Category Archives: Dự tuyển 10

Đề và lời giải thi chọn đội dự tuyển năm học 2018-2019

Bài 1. Tìm tất cả các hàm số $f:\mathbb R\rightarrow \mathbb R$ thoả mãn:
i) $f(-x)=-f(x)\ \forall x\in \mathbb R$.
ii) $f(f(x)-y)=2x+f(f(y+x))\ \forall x,y\in \mathbb R$.

Bài 2. Tìm tất cả các bộ số tự nhiên $(a,b,c)$ để $a^2+2b+c,b^2+2c+a,c^2+2a+b$ đều là các số chính phương.

Bài 3. Cho tập hợp $X={1,2,\ldots,396}$. Gọi $S_1,S_2,\ldots,S_k$ là $k$ tập con khác nhau của $X$ thoả mãn đồng thời hai điều kiện sau:

i)$|S_1|=|S_2|=\ldots=|S_k|=198$.
ii) $|S_i\cap S_j|\le 99\ \forall i,j\in \mathbb N^*, 1\le i<j\le k$.

Chứng minh rằng $k\le 6^{50}$.

Bài 4. Cho tam giác $ABC$ nhọn. Đường tròn thay đổi qua $B,C$ cắt các cạnh $AB,AC$ lần lượt tại $D,E$.

a) Gọi $H,K$ lần lượt là hình chiếu của $B$ trên $CD$ và $DE$. Chứng minh rằng $HK$ luôn đi qua một điểm cố định.
b) Gọi $Q$ là hình chiếu của $C$ trên $DE$. Đường tròn ngoại tiếp tam giác $BDK$ cắt $BC$ tại $M$, đường tròn ngoại tiếp tam giác $CEQ$ cắt $BC$ tại $N$. $KM,QN$ cắt nhau tại $X$. Chứng minh rằng $X$ thuộc một đường thẳng cố định.

Lời giải

Bài 1.

Trong điều kiện $(ii),$ thay $x$ bởi $-x,$ ta được
$$
f(f(-x)-y)=-2x+f(f(y)-x)),
$$
hay
$$-f(f(x)+y)=-2x+f(f(y)-x),\text{ với mọi } x,y\in\mathbb{R}. (*) $$

Thay vai trò của $x$ và $y$ trong $(ii)$, ta có
$
f(f(y)-x)=2y+f(f(x)+y),\text{ với mọi }x,y\in\mathbb{R}.
$
Thay vào $(*)$, ta có
$$
-f(f(x)+y)=-2x+2y+f(f(x)+y),
$$
hay
$$
f(f(x)+y)=x-y,\text{ với mọi }x,y\in\mathbb{R}.
$$
Thay $y$ bởi $f(y),$ ta có
$$
f(f(x)+f(y))=x-f(y),\text{ với mọi }x,y\in\mathbb{R}.
$$
Đổi vai trò của $x,y$, ta thu được
$$
x-f(y)=y-f(x), \text{ tức là } f(x)=-x+c,\text{ với mọi }x\in\mathbb{R}.
$$
Thay vào đề bài, ta suy ra $c=0.$ Vậy hàm số cần tìm là $f(x)=-x.$

Bài 2.

Không mất tính tổng quát, ta giả sử $a=\min (a,b,c).$ Nếu $a=0$ thì ta có $2b+c,b^2+2c,c^2+b$ đều là các số chính phương.
Nếu như $b \le c$ thì $c^2 \le c^2+b \le c^2+c <(c+1)^2$ là số chính phương, kéo theo $c^2+b=c^2$ nên $b=0$. Từ đây dễ dàng có $c=0$. Tương tự nếu $c \le b$ cũng có $b=c=0$. \medskip

Do đó, trong trường hợp này, ta có bộ nghiệm $(a,b,c)=(0,0,0)$.
Ta xét các trường hợp sau ứng với $a>0.$

