Category Archives: Olympic 30-4

ĐỀ THI OLYMPIC 30 THÁNG 4 – TOÁN LỚP 10 NĂM 1998

ĐỀ THI

Câu 1

a) Cho tam giác $\mathrm{ABC}$ cạnh $\mathrm{BC}=\mathrm{a} ; \mathrm{CA}=\mathrm{b} ; \mathrm{AB}=\mathrm{c}$. Chứng minh duy nhất một điểm $M$ thỏa $a \cdot M A^2+b \cdot M B^2+c \cdot M C^2 \leq a b c$.

b) Cho tam giác ABC.M, N theo thứ tự là hai điểm thuộc các đoạn thẳng $\mathrm{AC}, \mathrm{BC}$ ( $\mathrm{M}, \mathrm{N}$ không trùng với $\mathrm{A}, \mathrm{B}, \mathrm{C})$. Gọi $\mathrm{S}_1, \mathrm{~S}_2, \mathrm{~S}$ lần lượt là diện tích tam giác $A M E$ tam giác $B N E$ và tam giác $A B C$ ( $\mathrm{E}$ là điểm thuộc đoạn thẳng $\mathrm{MN}$ ). Tìm điều kiện của các điểm M, N, E sao cho:

$\sqrt[3]{\mathrm{S}}=\sqrt[3]{\mathrm{S}_1}+\sqrt[3]{\mathrm{S}_2} .$

Câu 2

Tìm tất cả các cặp số nguyên tố $(\mathrm{x}, \mathrm{y})$ thỏa mãn phương trình:

$[\sqrt{1}]+[\sqrt{2}]+\ldots+\left[\sqrt{\mathrm{x}^2-1}\right]=\mathrm{y}$

Câu 3

Cho hệ phương trình: $\left\{\begin{array}{l}a x^2+b x+c=0 \\ b x^2+c x+a=26 \\ c x^2+a x+b=-26\end{array}\right.$, trong đó $a, b, c$ khác 0 .

Tìm các số nguyên $\mathrm{a}, \mathrm{b}, \mathrm{c}$ để hệ phương trình có nghiệm nguyên.

Câu 4

Tìm giá trị nhỏ nhất của biểu thức: $\mathrm{T}=\sin 7 \mathrm{~A}+\sin 7 \mathrm{~B}+\sin 7 \mathrm{C}$, với $\mathrm{A}, \mathrm{B}, \mathrm{C}$ là ba góc của một tam giác.

 

LỜI GIẢI

Câu 1

a) Cho tam giác $\mathrm{ABC}$ cạnh $\mathrm{BC}=\mathrm{a} ; \mathrm{CA}=\mathrm{b} ; \mathrm{AB}=\mathrm{c}$. Chứng minh duy nhất một điểm $M$ thỏa $a \cdot M A^2+b \cdot M B^2+c \cdot M C^2 \leq a b c$.

b) Cho tam giác ABC.M, N theo thứ tự là hai điểm thuộc các đoạn thẳng $\mathrm{AC}, \mathrm{BC}$ ( $\mathrm{M}, \mathrm{N}$ không trùng với $\mathrm{A}, \mathrm{B}, \mathrm{C})$. Gọi $\mathrm{S}_1, \mathrm{~S}_2, \mathrm{~S}$ lần lượt là diện tích tam giác $A M E$ tam giác $B N E$ và tam giác $A B C$ ( $\mathrm{E}$ là điểm thuộc đoạn thẳng $\mathrm{MN}$ ). Tìm điều kiện của các điểm M, N, E sao cho:

$\sqrt[3]{\mathrm{S}}=\sqrt[3]{\mathrm{S}_1}+\sqrt[3]{\mathrm{S}_2} .$

Lời Giải

a) Gọi I là tâm đường tròn nội tiếp tam giác $\mathrm{ABC}$, chứng minh:

$ a \overrightarrow{\mathrm{IA}}+\mathrm{b} \cdot \overrightarrow{\mathrm{IB}}+\mathrm{c} \cdot \overrightarrow{\mathrm{IC}}=\overrightarrow{0} $

$- \text { Từ bất đẳng thức: }(\mathrm{a} \cdot \overrightarrow{\mathrm{MA}}+\mathrm{b} \cdot \overrightarrow{\mathrm{MB}}+\mathrm{c} \cdot \overrightarrow{\mathrm{MC}})^2 \geq 0, \text { dấu “=” xảy ra khi } \mathrm{M} \equiv \mathrm{I} $

$\Rightarrow  \mathrm{a} \cdot \mathrm{MA}^2+\mathrm{b} \cdot \mathrm{MB}^2+\mathrm{c} \cdot \mathrm{MC}^2+2 \mathrm{ab} \overrightarrow{\mathrm{MA}} \cdot \overrightarrow{\mathrm{MB}}+2 \mathrm{bc} \overrightarrow{\mathrm{MB}} \cdot \overrightarrow{\mathrm{MC}}+$

$+2 \mathrm{ca} \overrightarrow{\mathrm{MB}} \cdot \overrightarrow{\mathrm{MC}} \geq 0$

$ \overrightarrow{\mathrm{MA}} \cdot \overrightarrow{\mathrm{MB}}=\frac{1}{2}\left(\mathrm{MA}^2+\mathrm{MB}^2+\mathrm{AB}^2\right) \text { thì có } $

$(\mathrm{a}+\mathrm{b}+\mathrm{c})\left(\mathrm{a} \cdot \mathrm{MA}^2+\mathrm{mB} \cdot \mathrm{MB}^2+c \cdot \mathrm{MC}^2-\mathrm{abc}\right) \geq 0 $

$= \mathrm{a} \cdot \mathrm{MA}^2+\mathrm{b} \cdot \mathrm{MB}^2+\mathrm{c} \cdot \mathrm{MC}^2 \geq \mathrm{abc}$

Do đó, theo giả thiết dấu “=” xảy ra

$\Rightarrow \mathrm{M} \equiv \mathrm{I}$ (đpcm)

b) (i) $\mathrm{E} \neq \mathrm{N}$ :

Đặt

$\mathrm{AM} / \mathrm{MC}=\alpha, \mathrm{CN} / \mathrm{NB}=\beta$

$\mathrm{ME} / \mathrm{EN}=\gamma(\alpha, \beta>0 ; \gamma \geq 0)$

Suy ra

$S_{\triangle M E C}=S_1 / \alpha ; S_{\triangle N E C}=\beta S_2$

$S_{\triangle M E C} / S_{\triangle N E C}=\gamma$

Do đó $\mathrm{S}_1=\alpha \beta \gamma . \mathrm{S}_2$

$S_{\triangle M N C} / S_{\triangle A B C}=M C \cdot N C / A B \cdot B C$

$S_{\triangle M N C}=S_{\triangle M E C}+S_{\triangle M N C}=\beta(\gamma+1) S_2$

$\mathrm{AC} / \mathrm{MC}=\alpha+1 ; \mathrm{BC} / \mathrm{NC}=(\beta+1) / \beta \Rightarrow \mathrm{S}=(\alpha+1)(\beta+1)(\gamma+1) \mathrm{S}_2$

$\mathrm{~S}_2=\mathrm{S} /(\alpha+1)(\beta+1)(\gamma+1) ; \mathrm{S}_1=\alpha \beta \gamma \mathrm{S} /(\alpha+1)(\beta+1)(\gamma+1)$

