Đề thi và đáp án kì thi chọn đội tuyển thi Quốc gia trường Phổ thông Năng khiếu năm học 2016 -2017

Đề thi

Ngày thi thứ nhất

Bài 1. Tìm tất cả $a$ để dãy số $(u_n)$ hội tụ, biết $u_1=a$ và $\forall n\in \mathbb{N}^*$ thì:
$$u_{n+1}=\left\{\begin{array}{l}
2u_n-1\ \text{nếu $u_n>0$,}\\
-1\ \text{nếu $-1\le u_n\le 0$,}\\
u_n^2+4u_n+2\ \text{nếu $u_n<-1$.}
\end{array} \right.$$

Bài 2. Tìm số nguyên dương $k$ nhỏ nhất để bất đẳng thức $$x^ky^kz^k(x^3+y^3+z^3)\le 3$$
luôn đúng với mọi số thực dương $x,y,z$ thoả mãn điều kiện $x+y+z=3$.

Bài 3. Cho hàm số $f:\mathbb N^* \rightarrow \mathbb N^*$ thoả mãn hai điều kiện sau:

i)  $f$ là hàm tăng thật sự trên $\mathbb N^*$.

ii) $f(2n)=2f(n)\ \forall n\in \mathbb N^*$.

a) Giả sử $f(1)=3$ và $p>3$ là số nguyên tố. Chứng minh rằng tồn tại số nguyên dương $n$ sao cho $f(n)$ chia hết cho $p$.
b) Cho $q$ là số nguyên tố lẻ. Hãy xây dựng một hàm $f$ thoả mãn các điều kiện của bài toán mà $f(n)$ không chia hết cho $q$ với mọi $n$ nguyên dương.

Bài 4. Cho tam giác $ABC$ có góc $\angle BAC$ tù và $AH\perp BC$ ($H$ nằm trên $BC$). Điểm $M$ thay đổi trên cạnh $AB$. Dựng điểm $N$ sao cho $\Delta BMN\sim \Delta HCA$, với $H$ và $N$ nằm khác phía đối với đường thẳng $AB$.

a) Gọi $CM$ cắt đường tròn ngoại tiếp tam giác $BMN$ tại $K$. Chứng minh rằng $NK$ luôn đi qua một điểm cố định.
b) Gọi $NH$ cắt $AC$ tại $P$. Dựng điểm $Q$ sao cho $\triangle HPQ\sim \Delta HNM$, với $Q$ và $M$ nằm khác phía đối với đường thẳng $NP$. Chứng minh rằng $Q$ luôn thuộc một đường thẳng cố định.

Ngày thi thứ hai

Bài 5. Với mỗi số nguyên dương $n$, tồn tại duy nhất số tự nhiên $a$ thoả mãn điều kiện $a^2\le n<(a+1)^2$. Đặt $\Delta_n=n-a^2$.

a) Tìm giá trị nhỏ nhất của $\Delta_n$ khi $n$ thay đổi và luôn thoả mãn $n=15m^2$ với $m$ là số nguyên dương.
b) Cho $p,q$ là các số nguyên dương và $d=5(4p+3)q^2$. Chứng minh rằng $\Delta_d\ge 5$.

Bài 6.  Với các số nguyên $a,b,c,d$ thoả mãn $1\le a<b<c<d$, ký hiệu:
$$T(a,b,c,d)={{x,y,z,t}\subset \mathbb{N}^*\mid 1\le x<y<z<t,\ x\le a,y\le b,z\le c,t\le d}$$

a) Tình số phần tử của $T(1,4,6,7)$.
b) Cho $a=1$ và $b\ge 4$. Gọi $d_1$ là số phần tử của $T(a,b,c,d)$ chứa $1$ và không chứa $2$; $d_2$ là số phần tử chứa $1,2$ và không chứa $3$; $d_3$ là số phần tử chứa $1,2,3$ và không chứa $4$. Chứng minh rằng $d_1\ge 2d_2-d_3$. Đẳng thức xảy ra khi nào ?