  • Nếu $a\le b\le c.$ Khi đó $c^2< c^2+2a+b\le c^2+3c<(c+2)^2$. Do đó $c^2+2a+b=(c+1)^2,$ hay $2a+b=2c+1.$ Ta cũng có
    $$
    b^2 < b^2+2c+a = b^2+2a+b-1+a \leq b^2+4b – 1 < (b+2)^2,
    $$
    tức là
    $$
    b^2+2c+a=(b+1)^2,\ 2c+a=2b+1.
    $$
    Đẳng thức xảy ra khi $a=1,b=c$, từ đây dễ dàng tìm được $a=b=c=1$. Thử lại ta thấy bộ số này thỏa mãn.
  • Nếu $a \leq c \leq b$. Khi đó $b^2 < b^2+2c+a \leq b^2 + 3b < (b+2)^2$, tức $b^2+2c+a=(b+1)^2$ và $2c+a=2b+1$. Ta suy ra
    $$4a+2b = 4a+2c+a-1 \leq 7c – 1 < 8c+8.
    $$
    Do đó $2a+b < 4c+4$ và $c^2 < c^2+2a+b < (c+2)^2$. Do đó $2a+b=2c+1$. Kết hợp với $2c+a=2b+1$, ta suy ra
    $$
    (a,b,c)=(a,3a-2,\frac{5a-3}{2}).
    $$
    Do đó $a$ lẻ và trường hợp $a=1$ đã xét nên ở đây ta đặt $a=2t+1$, với $t \geq 1$. Khi đó $(a,b,c)=(2t+1,6t+1,5t+1)$. Vì $b^2+2c+a$ và $c^2+2a+b$ là các số chính phương nên ta xét điều kiện để $a^2+2b+c=4t^2+21t+4$ là số chính phương. Với $t \geq 3$, ta có
    $$
    (2t+4)^2 < 4t^2+21t+4<(2t+6)^2
    $$

Do đó $4t^2+21t+4 = (2t+5)^2$ và $t=21$. Như vậy $t \in {1,2,21}$. Thử trực tiếp, ta thấy chỉ có $t=21$ là thỏa mãn ứng với $(a,b,c)=(43,127,106)$.

Vậy tất cả bộ ba số thỏa mãn đề bài là $$(a,b,c)=(0,0,0),(1,1,1),(43,127,106).$$

Bài 3.

Vì $|S_i\cap S_j|\le 99$ với mọi $1\le i<j\le k$ nên mỗi bộ $100$ phần tử chỉ có thể được chứa tối đa trong $1$ tập hợp. Ta đếm các bộ $\{x_1,x_2,\ldots,x_{100},M \}$, trong đó $x_i\in X$ với mọi $i$ và $M$ là một trong các tập $S_i$, $M$ chứa $x_1,x_2,\ldots,x_{100}$.

  • Số cách chọn tập $M$ là $k$. Số cách chọn $100$ phần tử trong $M$ là $C^{100}_{198}.$
  • Số cách chọn $x_1,x_2,\ldots,x_{100}$ từ $X$ là $C^{100}_{396}.$ Với mỗi bộ $100$ phần tử như vậy, có tối đa $1$ tập $S_i$ thỏa mãn $S_i$ chứa $x_1,x_2,\ldots,x_{100}.$

Do đó ta có bất đẳng thức
$ kC^{100}{198} \le C^{100}{396} $
hay

$k \le \dfrac{C^{100}{396}}{C^{100}{198}}$

$=\dfrac{396!100!98!}{100!296!198!}$

$=\dfrac{396!98!}{198!296!} $

$=\dfrac{297\cdot 298 \ldots 396}{99\cdot 100\ldots 198}$
$=\dfrac{297\cdot 299\ldots 395}{99\cdot 100\ldots 148}\cdot\dfrac{298}{149}\cdot \dfrac{300}{150}\ldots \dfrac{396}{198}$
$\le 3^{50}\cdot 2^{50}=6^{50}.$

Ta có đpcm.

Bài 4.

(a) Gọi $F$ là giao điểm của $KH$ và $AC.$ Ta chứng minh $F$ cố định. Ta có tứ giác $BDEC$ nội tiếp nên $\angle BDC=\angle BEC.$ Tứ giác $KDHB$ cũng nội tiếp nên ta suy ra $\angle BDC=\angle BKF.$ \medskip

Do đó $\angle BEC=\angle BKF,$ tức là tứ giác $KEFB$ nội tiếp. Khi đó ta có $$\angle EFB=180^{\circ}-\angle BKE =90^{\circ}.$$ Do đó $BF\perp AC,$ tức là điểm $F$ cố định.