$\sqrt[3]{\mathrm{S}_1}+\sqrt[3]{\mathrm{S}_2}=\sqrt[3]{\mathrm{S}}$

$\sqrt[3]{\mathrm{S}_1}+\sqrt[3]{\mathrm{S}_2}=\sqrt[3]{\mathrm{S}} \Leftrightarrow \underbrace{\frac{1}{\sqrt[3]{(1+\alpha)(1+\beta)(1+\gamma)}}+\frac{\sqrt[3]{\alpha \beta \gamma}}{\sqrt[3]{(1+\alpha)(1+\beta)(1+\gamma)}}}_A=1$

Mặt khác, theo bất đẳng thức Côsi

$\mathrm{A} \leq \frac{1}{3}\left(\frac{1}{1+\alpha}+\frac{1}{1+\beta}+\frac{1}{1+\gamma}+\frac{\alpha}{1+\alpha}+\frac{\beta}{1+\beta}+\frac{\gamma}{1+\gamma}\right)=1$

Đẳng thức $\mathrm{A}=1 \Leftrightarrow \alpha=\beta=\gamma$.

Vậy vị trí $\mathrm{M}, \mathrm{N}, \mathrm{E}$ sao cho $\mathrm{AM} / \mathrm{MC}=\mathrm{CN} / \mathrm{NB}=\mathrm{ME} / \mathrm{EN}$

(ii) $\mathrm{E} \equiv \mathrm{N}$ : $\mathrm{S}_2=0$ và $\mathrm{S}_1<\mathrm{S}$ (không xảy ra $\sqrt[3]{\mathrm{S}}=\sqrt[3]{\mathrm{S}_1}+\sqrt[3]{\mathrm{S}_2}$ ).

Câu 2

Tìm tất cả các cặp số nguyên tố $(\mathrm{x}, \mathrm{y})$ thỏa mãn phương trình:

$[\sqrt{1}]+[\sqrt{2}]+\ldots+\left[\sqrt{\mathrm{x}^2-1}\right]=\mathrm{y}$

Lời Giải

Nhận xét rằng với mọi $\mathrm{k} \in \mathrm{N}$ ta đều có:

$\mathrm{k}=\left[\sqrt{\mathrm{k}^2}\right]=\left[\sqrt{\mathrm{k}^2+1}\right]=\left[\sqrt{\mathrm{k}^2+2}\right]=\ldots=\left[\sqrt{\mathrm{k}^2+2 \mathrm{k}}\right] $

$\Rightarrow {\left[\sqrt{\mathrm{k}^2}\right]+\left[\sqrt{\mathrm{k}^2+1}\right]+\left[\sqrt{\mathrm{k}^2+2}\right]+\ldots+\left[\sqrt{(\mathrm{k}+1)^2}-1\right] } $

$=\mathrm{k}(2 \mathrm{k}+1)=2 \mathrm{k}^2+\mathrm{k}$

Lần lượt cho $\mathrm{k}=1,2, \ldots, \mathrm{x}-1$ ta được:

${[\sqrt{1}]+[\sqrt{2}]+[\sqrt{3}]=2.1^2+1} $

${[\sqrt{4}]+[\sqrt{5}]+\ldots+[\sqrt{8}]=2.2^2+2} $

$\cdots $

${\left[\sqrt{(x-1)^2}\right]+\ldots+\left[\sqrt{x^2-1}\right]=2 .(x-1)^2+(x-1)}$

Cộng từng vế các đẳng thức trên ta được:

$ {[\sqrt{1}]+[\sqrt{2}]+\ldots+\left[\sqrt{x^2-1}\right] } $

$= 2 \cdot\left[1^2+2^2+\ldots+(x-1)^2\right]+[1+2+\ldots+(x-1)]$

$=\frac{(x-1) x(2 x-1)}{3}+\frac{x(x-1)}{2}$

Vậy phương trình đã cho có dạng $\frac{(\mathrm{x}-1) \mathrm{x}(4 \mathrm{x}-1)}{6}=\mathrm{y}\left({ }^*\right)$

Ta giải phương trình $\left(^*\right).$  trong tập hợp các số nguyên tố

Vì $\frac{(\mathrm{x}-1) \mathrm{x}(4 \mathrm{x}-1)}{\mathrm{y}}=6$ là một số nguyên dương và $\mathrm{y}$ là số nguyên tố nên $\mathrm{y}$ là ước của một trong ba thừa số $\mathrm{x}-1 ; \mathrm{x} ; 4 \mathrm{x}+1$

$\Rightarrow \mathrm{y} \leq \max {x-1 ; x ; 4 x+1}=4 x+1 $

$\Rightarrow 6=\frac{(x-1) x(4 x-1)}{y} \geq x(x-1) \Rightarrow x \leq 3$

Thử lại ta được các nghiệm nguyên tố sau đây của phương trình: $(2 ; 3) ;(3 ; 13)$.

Câu 3

Cho hệ phương trình: $\left\{\begin{array}{l}a x^2+b x+c=0 \\ b x^2+c x+a=26 \\ c x^2+a x+b=-26\end{array}\right.$, trong đó $a, b, c$ khác 0 .

Tìm các số nguyên $\mathrm{a}, \mathrm{b}, \mathrm{c}$ để hệ phương trình có nghiệm nguyên.

Lời Giải

$\left\{\begin{array}{l}a x^2+b x+c=0 \\ b x^2+c x+a=26 \\ c x^2+a x+b=-26\end{array}\right.$

Cộng (1), (2) và (3) vế theo vế ta có:

$(a+b+c)\left(x^2+x+1\right)=0 $

$\Rightarrow  a+b+c=0 \text { vì } x^2+x+1>0 \forall x$

Từ điều kiện $a+b+c=0$ ta có phương trình (1) có nghiệm

$x=1 \vee x=c / a$

$x=1$ không thỏa đồng thời (2) và (3) nên ta loại

Tữ $x=c / a$ ta có: $a x=c$, thay vào (2) ta được: $(a+b) x^2+a=26$

Mà $\mathrm{a}+\mathrm{b}=-\mathrm{c}=-\mathrm{ax}$ ta lại có: $-\mathrm{ax}{ }^3+\mathrm{a}=26 \Leftrightarrow \mathrm{a}\left(1-\mathrm{x}^3\right)=26(4)$

Do $\mathrm{x} \neq 1$ nên $26: \mathrm{a}, \mathrm{a} \in \mathrm{Z}$ nên a có thể là: $\pm 1 ; \pm 2 ; \pm 13 ; \pm 26$

Với $\mathrm{a}=1, \mathrm{a}=\pm 2 ; \mathrm{a}=-13, \mathrm{a}=-26,(4)$ không có nghiệm nguyên.

Với $\mathrm{a}=-1$, từ (4) ta có $\mathrm{x}^3=-1$ nên $\mathrm{x}=-1$ khi đó $\mathrm{x}=-13$ và $\mathrm{b}=0$

Với $\mathrm{a}=26$, từ (4) ta có $\mathrm{x}^3=0$ nên $\mathrm{x}=0$ khi đó $\mathrm{c}=0$ và $\mathrm{b}=-26$

Vậy $(-1 ; 4 ;-3) ;(13 ; 0 ;-13)$ và $(26 ;-26 ; 0)$ là bộ 3 số nguyên để hệ có nghiệm nguyên.