Bài 7. Trong một hệ thống máy tính, một máy tính bất kỳ có kết nối trực tiếp với ít nhất $30\%$ máy tính khác của hệ thống. Hệ thống này có một chương trình cảnh báo và ngăn chặn khá tốt, do đó khi một máy tính bị virus, nó chỉ có đủ thời gian lây cho các máy tính được kết nối trực tiếp với nó. Chứng minh rằng dù vậy, kẻ tấn công vẫn có thể chọn hai máy tính của hệ thống mà nếu thả virus vào hai máy đó, ít nhất $50\%$ máy tính của hệ thống sẽ bị nhiễm virus.

Bài 8. Cho tam giác $ABC$ nhọn. Đường tròn $(I)$ có tâm $I$ thuộc cạnh $BC$ và tiếp xúc với các cạnh $AB,AC$ lần lượt tại $E,F$. Lấy $M,N$ bên trong tứ giác $BCEF$ sao cho $EFNM$ nội tiếp $(I)$ và các đường thẳng $MN,EF,BC$ đồng quy. Gọi $MF$ cắt $NE$ tại $P$, $AP$ cắt $BC$ tại $D$.

a) Chứng minh rằng $A,D,E,F$ cùng thuộc một đường tròn.
b) Lấy trên các đường thẳng $BN,CM$ các điểm $H,K$ sao cho $\angle ACH=\angle ABK=90^\circ$. Gọi $T$ là trung điểm $HK$. Chứng minh rằng $TB=TC$.

Hết

Lời giải

Lời giải

Bài 1. 

  • Nếu $a>1$, bằng quy nạp đơn giản, ta có $u_n>1\ \forall n\in \mathbb N^*$ và
    $$u_n = 2^{n-1}(a-1)+1, \ \forall n\in \mathbb N^*.$$
    Do $a>1$, cho $n\rightarrow +\infty$ thì $u_n\rightarrow +\infty$. Từ đó $(u_n)$ không hội tụ.
  •  Nếu $a=1$ thì $u_n=1\ \forall n\in \mathbb N^*$ hay $(u_n)$ hội tụ về $1$.
  • Nếu $0<a<1$, ta sẽ chứng minh rằng $(u_n)$ có ít nhất một số hạng không dương. Thật vậy, giả sử $u_n>0\ \forall n\in \mathbb N^*$ thì theo trường hợp đầu tiên, ta có:
    $$u_n = 2^{n-1}(a-1)+1\ \forall n\in \mathbb N^*$$
    Do $a>1$, cho $n\rightarrow +\infty$ thì $u_n\rightarrow -\infty$, trái với việc $u_n>0\ \forall n, \in \mathbb N^*$. Từ đó điều giả sử là sai hay phải tồn tại $k\in \mathbb N^*$ sao cho $u_k>0$ và $u_{k+1}\le 0$. Với cách chọn chỉ số $k$ như vậy, ta có:
    $$-1\le 2u_k-1=u_{k+1}\le 0$$
    Khi đó $u_{k+2}=0$. Bằng quy nạp thì $u_n=-1\ \forall n\in \mathbb N^*, n\ge k+2$. Điều này dẫn đến $(u_n)$ hội tụ về $-1$.
  • Nếu $-1\le a\le 0$, từ giả thiết thì $u_2=-1$. Bằng quy nạp thì $u_n=-1\ \forall n\in \mathbb N^*, n\ge 2$ hay $(u_n)$ hội tụ về $-1$.
  • Nếu $-2<a<-1$, ta có:
    $$u_2-u_1=a^2+3a+2=(a+2)(a+1)<0$$
    Khi đó thì $u_2<u_1<-1$. Lại có $u_2=(a+2)^2-2\ge -2$ nên $-2<u_2<-1$. Bằng quy nạp, ta có $(u_n)$ là dãy giảm và $-2<u_n<-1$ nên $(u_n)$ hội tụ.
  • Nếu $-2-\sqrt{3}\le a\le -2$ thì $u_2=a^2-4a+2$ và dễ có được:
    $$-1\le a^2-4a+2\le 1$$
    Theo các trường hợp đã xét, dãy số $(u_n)$ hội tụ.
  • Nếu $a<-2-\sqrt{3}$, bằng vài tính toán, ta có $u^2=a^2-4a+2>1$.\\
    Theo trường hợp đầu tiên, dãy số $(u_n)$ không hội tụ.Vậy dãy số $(u_n)$ hội tụ khi và chỉ khi $-2-\sqrt{3}\le a\le 1$.]

