Category Archives: Wiki

Chỉnh hợp

1.Định nghĩa. Cho tập $A$ có $n$ phần tử, mỗi cách lấy ra $k$ phần tử ($1 \leq k \leq n$) từ $A$ và sắp xếp nó vào $k$ vị trí được gọi là một chỉnh hợp chập $k$ của $n$.

Ví dụ. Cho $A = {a, b, c, d}$. Các chỉnh hợp chập $2$ của $A$ là $ab, ba, ac, ca,da, ad, bc, cb, bd, db, cd, dc$.

Tính chất. Số chỉnh hợp chập $k$ của $n$, kí hiệu $A_n^k = n \times (n-1) \cdots \times (n-k+1) = \dfrac{n!}{(n-k)!}$.

2. Ví dụ. 

Ví dụ 1. Lớp 11 văn có 30 bạn trong đó có 4 bạn nam. Có bao nhiêu cách chọn ra 4 bạn, trong đó một bạn làm bí thư, một bạn làm lớp trưởng, một bạn lớp phó thể mỹ, một bạn lớp phó học tập, biết rằng lớp trưởng luôn là con trai các bạn còn lại phải là con gái.

Lời giải. 

  • Chọn bạn lớp trưởng có 4 cách chọn từ các bạn nam.
  • Mỗi cách chọn bí thư, lớp phó học tập, lớp phó thể mỹ từ các bạn gái là một chỉnh hợp chập 3 của 26, suy ra số cách chọn là $A^4_{26}$.
  • Vậy theo quy tắc nhân số cách chọn là $4\cdot A^4_{26}$ cách.

Ví dụ 2. Cho tập $A = { 0, 1, 2, 3, 4, 5 }$.

a. Từ $A$ có thể lập được bao nhiêu số có 4 chữ số khác nhau trong đó không có chữ số 0.

b. Từ $A$ có thể lập được bao nhiêu số có 4 chữ số khác nhau.

Lời giải.

a. Mỗi số có 4 chữ số khác nhau không có chữ số 0 là một chỉnh hợp 4 phần tử của tập ${1, 2, 3, 4, 5 }$. Do đó số các số là số chỉnh hợp chập 4 của 5 bằng $A^4_5 = 120$ số.

b. Gọi số cần tìm là $\overline{abcd}$ với $a \neq 0$.

  • Số cách chọn $a$ có: 5 cách.
  • Mỗi cách chọn bộ $\overline{bcd}$ là một chỉnh hợp của tập 5 phần tử $A \setminus \{a\}$. Do đó số bộ $\overline{bcd}$ là: $A^3_5$.
  • Vậy số các số lập thoả đề bài: $5 \cdot A^3_5 = 300$ số.

Bài tập. 

Bài 1. Lớp 10 Toán có 30 học sinh cần lập ra một đội văn nghệ gồm 1 bạn hát, 1 bạn đánh đàn và một bạn múa phụ họa. Hỏi có bao nhiêu cách thực hiện?
Bài 2. Từ tập $A= \{2,3,4,5,6\}$ lập được bao nhiêu số tự nhiên có 5 chữ số, các chữ số phân biệt và thỏa mãn:
a.Bắt đầu bằng số 3.
b. Bắt đầu bằng số 23.
c. Không bắt đầu bằng số 2.
d. Chia hết cho 5.
e. Có hai chữ số 4 và 5 đứng gần nhau.
f. Hai số đầu tiên không chứa 2 hoặc 3.
Bài 3. Từ các số 0,1,2,3,4,5,6 có thể lập được bao nhiêu:
a. Số lẻ có 4  chữ số khác nhau?
b. Số chẵn có 5 chữ số khác nhau?
Bài 4. Có 11 cầu thủ, chọn ra 5 người đá pentalty, hỏi có bao nhiêu cách biết rằng cầu thủ $A$ phải sút quả đầu tiên hoặc cuối cùng.

Phép biến hình. Phép dời hình.