Câu 4

Tìm giá trị nhỏ nhất của biểu thức: $\mathrm{T}=\sin 7 \mathrm{~A}+\sin 7 \mathrm{~B}+\sin 7 \mathrm{C}$, với $\mathrm{A}, \mathrm{B}, \mathrm{C}$ là ba góc của một tam giác.

Lời Giải

Ta có: $\mathrm{T}^2=(\sin 7 \mathrm{~A}+\sin 7 \mathrm{~B}+\sin 7 \mathrm{C})^2 \leq 3\left(\sin ^2 7 \mathrm{~A}+\sin ^2 7 \mathrm{~B}+\sin ^2 7 \mathrm{C}\right)$

$\leq 3 / 2 \cdot[3-(\cos 14 \mathrm{~A}+\cos 14 \mathrm{~B}+\cos 14 \mathrm{C})]\quad\quad\quad (1)$

Mà với mọi tam giác $A B C$ ta luôn có:

$\cos 14 A+\cos 14 B+\cos 14 C \geq-3 / 2 \quad\quad\quad (2)$

Do $\cos 14 C=\cos [4 \pi-14(A+B)]=\cos 14(A+B)$

$=\cos 14 \mathrm{~A} \cos 14 \mathrm{~B}-\sin 14 \mathrm{~A} \sin 14 \mathrm{~B}$

Và $(2) \Leftrightarrow 3+2 \cos 14 \mathrm{~A}+2 \cos 14 \mathrm{~B}+2 \cos 14 \mathrm{C} \geq 0$

$\Leftrightarrow 1+\sin ^2 14 \mathrm{~A}+\cos ^2 14 \mathrm{~A}+\sin ^2 14 \mathrm{~B}+\cos ^2 14 \mathrm{~B}+2 \cos 14 \mathrm{~A}$

$+2 \cos 14 \mathrm{~B}+2 \cos 14 \mathrm{~A} \cos 14 \mathrm{~B}-2 \sin 14 \mathrm{~A} \sin 14 \mathrm{~B} \geq 0$

$\Leftrightarrow(\cos 14 \mathrm{~A}+\cos 14 \mathrm{~B}+1)^2+(\sin 14 \mathrm{~A}-\sin 14 \mathrm{~B})^2 \geq 0$

Từ (1), (2) $\Rightarrow \mathrm{T}^2 \leq 3 / 2 \cdot(3+3 / 2)=27 / 4 \Rightarrow \mathrm{T} \geq-3 \frac{\sqrt{3}}{2}$

Nếu $\mathrm{T}=-3 \frac{\sqrt{3}}{2}$ thì ta có $\sin 7 \mathrm{~A}=\sin 7 \mathrm{~B}=\sin 7 \mathrm{C}=-\frac{\sqrt{3}}{2}$

Ngược lại với $\sin 7 \mathrm{~A}=\sin 7 \mathrm{~B}=\sin 7 \mathrm{C}=-\frac{\sqrt{3}}{2}$ thì rõ ràng $\mathrm{T}=-3 \frac{\sqrt{3}}{2}$ Vậy ta có $\mathrm{T} \geq-3 \frac{\sqrt{3}}{2}$, với mọi tam giác $\mathrm{ABC}$ và $\mathrm{T}=-3 \frac{\sqrt{3}}{2}$ $\Leftrightarrow \sin 7 \mathrm{~A}=\sin 7 \mathrm{~B}=\sin 7 \mathrm{C}=-\frac{\sqrt{3}}{2}(1)$

Ta có: $\left\{\begin{array}{l}\sin 7 x=-\sqrt{\frac{3}{2}}=\sin \left(-\frac{\pi}{3}\right) \\ 0<x<\pi\end{array}\right.$

$\Leftrightarrow\left\{\begin{array}{l}\mathrm{x}=-\frac{\pi}{21}+\frac{\mathrm{k} 2 \pi}{7}=\frac{(6 \mathrm{k}-1) \pi}{21} \\ \mathrm{x}=\frac{4 \pi}{21}+\frac{l 2 \pi}{7}=\frac{(6 l+4) \pi}{21}\end{array} \quad(0<\mathrm{x}<\pi)\right.$

$\Leftrightarrow \mathrm{x} \in \mathrm{E}=\left(\frac{4 \pi}{21} ; \frac{5 \pi}{21} ; \frac{10 \pi}{21} ; \frac{11 \pi}{21} ; \frac{16 \pi}{21} ; \frac{17 \pi}{21}\right)$

Vai trò $\mathrm{A}, \mathrm{B}, \mathrm{C}$ như nhau nên có thể giả sử

$\mathrm{A} \leq \mathrm{B} \leq \mathrm{C} \Rightarrow \mathrm{A} \leq \frac{\pi}{3} \Rightarrow \mathrm{A}=\frac{4 \pi}{21} \text { hay } \mathrm{A}=\frac{5 \pi}{21}$

  • Nếu $\mathrm{A}=\frac{5 \pi}{21}$ thì $\mathrm{B}+\mathrm{C}=\frac{17 \pi}{21}$ nhưng với mọi $\mathrm{B}, \mathrm{C}$ thuộc $\mathrm{E}$, ta đã có $B+C \neq \frac{17 \pi}{21}$

  • Nếu $\mathrm{A}=\frac{5 \pi}{21} \Rightarrow \mathrm{B}+\mathrm{C}=\frac{16 \pi}{21} \Rightarrow \mathrm{B}=\frac{5 \pi}{21} \leq \mathrm{B} \leq(\mathrm{B}+\mathrm{C}) / 2=\frac{8 \pi}{21}$

$\Rightarrow \mathrm{B}=\frac{5 \pi}{21} \Rightarrow \mathrm{C}=\frac{11 \pi}{21} \in \mathrm{E}$

Vậy $\mathrm{T}$ có giá trị nhỏ nhất là $-3 \frac{\sqrt{3}}{2}$ đạt được khi tam giác $\mathrm{ABC}$ cân có góc ở đáy bằng $\frac{5 \pi}{21}$.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ĐỀ THI OLYMPIC 30 THÁNG 4 – TOÁN LỚP 10 NĂM 1999

ĐỀ THI

Câu 1

Giải phương trình: $x^2-3 x+1=-\frac{\sqrt{3}}{3} \cdot \sqrt{x^4+x^2+1}$.

Câu 2

Cho $\mathrm{x}$ là số thực sao cho $\mathrm{x}^3-\mathrm{x}$ và $\mathrm{x}^4-\mathrm{x}$ đều là các số nguyên. Chứng minh $\mathrm{x}$ là số nguyên.

Câu 3

Tìm giá trị nhỏ nhất của: $S=|x|+\left|\frac{2 x-1}{x+3}\right|$.