(b) Tứ giác $DKMB$ nội tiếp nên $\angle BMK=\angle KDB$. Ta suy ra
$$\angle NMX=\angle EDA.$$
Ta có $EQCN$ nội tiếp nên $$\angle QNC=\angle QEC, \text{ hay } \angle MNX=\angle AED.$$
Từ đó, ta suy ra $\triangle MNX\sim \triangle DEA.$ Gọi $G$ là chân đường cao từ $A$ đến $BC$ và $AG$ cắt $DE$ tại $P$. Khi đó $BC\perp AG$. Mà $BC\perp DM$ và $BC\perp EN$ nên
$$
AC \parallel DM \parallel EN.
$$

Do đó $\dfrac{DP}{PE}=\dfrac{MG}{GN}$. Mà $\triangle ADE\sim \triangle XMN$ nên $\angle XMN=\angle EPA.$ Mà $$\angle EPA=180^{\circ}-\angle PAC-\angle PEA$$ nên ta có
$$
\angle EPA=180^{\circ}-(90^{\circ}-\angle C)-B={\rm const}.
$$
Do đó $\angle XGN$ không đổi. Mà $G$ là điểm cố định nên $GX$ cố định. Như vậy $X$ di chuyển trên đường cố định.

 

Đáp án kì thi chọn đội dự tuyển PTNK năm học 2019 – 2020

Đề bài

Bài 1. Tìm giá trị nhỏ nhất của biểu thức
$$ P=\dfrac{a^4+b^4+2}{\left(a^2-a+1\right)\left(b^2-b+1\right)}, \text{ với } a,b \in \mathbb{R}. $$

Bài 2. Cho $\mathbb{Q^+}$ là tập hợp số hữu tỉ dương. Tìm tất cả các hàm $f:\mathbb{Q^+} \to \mathbb{Q^+}$ thỏa mãn
$$ f\left( {{x^2}f{{\left( y \right)}^2}} \right) = f{\left( x \right)^2}f\left( y \right), \text{ với mọi } x,y \in \mathbb{Q^+}. $$

Bài 3. Cho $x_1$, $x_2$, $x_3$, \dots là dãy số nguyên thỏa mãn đồng thời hai điều kiện
$$ 1=x_1<x_2<x_3 \dots \text{ và } x_{n+1}\leq 2n \text{ với } n=1,2,3 \dots $$
Chứng minh rằng với mọi số nguyên dương $k$, tồn tại các số nguyên $i>j$ sao cho $x_i-x_j = k.$

Bài 4. Cho tam giác $ABC$ cân tại $A$, nội tiếp đường tròn tâm $O$ bán kính $R$. Gọi $M$ là điểm trên cạnh $AB$ sao cho $\overrightarrow{AM}=\dfrac{1}{3}\overrightarrow{AB}.$ Đường tròn tâm $M$ bán kính $MB$ cắt đường tròn tâm $O$ tại điểm thứ hai là $D$. Một đường thẳng qua $M$ song song với $AD$ cắt $AC$ tại $N$. Chứng minh rằng $\overrightarrow{AN}=\dfrac{2}{3}\overrightarrow{AC}$.

Giải

Lời giải của nhóm các bạn NGUYỄN TĂNG VU, LÊ PHÚC LỮ, NGUYỄN TIẾN HOÀNG

Bài 1. 

Với mọi $x \in \mathbb{R}$, ta có
\[{x^4} + 1 – \frac{2}{9}{\left( {{x^2} – x + 1} \right)^2} = \frac{1}{9}{\left( {x + 1} \right)^2}\left( {7{x^2} – 10x + 7} \right) \geq 0. \] Vì thế nên ta có
\[ P \ge \frac{2}{9}\frac{{{{\left( {{a^2} – a + 1} \right)}^2} + {{\left( {{b^2} – b + 1} \right)}^2}}}{{\left( {{a^2} – a + 1} \right)\left( {{b^2} – b + 1} \right)}} = \frac{2}{9}\left( {\frac{{{a^2} – a + 1}}{{{b^2} – b + 1}} + \frac{{{b^2} – b + 1}}{{{a^2} – a + 1}}} \right) \ge \frac{4}{9}. \] Suy ra giá trị nhỏ nhất của $P$ là $\dfrac{4}{9}$, đạt được khi $a=b=-1.$

Bài 2.