1. Phép biến hình   

a) Định nghĩa. Quy tắc đặt tương ứng mỗi điểm $M$ của mặt phẳng với một điểm xác định duy nhất $M’ $ của mặt phẳng đó được gọi là phép biến hình trong mặt phẳng.

  • Ta thường kí hiệu phép biến hình là $F$  và viết $F(M) = M’ $ hay $M’ = F(M)$, khi đó $M’ $ gọi là ảnh của điểm $M$ qua phép biến hình $F$.
  • Phép biến hình biến mỗi điểm của mặt phẳng thành chính nó được gọi là phép đồng nhất.
  • Nếu $H$ là một hình nào đó trong mặt phẳng thì ta kí hiệu $H’ = F(H)$ là tập các điểm $M’ = F(M)$, với mọi điểm $M$ thuộc $H$. Khi đó ta nói $F$ biến hình $H$ thành $H’ $ hay $H’ $ là ảnh của $H$ qua phép biến hình $F$.

b) Ví dụ

  1. Cho điểm $O$, qui tắc cho tương ứng điểm $M$ với điểm $M’$ sao cho $\overrightarrow{OM} = -\overrightarrow{OM’}$ là một phép biến hình. Phép này được gọi là phép đối xứng tâm $O$.
  2. Cho đường thẳng $\Delta$, qui tắc cho tương ứng điểm $M$ với điểm $M’$ là hình chiếu vuông góc của điểm $M$ trên $\Delta$ là một phép biến hình.
  3. Cho số thực $r  >0$, qui tắc cho tương ứng điểm $M$ với $M’$ sao cho $MM’ = r$ không phải là phép biến hình.

c) Biểu thức toạ độ của phép biến hình

Trong mặt phẳng toạ độ xét phép biến hình $f: M(x;y) \mapsto M'(x’;y’)$, khi đó $x’ = g(x;y), y’ = h(x;y)$ thì đây được gọi là biểu thức toạ độ của phép biến hình.

Ví dụ. Cho phép biến hình $f: M(x;y) \mapsto M'(x’;y’)$ thoả $x’ = 2x + 1, y’ = y-1$.

2. Phép dời hình

a) Định nghĩa. Phép dời hình là phép biến hình không làm thay đổi khoảng cách giữa hai điểm bất kì. 

Trong ví dụ 1 là phép dời hình, ví dụ 2 không là phép dời hình.

b) Tính chất. Phép dời hình biến ba điểm thẳng hàng thành ba điểm thẳng hàng giữ nguyên thứ tự, biến tam giác thành tam giác bằng tam giác đó; biến đường thẳng thành đường thẳng, tia thành tia, biến góc thành góc bằng góc đó,…

Các phép dời hình đã học: Phép đối xứng tâm, phép đối xứng trục.

Hoán vị

I. Lí thuyết

  • Cho tập hợp $A$ có $n (n \ge 1)$ phần tử. Khi sắp xếp $n$ phần tử này theo một thứ tự ta được một hoán vị các phần tử của tập $A$ (gọi tắt là một hoán vị của $A$).
  • Số các hoán vị của một tập gồm $n$ phần tử là: $$ P_{n}=n!=n(n-1)(n-2)…2.1 $$
  • Qui ước: $0!=1.$

Ví dụ 1. Từ tập hợp $X=\left\{1,2,3,4,5\right\}$, ta có thể lập được bao nhiêu số có 5 chữ số khác nhau từng đôi một?

Đáp số

Gọi số cần tìm là $\overline{abcde}$, ta thấy số cần tìm là một hoán vị của các phần tử của $X$, vậy số cách chọn là: $P_5=5!=120$.

Ví dụ 2. Có 7 quyển sách Toán, 6 quyển sách Lí và 4 quyển sách Hóa. Hỏi có bao nhiêu cách xếp số sách trên lên một kệ sách dài, sao cho:

a) Các quyển sách được xếp tùy ý.

b) Các quyển sách cùng môn được xếp cạnh nhau.