Câu 4

Gọi $\mathrm{R}, \mathrm{r}, \mathrm{p}$ lần lượt là bán kính đường tròn ngoại tiếp, nội tiếp, nửa chu vi của tam giác $A B C$. Chứng minh:

$\operatorname{tg} \frac{\mathrm{A}}{2}\left(1+\cos \frac{\mathrm{A}}{2}\right)+\operatorname{tg} \frac{\mathrm{B}}{2}\left(1+\cos \frac{\mathrm{B}}{2}\right)+\operatorname{tg} \frac{\mathrm{C}}{2}\left(1+\cos \frac{\mathrm{C}}{2}\right) \geq \frac{\mathrm{p}(\mathrm{R}+\mathrm{r})+\mathrm{R}(4 \mathrm{R}+\mathrm{r})}{\mathrm{pR}}$

Câu 5

Trong mặt phẳng toạ độ $(\mathrm{Oxy})$, cho 3 đường thẳng có hệ số góc là $\frac{1}{\mathrm{~m}}, \frac{1}{\mathrm{n}}, \frac{1}{\mathrm{p}}$ với $\mathrm{m}, \mathrm{n}, \mathrm{p}$ là các số nguyên dương. Tìm $\mathrm{m}, \mathrm{n}, \mathrm{p}$ sao cho 3 đường thẳng đó tạo với trục hoành 3 góc có tổng số đo là $45^{\circ}$.

 

LỜI GIẢI

 

Câu 1

Giải phương trình: $x^2-3 x+1=-\frac{\sqrt{3}}{3} \cdot \sqrt{x^4+x^2+1}$.

Lời Giải

Ta có: $x^4+x^2+1=\left(x^2+1\right)^2-x^2=\left(x^2+x+1\right)\left(x^2-x+1\right)>0$ $x^2-3 x+1=2\left(x^2-x+1\right)-\left(x^2+x+1\right)$

Đặt $t=\sqrt{\frac{x^2-x+1}{x^2+x+1}}$. Ta xét phương trình: $2 t^2-m t-1=0\quad\quad\quad (1)$

Chú ý: Từ $t=\sqrt{\frac{x^2-x+1}{x^2+x+1}}$

Ta có: $\left(\mathrm{t}^2-1\right) \mathrm{x}^2+\left(\mathrm{t}^2+1\right) \mathrm{x}+\mathrm{t}^2-1=0\quad\quad\quad (2)$

Và $\frac{\sqrt{3}}{3} \leq \mathrm{t} \leq \sqrt{3}$

a) Khi $\mathrm{m}=-\frac{\sqrt{3}}{3}$ thì (1) có hai nghiệm $\mathrm{t}=-\frac{3}{2 \sqrt{3}} ; \mathrm{t}_2=\frac{1}{\sqrt{3}}$ Chỉ xét $\mathrm{t}=\frac{1}{\sqrt{3}}$. Lúc đó (2) có nghiệm $\mathrm{x}=1$

Vậy trường hợp này phương trình có một nghiệm là $\mathrm{x}=1$.

b) Nhận xét: Phương trình (1) có hai nghiệm $\mathrm{t}_1, \mathrm{t}_2$ mà $\mathrm{t}_1<0<\mathrm{t}_2$

Do đó phương trình $\left({ }^*\right)$ có tối đa hai nghiệm thực.

Trường hợp phương trình có một nghiệm thực là trường hợp (2) chỉ có một nghiệm thực.

Đó là các trường hợp sau:

1) $t=1:$ ta có $m=1$ và $x=0$

2) $t^2-1 \neq 0$ và $\Delta_t=0$. Ta có $t=\frac{\sqrt{3}}{3}$ hay $t=\sqrt{3}$.

Lúc đó: $m=-\frac{\sqrt{3}}{3}$ và $x=1$ hay $m=\frac{5 \sqrt{3}}{3}$ và $x=-1$.

Tóm lại: phương trình có một số lẻ nghiệm thực khi và chỉ khi:

$\mathrm{M} \in[1 ; \frac{5 \sqrt{3}}{3} ;-\frac{\sqrt{3}}{3}]$

Câu 2

Cho $\mathrm{x}$ là số thực sao cho $\mathrm{x}^3-\mathrm{x}$ và $\mathrm{x}^4-\mathrm{x}$ đều là các số nguyên. Chứng minh $\mathrm{x}$ là số nguyên.

Dành cho bạn đọc

Câu 3

Tìm giá trị nhỏ nhất của: $S=|x|+\left|\frac{2 x-1}{x+3}\right|$.

Lời Giải

Ta có các trường hợp sau:

Nếu $x<-3$ :

Khi $x<-3 \Rightarrow|x|>3$. Ta có $S=|x|+\left|\frac{2 x-1}{x+3}\right| \geq|x|>3$.

Vậy trong trường hợp này ta có $\mathrm{S}>3\quad\quad\quad\quad\quad (1)$

Nếu $-3<\mathrm{x}<0$ :

Ta có $S=|x|+\left|\frac{2 x-1}{x+3}\right| \geq\left|\frac{2 x-1}{x+3}\right|\quad\quad\quad (a)$

Mặt khác với $-3<x<0$ thì $\frac{2 x-1}{x+3}<0$; bởi vậy thay vào (a) ta có:

$S \geq-\frac{2 x-1}{x+3}=-2+\frac{7}{x+3}\quad\quad\quad\quad (b)$

Vì $-3<x<0 \Rightarrow 0<x+3<3 \Rightarrow \frac{1}{3}<\frac{1}{x+3} \Rightarrow \frac{7}{3}<\frac{7}{x+3}$

Đem kết quả này vào $(\mathrm{b})$ ta được:

$\mathrm{S} \geq-\frac{2 \mathrm{x}-1}{\mathrm{x}+3}=-2+\frac{7}{\mathrm{x}+3}>-2+\frac{7}{3}=\frac{1}{3}$

Vậy trong trường hợp này ta có: $\mathrm{S}>\frac{1}{3}\quad\quad\quad\quad (2)$

Nếu $x>\frac{1}{2}$ :

Ta có $S=|x|+\left|\frac{2 x-1}{x+3}\right| \geq|x|>\frac{1}{2}$

Vậy trong trường hợp này ta có: $\mathrm{S}>\frac{1}{2}\quad\quad\quad\quad (3)$

Nếu $0 \leq x \leq \frac{1}{2}$ :

Trong trường hợp này $S=x-\frac{2 x-1}{x+3}=\frac{x^2+x+1}{x+3}$

Ta chứng minh $S \geq \frac{1}{3}$; nghĩa là chứng minh: $\frac{x^2+x+1}{x+3} \geq \frac{1}{3}\quad\quad (c)$

Ta có: $(\mathrm{c}) \Leftrightarrow 3 \mathrm{x}^2+3 \mathrm{x}+3 \geq \mathrm{x}+3 \Leftrightarrow 3 \mathrm{x}^2+2 \mathrm{x} \geq 0 \Leftrightarrow x \geq 0$.

Vậy trong trường hợp $0 \leq x \leq \frac{1}{2}$ thì $S \geq \frac{1}{3}$; dấu bằng xảy ra khi $x=0$.

Bởi vậy trong trường hợp $0 \leq x \leq \frac{1}{2}$ thì $S$ đạt giá trị nhỏ nhất là $\frac{1}{3}$ khi $x=0\quad\quad (4)$

Từ (1), (2), (3) và (4) ta có kết luận:

Giá trị nhỏ nhất của S là $\frac{1}{2}$, đạt được khi $x=0$.