Giả sử $f$ là một hàm thỏa mãn các yêu cầu của bài toán.
Đặt $f(1)=a>0$, trong phương trình đề cho, thay $x=y=1$ ta có $f(a^2)=a^3$. \medskip

Từ đó, tiếp tục lần lượt thay $x$ bởi $a^2$, $y$ bởi $1$ và $x$ bởi $1$, $y$ bởi $c^2$ vào phương trình ấy, ta thu được
\[ a^7 = f(a^6) = a^5. \] Chú ý $a>0$ nên ta có $a=1$, tức $f(1)=1$. Thay $x$ bởi $1$ vào phương trình đề cho, ta có
\[ f\left( {f{{\left( y \right)}^2}} \right) = f\left( y \right), \text{ với mọi } y \in \mathbb{Q^+}. \] Lại thay $y$ bởi $1$ vào phương trình đề cho, ta có
\[ f{\left( x \right)^2} = f\left( {{x^2}} \right), \text{ với mọi } x \in \mathbb{Q^+}. \] Suy ra
\[ f\left( x \right) = f\left( {f{{\left( x \right)}^2}} \right) = f{\left( {f\left( x \right)} \right)^2} = \ldots = {f^{n + 1}}{\left( x \right)^{{2^n}}}, \text{ với mọi } x \in \mathbb{Q^+}, \] trong đó $f^{n+1}(x)$ là $n+1$ lần tác động $f$ vào $x$. Từ đó, nếu tồn tại $q \in \mathbb{Q^+}$ sao cho tồn tại $p \in \mathbb{P}$ thỏa mãn $v_p(f(q)) \ne 0$ thì ta có
\[ {v_p}\left( {f\left( q \right)} \right) = {v_p}\left( {{f^{n + 1}}{{\left( q \right)}^{{2^n}}}} \right) = {2^n}{v_p}\left( {{f^{n + 1}}\left( q \right)} \right) \ne 0. \] Trong đẳng thức trên, cho $n \to + \infty$ ta thấy điều vô lý. Suy ra $v_p(f(q)) = 0$ với mọi $q \in \mathbb{Q^+}$, $p \in \mathbb{P}$, hay $f(x) \equiv 1.$ \medskip

Thử lại, ta kết luận $f(x) \equiv 1$ là hàm duy nhất thỏa mãn yêu cầu bài toán.
\end{giai}

Bài 3. 

Với $k$ nguyên dương, ta xét $k+1$ số hạng của dãy là $x_1$, $x_2$, \dots, $x_{k+1}$. Ta có $x_1=1 \leq k$, gọi $q$ là số lớn nhất thỏa mãn $x_q \leq k$ thì ta có $q<k+1$ và
\[ 1 \leq x_1 < x_1 < \dots < x_q \leq k < x_{q+1}<\dots<x_{k+1}<2k. \]

Nếu tồn tại $1 \leq j < i \leq k+1 $ sao cho $x_i – x_j = k$ thì ta có ngay điều cần chứng minh. Ngược lại, ta có các số $$x_1+k,x_2+k, \dots x_q+k, x_{q+1}, \dots, x_{k+1}$$ là $k+1$ số nguyên đôi một phân biệt, tất cả đều lớn hơn $k$ nhưng lại không vượt quá $2k$, vô lí! \medskip

Từ đó suy ra với mọi $k$ nguyên dương,luôn tồn tại các số nguyên $i>j$ sao cho $x_i-x_j = k.$

Bài 4. 

Ta có $OB=OD$, $MB=MD$ nên dễ thấy $OM$ là phân giác ngoài của góc $AMD$, mà $OA=OD$ nên suy ra $O \in \left(AMD\right).$

Gọi $N’$ là giao điểm khác $A$ của $\left(AMD\right)$ và $AC$. Ta chứng minh $N$ trùng $N’$. \medskip

Thật vậy, ta có $\overrightarrow{AM}=\dfrac{1}{3}\overrightarrow{AB}$ nên $\angle{AMO}$ tù, do đó nếu $N’$ nằm ngoài tia $AC$ thì $N’$ nằm khác phía $O$ so với $AM$ nên $$\angle{AMO}=\angle{AN’O}=\angle{CAO}-\angle{AON’}<\angle{CAO}<90^\circ,$$ vô lý. Suy ra $N’$ nằm trên tia $AC$, kéo theo $AO$ là phân giác trong góc $MAN’$ nên $OM=ON’$, mà $OA=OD$ nên $MN’$ song song $AD$, suy ra $N$ trùng $N’$. \medskip

Từ đó, dễ thấy $AMND$ là hình thang cân nên $AN=MD=MB$, hơn nữa $N$ nằm trên tia $AC$ nên ta thu được $$\overrightarrow{AN}=\dfrac{2}{3}\overrightarrow{AC}.$$ Ta có điều cần chứng minh.