Đáp số

a) Mỗi cách xếp tùy ý là một hoán vị của 17 phần tử. Vậy số cách chọn là $17!$.

b) Ta chia thao tác xếp thỏa mãn yêu cầu thành 4 công đoạn:

Bước 1: Hoán vị 7 quyển sách Toán với nhau.

Bước 2: Hoán vị 6 quyển sách Lí với nhau.

Bước 3: Hoán vị 4  quyển sách Hóa với nhau.

Bước 4: Hoán vị 3 nhóm sách của 3 môn với nhau.

Vậy số cách xếp là: $7!.6!.4!.3!$

II. Bài tập

1.Có hai dãy ghế, mỗi dãy 5 ghế. Xếp 5 nam và 5 nữ vào 2 dãy ghế trên, có bao nhiêu cách nếu:

a) Nam, nữ xếp tùy ý.

b) Nam 1 dãy, nữ 1 dãy.

2. Có 10 học sinh lớp 10 và 10 học sinh lớp 12 xếp vào 4 dãy ghế, mỗi dãy 5 học sinh. Có bao nhiêu cách xếp cách học sinh cùng lớp ngồi nối đuôi nhau. Bao nhiêu cách xếp học sinh ngồi cạch nhau thì khác lớp

3. Xét tập hợp các số tự nhiên

a) Có bao nhiêu số tự nhiên gồm 4 chữ số, đôi một khác nhau và các chữ số đều lớn hơn 5.

b) Tính tổng tất cả các số đó.

Đáp số
  1. a) $10!$, b) $2.5!.5!$
  2. $2(10!)^2$
  3. a) $24$, b) $199980$.

 

 

 

Căn bậc hai

Định nghĩa 1: Căn bậc hai của số $a$ không âm là số $x$ sao cho $x^2=a$.

Ví dụ 1: 

a) Căn bậc hai của $9$ là $3$ và $-3$.

b) Căn bậc hai của $4$ là $2$ và $-2$.

c) Căn bậc hai của $0$ là $0$.

Định nghĩa 2: Căn bậc hai số học của số không âm $a$ là số $x$ không âm thỏa $x^2=a$.

Kí hiệu $x=\sqrt a$.

Ví dụ 2:

a) $\sqrt 4=2$.

b) $\sqrt {36}=6$.

Tính chất 1: Với $a\ge 0$ thì:

  • $x=\sqrt a$ thì $x\ge 0$ và $x^2=a$. Hay $\sqrt a\ge 0$ và $\left (\sqrt a \right )^2=a$.
  • Nếu $x \ge 0$ và $x^2=a$ thì $x= \sqrt a$.

Tính chất 2: Cho $a$, $b$ là các số không âm. Khi đó $a<b \Leftrightarrow \sqrt a<\sqrt b$

Ví dụ 3: So sánh các số:

a) $1$ và $\sqrt 2$.

b) $2$ và $\sqrt 5$.

c) $17$ và $\sqrt {290}$.

Giải

a) Ta có: $1<2 \Leftrightarrow 1<\sqrt 2$.

b) Ta có: $4<5 \Leftrightarrow 2<\sqrt 5$.

c) Ta có: $289<290 \Leftrightarrow 17<\sqrt {290}$.

Ví dụ 4: Tìm các số tự nhiên $x$ thỏa:

a) $\sqrt x <2$.

b) $2<\sqrt x <4$.

Giải

a) Ta có:  Điều kiện $x \geq 0$, từ giả thiết $\sqrt x <2 \Leftrightarrow x<4$.

Do $x$ là số tự nhiên nên $x \in \{0, 1, 2, 3\}$.

b) Ta có: $2< \sqrt x \Leftrightarrow 4<x$ và $\sqrt x <4 \Leftrightarrow x<16$

Vậy $4<x<16$ Do $x$ tự nhiên nên $x$ là các số tự nhiên từ 5 đến 15.