Câu 4

Gọi $\mathrm{R}, \mathrm{r}, \mathrm{p}$ lần lượt là bán kính đường tròn ngoại tiếp, nội tiếp, nửa chu vi của tam giác $A B C$. Chứng minh:

$\operatorname{tg} \frac{\mathrm{A}}{2}\left(1+\cos \frac{\mathrm{A}}{2}\right)+\operatorname{tg} \frac{\mathrm{B}}{2}\left(1+\cos \frac{\mathrm{B}}{2}\right)+\operatorname{tg} \frac{\mathrm{C}}{2}\left(1+\cos \frac{\mathrm{C}}{2}\right) \geq \frac{\mathrm{p}(\mathrm{R}+\mathrm{r})+\mathrm{R}(4 \mathrm{R}+\mathrm{r})}{\mathrm{pR}}$

Dành cho bạn đọc

Câu 5

Trong mặt phẳng toạ độ $(\mathrm{Oxy})$, cho 3 đường thẳng có hệ số góc là $\frac{1}{\mathrm{~m}}, \frac{1}{\mathrm{n}}, \frac{1}{\mathrm{p}}$ với $\mathrm{m}, \mathrm{n}, \mathrm{p}$ là các số nguyên dương. Tìm $\mathrm{m}, \mathrm{n}, \mathrm{p}$ sao cho 3 đường thẳng đó tạo với trục hoành 3 góc có tổng số đo là $45^{\circ}$.

Lời Giải

Gọi $\alpha, \beta, \delta$ là 3 góc tạo bởi 3 đường thẳng đã cho với trục $O x$ trong hệ trục tọa độ trục chuẩn Oxy.

Ta có:

$\operatorname{tg}(\alpha+\beta+\delta)=\frac{\operatorname{tg}(\alpha+\beta)+\operatorname{tg} \delta}{1-\operatorname{tg}(\alpha+\beta) \operatorname{tg} \delta}=\frac{\frac{\operatorname{tg} \alpha+\operatorname{tg} \beta}{1-\operatorname{tg} \alpha \operatorname{tg} \beta}+\operatorname{tg} \delta}{1-\frac{\operatorname{tg} \alpha+\operatorname{tg} \beta}{1-\operatorname{tg} \alpha \operatorname{tg} \beta} \operatorname{tg} \delta}$

$=\frac{\operatorname{tg} \alpha+\operatorname{tg} \beta+\operatorname{tg} \delta-\operatorname{tg} \alpha \operatorname{tg} \beta \operatorname{tg} \delta}{1-\operatorname{tg} \alpha \operatorname{tg} \beta-\operatorname{tg} \beta \operatorname{tg} \delta-\operatorname{tg} \delta \operatorname{tg} \alpha}=\frac{\frac{1}{m}+\frac{1}{n}+\frac{1}{p}-\frac{1}{\operatorname{mnp}}}{1-\frac{1}{m n}-\frac{1}{n p}-\frac{1}{p m}}$

$=\frac{\mathrm{mn}+\mathrm{np}+\mathrm{pm}-1}{\mathrm{mnp}-\mathrm{m}-\mathrm{n}-\mathrm{p}}$

Theo giả thiết $\alpha+\beta+\delta=45^{\circ}$ nên ta có

$m n+n p+p m-1=m n p-m-n-p$

hay $m n p-m n-n p-p m+m+n+p+1=2(m+n+p-1)$

Đặt $\mathrm{x} y=-\mathrm{m}-1 ; \mathrm{y}=\mathrm{n}-1 ; \mathrm{z}=\mathrm{p}-1$ ta có phương trình nghiệm nguyên không âm

$x y z=2(x+y+z+2)\quad\quad\quad\quad (1)$

Tả tìm cách giải phương trình này. Vì $x+y+z+2>0$ nên $x>0, y>0, z>0$. Không làm mất tính chất tổng quát ta giả sử $\mathrm{x} \geq \mathrm{y} \geq \mathrm{z}$.

Phương trình (1) tương đương với

$\frac{1}{x y}+\frac{1}{y z}+\frac{1}{z x}+\frac{2}{x y z}=\frac{1}{2}\quad\quad\quad\quad (2)$

Có 2 trường hợp:

1) Nếu $z \geq 3$ thì vế trái của phương trình (2) nhỏ hơn $\frac{3}{\mathrm{z}^2}+\frac{2}{\mathrm{z}^3} \leq \frac{1}{3}+\frac{2}{27}=\frac{11}{27}<\frac{1}{2}$ vậy phương trình không thỏa.

2) Nếu $z=2$ thì

$ 2 x y=2(x+y+4) $

$\Leftrightarrow  x y-x-y+1=5 $

$\Leftrightarrow (x-1)(y-1)=5 $

$\Leftrightarrow  x-1=5 \text { và } y-1=1 $

$\Leftrightarrow  x=6 \text { và } y=2 \text { suy ra } m=7, n=3, p=3$

3) Nếu $\mathrm{z}=1$ thì $\Leftrightarrow(x-2)(y-2)=10$

Điều này tương đương với

  • hoặc $\mathrm{x}-2=5$ và $\mathrm{y}-2=2$

$\Leftrightarrow x=7$ và $y=4$ suy ra $\mathrm{m}=8, \mathrm{n}=5, \mathrm{p}=2$.

  • hoặc $x-2=10$ và $y-2=1$

$\Leftrightarrow x=12$ và $y=3 \Leftrightarrow m=13, n=4$ và $p=2$.

Do tính chất đối xứng, các số $\mathrm{m}, \mathrm{n}, \mathrm{p}$ là cá c hoán vị của $(13 ; 4 ; 2) ;(8 ; 5 ; 2) ;(7 ; 3 ; 3)$

 

 

 

 

 

 

 

 

 

 

ĐỀ THI OLYMPIC 30 THÁNG 4 – TOÁN LỚP 10 NĂM 2000

ĐỀ THI

Câu 1

Giải hệ phương trình: $\left\{\begin{array}{l}\left(3-\frac{5}{y+42 x}\right) \sqrt{2 y}=4 \\ \left(3+\frac{5}{y+42 x}\right) \sqrt{x}=2\end{array}\right.$

Câu 2

Giải phương trình: $2 \sin 2 x-3 \sqrt{2} \sin x+\sqrt{2} \cos x-5=0$

Câu 3

Trong kì thi Olympic có 17 học sinh thi Toán được mang số kí danh trong khoảng từ 1 đến 1000 . Chứng tỏ rằng có thể chọn ra 9 học sinh thi Toán có tổng các số kí danh được mang chia hết cho 9.

Câu 4

Cho tứ giác lồi $\mathrm{ABCD}$ thỏa $\widehat{\mathrm{BAD}}>90^{\circ}$. Gọi $\mathrm{M}, \mathrm{N}$ lần lượt là 2 điểm nằm trên $\mathrm{BC}$ và $\mathrm{CD}$ sao cho $\widehat{\mathrm{MAD}}=\widehat{\mathrm{NAB}}=90^{\circ}$. Chứng minh rằng nếu $\mathrm{MN}$ và $\mathrm{BD}$ cắt nhau tại $\mathrm{I}$ thì $\mathrm{IA} \perp \mathrm{AC}$.

Câu 5

Cho $\mathrm{a}, \mathrm{b}, \mathrm{c}$ là các số không âm thỏa mãn: $\mathrm{a}+\mathrm{b}+\mathrm{c}=1$.

Tìm số $\mathrm{k}$ lớn nhất sao cho $\mathrm{a}^3+\mathrm{b}^3+\mathrm{c}^3+\mathrm{kabc} \geq \frac{1}{9}+\frac{\mathrm{k}}{27}$ đúng với mọi a, b, c thỏa điều kiện trên.

