrt {18 – 4\sqrt 6 – 8\sqrt 3 + 4\sqrt 2 } $.

d) $\sqrt {8 + \sqrt 8 + \sqrt {20} + \sqrt {40} } $.

e) $\sqrt {25 – 4\sqrt {10} – 4\sqrt {15} + 2\sqrt 6 } $.

Bài 4: Cho $x=\sqrt{3}-1$

a) Tính: $x^3-3x^2+x-1 $.

b) Chứng minh: $x^2+2x-2=0 $.

c) Tính: $P=\left( x^3+2x^2-x+1\right)^{2020} $.

Bài 5: Rút gọn các biểu thức sau:

a) $\sqrt {a+b+c+2\sqrt{ac+bc}}+\sqrt {a+b+c-2\sqrt {ac+bc}} $.

b) $\sqrt {a+b+9c+6\sqrt {ac+bc}}+\sqrt {a+b+9c-6\sqrt {ac+bc}} $.

c) $\sqrt {a-b+4c+4\sqrt {ac-bc}}+\sqrt {a-b+4c-4\sqrt {ac-bc}} $.