Ví dụ 5. Một hình vuông có diện tích bằng diện tích của hình chữ nhật có chiều rộng và chiều dài lần lượt là $4$ và $9$. So sánh chu vi của hình vuông và hình chữ nhật.

Giải

Gọi $x$ là độ dài cạnh của hình vuông ($x>0$).
Vậy diện tích hình vuông là $S_v=x^2$.
Diện tích hình chữ nhật là $S_{hcn}=4\cdot 9=36$.
Mà $S_v=S_{hcn}\Leftrightarrow x^2=36\Leftrightarrow x=\sqrt{36}=6$ hoặc $x=-\sqrt{36}=-6$. Do $x>0$ nên $x=6$.
Ta có chu vi hình vuông là $P_v=4\cdot x=4\cdot 6=24$.
Ta có chu vi hình chữ nhật là $P_{hcn}=2\cdot (9+4)=2\cdot 13=26$.
Vậy chu vi hình chữ nhật lớn hơn hình vuông.

Định nghĩa 3: Nếu $A$ là một biểu thức đại số, ta gọi $\sqrt A$ là căn thức bậc hai của $A$, $A$ còn được gọi là biểu thức dưới dấu căn.

Biểu thức $\sqrt A$ có nghĩa (xác định) khi và chỉ khi $A \ge 0$.

Ví dụ 6. Tìm điều kiện của $x$ để các biểu thức sau xác định.

a) $\sqrt {2x-1}$.

b) $\sqrt{4-3x}$.

c)$\sqrt {x^2}$.

Giải

a) $2x-1 \ge 0 \Leftrightarrow x \ge \dfrac{1}{2}$

b) $4-3x \ge 0 \Leftrightarrow x \le \dfrac {4}{3}$

c) $x^2 \ge 0$ luôn đúng với mọi $x$

Ví dụ 7. Chứng minh rằng các biểu thức sau xác định với mọi $x$.

a) $\sqrt {x^2+4}$.

b) $\sqrt {x^2-4x+4}$.

c) $\sqrt {2x^2-4x+3}$.

Giải

a) Ta có: $x^2+4 \ge 0$ với mọi $x$ .

Vậy biểu thức xác định với mọi $x$.

b) Ta có: $x^2-4x+4=\left ( x-2 \right ) ^2 \ge 0$ với mọi $x$.

Vậy biểu thức xác định với mọi $x$.

c) Ta có: $2x^2-4x+3=2\left ( x^2-2x+1 \right )+1=2\left (x-1 \right )^2+1 \ge 0$ với mọi $x$.

Vậy biểu thức xác định với mọi $x$.

Bài tập: 

Bài 1: Tính :

a) $\sqrt {81}$.

b) $\sqrt {225}$.

c) $\sqrt {0,49}$.

d) $\sqrt {12^2+5^2}$.

e) $-0,25\sqrt {(-0,4)^2}$.

Bài 2:  So sánh các căn sau:

a) $\sqrt {20}$ và $2\sqrt 5$.

b) $2\sqrt 3$ và $3\sqrt 2$.

c) $-7\sqrt 3$ và $-2\sqrt {10}$.

d) $\sqrt 3 -3\sqrt 2$ và $-4\sqrt 3 +5\sqrt 2$.

e) $2+\sqrt 2$ và $5-\sqrt 3$.

Bài 3:  Tìm điều kiện của $x$ để các biểu thức sau xác định:

a) $\sqrt {3x-2}$.

b) $\sqrt {4x^2-20x+25}$.

c) $\sqrt {\dfrac {-5}{9-5x}}$.

d) $\sqrt {x^2-4}$.

Bài 4: Tìm $x$ không âm, biết:

a) $\sqrt x=3$.

b) $\sqrt x +2=7$.

c) $\sqrt {x+1} -1=4$.

d) $\sqrt {x-1} =\sqrt {13}$.