 

LỜI GIẢI

 

Câu 1

Giải hệ phương trình: $\left\{\begin{array}{l}\left(3-\frac{5}{y+42 x}\right) \sqrt{2 y}=4 \\ \left(3+\frac{5}{y+42 x}\right) \sqrt{x}=2\end{array}\right.$

Lời Giải

Điều kiện $\mathrm{x}>0, \mathrm{y}>0$.

Hệ phương trình có thể viết:

$\quad\quad\quad\quad \left\{\begin{array}{l}\frac{1}{\sqrt{x}}-\frac{\sqrt{2}}{\sqrt{y}}=\frac{5}{y+42 x}\quad\quad (1) \\ \frac{1}{\sqrt{x}}+\frac{\sqrt{2}}{\sqrt{y}}=3\quad\quad\quad\quad (2)\end{array} \Rightarrow \frac{1}{x}-\frac{2}{y}=\frac{15}{y+42 x}\right.$

$\quad\quad\quad \Leftrightarrow(y-2 x)(y+42 x)=15 x y \Leftrightarrow y^2-84 x^2+25 x y=0 $

$\quad\quad\quad \Leftrightarrow(y-3 x)(y+28 x)=0$

Do $y+28 x>0 \Rightarrow y=3 x$. Thế vào $(2) \Rightarrow$ hệ có nghiệm là:

$\quad\quad\quad\quad\quad\quad\quad\quad \left(\frac{5+2 \sqrt{6}}{27} ; \frac{5+2 \sqrt{6}}{9}\right)$

Câu 2

Giải phương trình: $2 \sin 2 x-3 \sqrt{2} \sin x+\sqrt{2} \cos x-5=0$

Dành cho bạn đọc

Câu 3

Trong kì thi Olympic có 17 học sinh thi Toán được mang số kí danh trong khoảng từ 1 đến 1000 . Chứng tỏ rằng có thể chọn ra 9 học sinh thi Toán có tổng các số kí danh được mang chia hết cho 9.

Lời Giải

a) Xét 5 số tự nhiên tuỳ ý, khi chia cho 3 có thể xảy ra:

  • Có 3 số dư giống nhau $\Rightarrow$ tổng 3 số tương ứng chia hết cho 3 .

  • Trái lại, sẽ có 3 số dư đôi một khác nhau $\Rightarrow$ tổng 3 số tương ứng chia hết cho 3.

Vậy trong 5 số tự nhiên bất kì, tồn tại 3 số có tổng chia hết cho 3 .

b) Xét 17 số tự nhiên tuỳ ý:

Chia chúng thành 3 tập, có lần lượt $5,5,7$ phần tử. Trong mỗi tập, chọn được 3 số có tổng lần lượt là $3 \mathrm{a}_1, 3 \mathrm{a}_2, 3 \mathrm{a}_3\left(\mathrm{a}_1, \mathrm{a}_2, \mathrm{a}_3 \in \mathrm{N}\right)$

Còn lại: $17-9=8$ số

Trong 8 số này, chọn tiếp 3 số có tổng là $3 \mathrm{a}_4$, còn lại 5 số chọn tiếp 3 số có tổng là $3 \mathrm{a}_5$.

Trong 5 số $\mathrm{a} 1, \mathrm{a} 2, \mathrm{a} 3, \mathrm{a} 4$, a5 có 3 số ai1, ai2, ai3 có tổng chia hết cho 3 .

$\Rightarrow 9$ học sinh tương ứng có tổng các số kí danh là:

$\quad\quad\quad\quad\quad\quad 3 a_{i 1}+3 a_{i 2}+3 a_{i 3}=3\left(a_{i 1}+a_{i 2}+a_{i 3}\right) \vdots 9 .$

Câu 4

Cho tứ giác lồi $\mathrm{ABCD}$ thỏa $\widehat{\mathrm{BAD}}>90^{\circ}$. Gọi $\mathrm{M}, \mathrm{N}$ lần lượt là 2 điểm nằm trên $\mathrm{BC}$ và $\mathrm{CD}$ sao cho $\widehat{\mathrm{MAD}}=\widehat{\mathrm{NAB}}=90^{\circ}$. Chứng minh rằng nếu $\mathrm{MN}$ và $\mathrm{BD}$ cắt nhau tại $\mathrm{I}$ thì $\mathrm{IA} \perp \mathrm{AC}$.

Lời Giải

Để ý rằng nếu $\mathrm{M} \equiv \mathrm{C}$ (hay $\mathrm{N} \equiv \mathrm{C}$ ) thì $\mathrm{I} \equiv \mathrm{D}$ (hay $\mathrm{I} \equiv \mathrm{B}$ ) $\Rightarrow$ bài toán đúng.

Xét trường hợp $\mathrm{I} \neq \mathrm{B}, \mathrm{I} \neq \mathrm{D}$

Áp dụng định luật Menelaus cho tam giác $\mathrm{BCD}$ với bộ 3 điểm $\mathrm{M}, \mathrm{N}$, I ta có:

$\quad\quad \frac{\mathrm{MB}}{\mathrm{MC}} \cdot \frac{\mathrm{NC}}{\mathrm{ND}} \cdot \frac{\mathrm{ID}}{\mathrm{IB}}=1$

$\Leftrightarrow \frac{\mathrm{AB} \cdot \sin \mathrm{A}_5}{\mathrm{AC} \cdot \sin \mathrm{A}_4} \cdot \frac{\mathrm{AC} \cdot \sin \mathrm{A}_3}{\mathrm{AD} \cdot \sin \mathrm{A}_2} \cdot \frac{\mathrm{AD} \cdot \sin \mathrm{A}_1}{\mathrm{AB} \cdot \sin \widehat{\mathrm{AIB}}}=1$

$\Leftrightarrow \sin \mathrm{A}_1 \cdot \sin \mathrm{A}_3=\sin \mathrm{A}_4 \cdot \sin \widehat{\mathrm{IAB}}\left(\right.$ do $\left.\sin \mathrm{A}_2=\sin \mathrm{A}_5\right)$

$\Leftrightarrow \sin \mathrm{A}_1 \cdot \sin \mathrm{A}_3=\cos \left(\mathrm{A}_2+\mathrm{A}_3\right) \cdot \cos \left(\mathrm{A}_1+\mathrm{A}_2\right)$

$\Leftrightarrow \frac{1}{2}\left[\cos \left(\mathrm{A}_1-\mathrm{A}_3\right)-\cos \left(\mathrm{A}_1+\mathrm{A}_3\right)\right]$

$=\frac{1}{2}\left[\cos \left(\mathrm{A}_1+2 \mathrm{~A}_2+\mathrm{A}_3\right)+\cos \left(\mathrm{A}_1-\mathrm{A}_3\right)\right]$

$\Leftrightarrow \cos \left(\mathrm{A}_1+2 \mathrm{~A}_2+\mathrm{A}_3\right)+\cos \left(\mathrm{A}_1+\mathrm{A}_3\right)=0$

$\Leftrightarrow 2 \cos \left(\mathrm{A}_1+\mathrm{A}_2+\mathrm{A}_3\right) \cdot \cos \mathrm{A}_2=0$

$\Leftrightarrow \cos \left(A_1+A_2+A_3\right)=0 \Leftrightarrow A_1+A_2+A_3=90^{\circ} .$

Vậy $I A \perp A C$.

Câu 5

Cho $\mathrm{a}, \mathrm{b}, \mathrm{c}$ là các số không âm thỏa mãn: $\mathrm{a}+\mathrm{b}+\mathrm{c}=1$.

Tìm số $\mathrm{k}$ lớn nhất sao cho $\mathrm{a}^3+\mathrm{b}^3+\mathrm{c}^3+\mathrm{kabc} \geq \frac{1}{9}+\frac{\mathrm{k}}{27}$ đúng với mọi a, b, c thỏa điều kiện trên.

Lời Giải

Chọn $\mathrm{a}=\mathrm{b}=\frac{1}{2}=0$, ta có $\mathrm{k} \leq \frac{15}{4}$, ta chứng minh rằng $\mathrm{k}_{\max }=\frac{15}{4}$

tức là ta chứng $\operatorname{minh}: a^3+b^3+c^3+\frac{15}{4} a b c \geq \frac{1}{4}$.

Xét 3 số $(\mathrm{a}+\mathrm{c}-\mathrm{b}) ;(\mathrm{a}+\mathrm{b}-\mathrm{c}) ;(\mathrm{b}+\mathrm{c}-\mathrm{a})$ có nhiều nhất 1 số âm vì tổng số tuỳ ý đều không âm. Nếu có 1 số âm thì

$\quad\quad\quad\quad\quad\quad (a+b-c)(b+c-a)(b+c-a)<0 \leq a b c$

Nếu cả 3 số đều dương ta dễ dàng chứng minh

$\quad\quad\quad\quad\quad\quad (a+b-c)(b+c-a)(b+c-a) \leq a b c$

Do đó ta có $(1-2 \mathrm{a})(1-2 \mathrm{~b})(1-2 \mathrm{c}) \leq \mathrm{abc}$

$\quad\quad\quad\Leftrightarrow \frac{3}{4}-3(a b+b c+c a)+\frac{27}{4} a b c \geq 0$

$\quad\quad\quad\Leftrightarrow(a+b+c)^2-3(a b+b c+c a)(a+b+c)+\frac{27}{4} a b c \geq \frac{1}{4}$

$\quad\quad\quad\Leftrightarrow(a+b+c)\left(a^2+b^2+c^2-a b-b c-a c\right)+\frac{27}{4} a b c \geq \frac{1}{4}$

$\quad\quad\quad\Leftrightarrow a^3+b^3+c^3+\frac{15}{4} a b c \geq \frac{1}{4}$.

 

 

 

 

 

 

 

 

 

 

 

 

ĐỀ THI OLYPIC 30 THÁNG 4 – TOÁN LỚP 10 NĂM 2001

ĐỀ THI

Câu 1

Tìm 3 số tự nhiên đôi một khác nhau và lớn hơn 1 thỏa điều kiện: Tích hai số bất kì trong 3 số ấy cộng với 1 chia hết cho số thứ ba.

Câu 2

Cho $\mathrm{x}, \mathrm{y}, \mathrm{z} \in[1 ; 2]$.

Tìm giá trị lớn nhất của: $\mathrm{P}=(\mathrm{x}+\mathrm{y}+\mathrm{z})\left(\frac{1}{\mathrm{x}}+\frac{1}{\mathrm{y}}+\frac{1}{\mathrm{z}}\right)$

Câu 3

Tìm tất cả các nghiệm số thực của phương trình:

$\quad\quad\quad\quad\quad\quad\quad\quad 64 x^6-112 x^4+56 x^2-7=2 \sqrt{1-x^2}$

Câu 4

Trên đường tròn $(\mathrm{O} ; \mathrm{R})$ cho năm điểm phân biệt $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}$ theo thứ tự đó, sao cho $\mathrm{AB}=\mathrm{BC}=\mathrm{DE}=\mathrm{R}$. Gọi $\mathrm{M}, \mathrm{N}$ lần lượt là trung điểm của $\mathrm{CD}$ và $\mathrm{AE}$. Hãy xác định giá trị lớn nhất có thể có của chu vi tam giác $\mathrm{BMN}$.

 

LỜI GIẢI

Câu 1

Tìm 3 số tự nhiên đôi một khác nhau và lớn hơn 1 thỏa điều kiện: Tích hai số bất kì trong 3 số ấy cộng với 1 chia hết cho số thứ ba.

Lời Giải

Giả sử $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{N}$ và $2 \leq \mathrm{a}<\mathrm{b}<\mathrm{c}$ thoả:

$\quad\quad\quad\quad\quad\quad\quad\quad a b+1 \vdots c ; a c+1 \vdots b ; b c+1 \vdots a$

$\quad\quad\quad\quad\quad\quad\quad \Rightarrow(a b+1)(a c+1)(b c+1) \vdots a b c \Rightarrow a b+b c+c a+1 \vdots a b c$

$\quad\quad\quad\quad\quad\quad\quad \Rightarrow a b+b c+c a+1 \geq a b c \Rightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a b c} \geq 1$

Nếu $\mathrm{b} \geq 4$ thì $\mathrm{c} \geq 5$, khi đó

$\quad\quad\quad\quad\quad \frac{1}{\mathrm{a}}+\frac{1}{\mathrm{~b}}+\frac{1}{\mathrm{c}}+\frac{1}{\mathrm{abc}} \leq \frac{1}{2}+\frac{1}{4}+\frac{1}{5}+\frac{1}{40}=\frac{39}{40}<1 \text { (vô lí) }$

Vậy $3 \leq \mathrm{b}<4 \Rightarrow \mathrm{b}=3$, $a=2$

Từ $\mathrm{ab}+1=7 \vdots \mathrm{c} \Rightarrow \mathrm{c}=7$.

Thử lại $(\mathrm{a}, \mathrm{b}, \mathrm{c})=(2,3,7)$ thỏa điều kiện.

Câu 2

Cho $\mathrm{x}, \mathrm{y}, \mathrm{z} \in[1 ; 2]$.

Tìm giá trị lớn nhất của: $\mathrm{P}=(\mathrm{x}+\mathrm{y}+\mathrm{z})\left(\frac{1}{\mathrm{x}}+\frac{1}{\mathrm{y}}+\frac{1}{\mathrm{z}}\right)$

Lời Giải

Do vai trò $x, y, z$ như nhau nên giả sử: $1 \leq x \leq y \leq z \leq 2$

$\Rightarrow\left\{\begin{array}{l}\left(1-\frac{x}{y}\right)\left(1-\frac{y}{z}\right) \geq 0 \\ \left(1-\frac{y}{x}\right)\left(1-\frac{z}{y}\right) \geq 0\end{array} \Rightarrow\left(\frac{x}{y}+\frac{y}{z}\right)+\left(\frac{y}{x}+\frac{z}{y}\right) \leq 2+\left(\frac{x}{z}+\frac{z}{x}\right)\right.$

$\Rightarrow P=\left(\frac{x}{y}+\frac{y}{z}\right)+\left(\frac{y}{x}+\frac{z}{y}\right)+\left(\frac{z}{x}+\frac{x}{z}\right)+3 \leq 5+2\left(\frac{x}{z}+\frac{z}{x}\right)\quad\quad (1)$

Dấu “=” xảy ra $\Leftrightarrow\left[\begin{array}{l}x=y \ y=z\end{array}\right.$

Đặt $t=\frac{x}{z} \in\left[\frac{1}{2} ; 1\right] t_i$ ta có $(2-t)\left(\frac{1}{2}-t\right) \leq 0 \Leftrightarrow t+\frac{1}{t} \leq \frac{5}{2}\quad\quad\quad\quad (2)$

Dấu “=” của $(2)$ xảy ra $\Leftrightarrow t=\frac{1}{2}$

Từ (1) và $(2$ ) suy ra $\mathrm{P} \leq 5+5=10=\mathrm{const}$

Dấu “=” xảy ra $\Leftrightarrow\left[\begin{array}{l}\left\{\begin{array}{l}x=y=1 \\ z=2\end{array}\right. \\ \left\{\begin{array}{l}x=1 \\ y=z=2\end{array}\right.\end{array}\right.$

Vậy: $\max \mathrm{P}=10$

Câu 3

Tìm tất cả các nghiệm số thực của phương trình:

$\quad\quad\quad\quad\quad\quad\quad\quad 64 x^6-112 x^4+56 x^2-7=2 \sqrt{1-x^2}$

Lời Giải

Tìm tất cả các nghiệm số thực của phương trình:

$\quad\quad\quad\quad\quad\quad\quad\quad 64 x^6-112 x^4+56 x^2-7=2 \sqrt{1-x^2}\quad\quad (1)$

Ta có: $\quad \cos 3 \mathrm{a}=4 \cos ^3 \mathrm{a}-3 \cos \mathrm{a}$

$\quad\quad\quad\quad\quad\quad \Rightarrow\left\{\begin{array}{l}\cos 4 a=8 \cos ^4 a-8 \cos ^2 a+1 \\ \cos 5 a=16 \cos ^5 a-20 \cos ^3 a+5 \cos a \\ \cos 6 a=32 \cos ^6 a-48 \cos ^4 a+18 \cos ^2 a-1 \\ \cos 7 a=64 \cos ^7 a-112 \cos ^5 a+56 \cos ^3 a-7 \cos a\end{array}\right.$

Đặt $x=$ cost với $t \in[0 ; \pi],(1)$ trở thành:

$\quad\quad\quad\quad\quad\quad\quad 64 \cos ^6 t-112 \cos ^4 t+56 \cos ^2 t-7=2 \sqrt{1-\cos ^2 t} $

$\quad\quad\quad\quad\quad\quad \Leftrightarrow  64 \cos ^7 t-112 \cos ^5 t+56 \cos ^3 t-7 \cos t=2 \cos t \sin t$

(với cost $\neq 0$ )

$\quad\quad\quad\quad\quad\quad \Leftrightarrow \cos 7 \mathrm{t}=\sin 2 \mathrm{t}$

$\quad\quad\quad\quad\quad\quad \Leftrightarrow \cos 7 \mathrm{t}=\cos \left(\frac{\pi}{2}-2 \mathrm{t}\right) \Leftrightarrow\left[\begin{array}{l}\mathrm{t}=\frac{\pi}{18}+\mathrm{k} \frac{2 \pi}{9} \\ \mathrm{t}=-\frac{\pi}{10}+l \frac{2 \pi}{5}\end{array} \mathrm{k}, l \in \mathrm{Z}\right.$

$\quad\quad\quad \mathrm{t} \in[0 ; \pi]$

$\Rightarrow \mathrm{t}=\frac{\pi}{18} \vee \mathrm{t}=\frac{5 \pi}{18} \vee \mathrm{t}=\frac{9 \pi}{18} \vee \mathrm{t}=\frac{13 \pi}{19} \vee \mathrm{t}=\frac{17 \pi}{18} \vee \mathrm{t}=\frac{3 \pi}{10} \vee \mathrm{t}=\frac{7 \pi}{10}$

Vì cost $\neq 0$ nên $t \neq \frac{\pi}{2}$. Vậy phương trình (1) có 6 nghiệm thực là:

$\quad\quad\quad x=\cos \frac{\pi}{18} \vee x=\cos \frac{5 \pi}{18} \vee x=\cos \frac{9 \pi}{18} \vee x=\cos \frac{13 \pi}{19}$

$\quad\quad\quad\quad\quad\quad\quad\quad \vee x=\cos \frac{17 \pi}{18} \vee x=\cos \frac{3 \pi}{10} \vee x=\cos \frac{7 \pi}{10}$

Câu 4

Trên đường tròn $(\mathrm{O} ; \mathrm{R})$ cho năm điểm phân biệt $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}$ theo thứ tự đó, sao cho $\mathrm{AB}=\mathrm{BC}=\mathrm{DE}=\mathrm{R}$. Gọi $\mathrm{M}, \mathrm{N}$ lần lượt là trung điểm của $\mathrm{CD}$ và $\mathrm{AE}$. Hãy xác định giá trị lớn nhất có thể có của chu vi tam giác $\mathrm{BMN}$.

Lời Giải

Theo giả thiết các tam giác $\mathrm{OAB}, \mathrm{OBC}$ và ODE là các tam giác đều nên:

$\quad\quad\quad\quad\quad\quad\quad \widehat{\mathrm{AOE}}+\widehat{\mathrm{DOC}}=180^{\circ} $

$\quad\quad\quad \text { Mà } \quad\quad  2 \widehat{\mathrm{DCO}}+\widehat{\mathrm{DOC}}=180^{\circ} $

$\quad\quad\quad\quad\quad\quad \Rightarrow \widehat{\mathrm{AOE}}=2 \widehat{\mathrm{DCO}} $

$\quad\quad\quad\quad\quad\quad \Rightarrow \widehat{\mathrm{AON}}=\widehat{\mathrm{MCO}}$

Từ đó $\triangle \mathrm{NOA}=\Delta \mathrm{MCO} \Rightarrow \mathrm{ON}=\mathrm{CM}$

Dẫn đến: $\Delta \mathrm{ONB}=\Delta \mathrm{CMB}$ (c.g.c) $\Rightarrow\left\{\begin{array}{l}\mathrm{BN}=\mathrm{NM} \\ \widehat{\mathrm{OBN}}=\widehat{\mathrm{CBM}}\end{array}\right.$

Mà $\widehat{\mathrm{OBC}}=60^{\circ} \Rightarrow \widehat{\mathrm{NBM}}=60^{\circ}$, vậy $\triangle \mathrm{MBN}$ đều.

Đặt $\alpha=\widehat{\mathrm{AON}}\left(0<\alpha<90^0\right)$. Khi đó

$\quad\quad\quad \mathrm{BN}^2 =\mathrm{R}^2+\mathrm{R}^2 \cos ^2 \alpha-2 \mathrm{R}^2 \cdot \cos \alpha \cos \left(\alpha+60^{\circ}\right) $

$\quad\quad\quad\quad\quad =\mathrm{R}^2\left[1+\cos ^2 \alpha-2 \cos \alpha\left(\cos \alpha \cdot \cos 60^{\circ}-\sin \alpha \cdot \sin 60^{\circ}\right)\right]$

$\quad\quad\quad\quad\quad =\mathrm{R}^2\left(1+\frac{\sqrt{3}}{2} \sin 2 \alpha\right) $

$\quad\quad \Rightarrow \mathrm{BN}^2 \leq \mathrm{R}^2\left(1+\frac{\sqrt{3}}{2}\right)$

Dấu “=” xảy ra khi $\sin 2 \alpha=1$ hay $\alpha=45^{\circ}$.

Chu vi lớn nhất có thể có của tam giác $\mathrm{BMN}$ là: $\mathrm{P}=\frac{3 \mathrm{R}(1+\sqrt{3})}{2}$.