Bài 2. Ta sẽ chứng minh rằng $k=3$ là số nguyên dương nhỏ nhất thoả mãn bài toán. Trước hết, chọn $x=y=\dfrac{3}{4},z=\dfrac{3}{2}$ thì ta phải có:
$$\left(\frac{3}{4}\right)^{2k}\cdot \left(\frac{3}{2}\right)^{k}\left(2\cdot\left(\frac{3}{4}\right)^{3}+\left(\frac{3}{2}\right)^3\right)\le 3$$
Dễ thấy đánh giá trên chỉ đúng nếu $k\ge 3$. Ta đưa về chứng minh rằng:
$$x^3y^3z^3(x^3+y^3+z^3)\le 3.$$
Không mất tính tổng quát, giả sử $x\ge y\ge z$ thì $z \le 1$. Ta có:
$$\begin{aligned} & x^3+y^3=(x+y)^3-3xy(x+y)=(3-z)^3-3xy(x+y) \text{ hay} \\
&(3-z)^3 + z^3 \le \frac{3}{x^3y^3z^3}+3xy(x+y). \end{aligned} $$
Khai triển và thu gọn, bất đẳng thức trở thành:
$$3z^2-9z+9 \le \frac{1}{x^3y^3z^3}+x^2y+xy^2.$$
Theo bất đẳng thức AM-GM, ta có vế phải của bất đẳng thức trên sẽ không nhỏ hơn $\frac{3}{z}$. Từ đây ta chỉ cần chứng minh rằng $$3z^2-9z+9 \le \dfrac{3}{z} \text{ hay } 3(z-1)^3 \le 0, \text{ đúng.}$$
Vậy $k=3$ là hằng số nguyên dương nhỏ nhất thoả mãn bài toán.

Bài 3.

(a) Đặt $A = \\{f(n+1)-f(n)|n \in\mathbb{N^{*}}\\}$.

Vì $f$ là hàm số tăng thực sự trên $\mathbb{N^{*}}$ nên $A\subset \mathbb{N^{*}}$.

Khi đó phải tồn tại $k=\min A$ và tồn tại $n\in \mathbb N^*$ để $k=f(n+1)-f(n)$.

Khi đó:
$$f(2n+2) – f(2n) = 2f(n+1) – 2f(n) = 2k.$$

Lại có $f(2n+2) – f(2n+1),f(2n+1) – f(2n)\ge k$ nên

$$f(2n+2)-f(2n+1)+f(2n+1)-f(2n)\ge 2k.$$
Từ đây ta phải có $f(2n+2) – f(2n+1)=f(2n+1) – f(2n)= k$. Bằng quy nạp theo $m$, ta chứng minh được

$$f(2^mn+t) = 2^mf(n)+tk\ \forall t,m\in \mathbb N, t\le m.$$

Lại có $f(1)=3,f(2)=6$ nên $k \le 3<p$ hay $(k, p)=1$. \medskip

Xét $p$ số nguyên dương sau:
$$f(2^pn), f(2^pn+1), f(2^pn+2),\ldots, f(2^pn+p-1)$$
lập thành một cấp số cộng có công sai $k$ nên là một hệ thặng dư đầy đủ modulo $p$. Từ đó phải tồn tại một số hạng chia hết cho $p$. \medskip

(b) Ta xây dựng một hàm số $f$ với các điều kiện như sau:

$f(1) = 2^a > q (a\in\mathbb{N^{*}},$

$f(2n)=2f(n)\ \forall n\in \mathbb{N^{*}},$

$f(2n+1)=f(2n)+q\ \forall n\in \mathbb{N^{*}}.$

Ta chứng minh rằng hàm số $f$ vừa xây dựng thỏa mãn bài toán. \medskip

Trước hết ta chứng minh rằng $f$ là hàm tăng thực sự, cụ thể là:
$$f(n+1) – f(n) \geq q\ \forall n\in \mathbb{N^{*}}.$$
Với $n = 1$, ta có $f(2)-f(1) = 2.2^a – 2^a = 2^a > q$. Giả sử khẳng định cần chứng minh đúng đến $n=k$. Xét các khả năng sau:

Nếu $k$ là số chẵn, ta có $f(k+1)=f(k)+q$ thỏa mãn yêu cầu.
Nếu $k$ là số lẻ, ta có:
$$f(k+1)= 2f\left(\dfrac{k+1}{2}\right) \geq 2\left(f\left(\dfrac{k-1}{2}\right)+q\right)= f(k-1)+2q.$$
Lại có $f(k)=f(k-1)+q$ nên $f(k+1)\ge f(k)+q$.

Theo nguyên lý quy nạp, ta có $f(n+1) – f(n) \geq q\ \forall n\in \mathbb{N^{*}}$. \medskip

Bây giờ ta chứng minh rằng không tồn tại $n$ để $q \mid f(n)$. Trước hết thì $f(1) = 2^a$ không chia hết cho $q$. Giả sử điều này đúng đến $n=k$. Xét các khả năng sau:

Nếu $k$ chẵn thì $f(k+1)=f(k)+q$ không chia hết cho $q$.
Nếu $k$ lẻ thì $f(k+1)= 2f\left(\dfrac{k+1}{2}\right)$ không chia hết cho $q$.

Theo nguyên lý quy nạp, $f(n)$ không chia hết cho $q$ với mọi $n\in \mathbb{N^{*}}$.
Các điều kiện đã được kiểm tra đầy đủ.

BÀI 4.

(a) Ta sẽ chứng minh rằng $AD\perp BC$. Gọi $X$ là điểm đồng quy của $EF,MN,BC$. Do $AE,AF$ tiếp xúc với $(I)$ nên $EF$ là đường đối cực của $A$ đối với $(I)$. Ta có $X\in EF$ nên theo định lý La Hire, điểm $A$ sẽ nằm trên đường đối cực của $X$ đối với đường tròn $(I)$. \medskip

Lại có $P$ là giao điểm của $EN,FM$ nên $P$ nằm trên đường đối cực của $X$ đối với $(I)$. Vì thế nên $AP$ là đường đối cực của $X$ đối với $(I)$ hay $AP\perp BC$. Do đó $$\angle ADI=\angle AEI=\angle AFI=90^\circ.$$
Vậy $A,D,E,F$ cùng thuộc một đường tròn.

(b) Gọi $S$ là giao điểm của $BN,CM$. Xét hai tam giác $PEF,SBC$ có $PE$ cắt $SB$ tại $N$, $PF$ cắt $SC$ tại $M$, $EF$ cắt $BC$ tại $X$ và $X,M,N$ thẳng hàng. Theo định lý Desargues thì $PS,EB,FC$ đồng quy. Mặt khác $EB$ cắt $FC$ tại $A$ nên $A,P,S$ thẳng hàng, dẫn đến $S\in AD$. \medskip

Tiếp theo ta sẽ chứng minh rằng $\angle BAK=\angle CAH$. Áp dụng định lý Ceva dạng lượng giác cho tam giác $ABC$ với:

Các đường thẳng $AD,BH,CK$ đồng quy:
$$\frac{\sin\angle DAB}{\sin \angle DAC}\cdot \frac{\sin\angle HBC}{\sin \angle HBA}\cdot \frac{\sin\angle KCA}{\sin \angle KCB}=1$$
Các đường thẳng $AH,BH,CH$ đồng quy:
$$\frac{\sin\angle HAB}{\sin \angle HAC}\cdot \frac{\sin\angle HBC}{\sin \angle HBA}\cdot \frac{\sin\angle HCA}{\sin \angle HCB}=1$$
Các đường thẳng $AK,BK,CK$ đồng quy:
$$\frac{\sin\angle KAB}{\sin \angle KAC}\cdot \frac{\sin\angle KBC}{\sin \angle KBA}\cdot \frac{\sin\angle KCA}{\sin \angle KCB}=1$$

Chú ý rằng do các góc vuông và góc bù nhau nên ta có
$$\frac{\sin\angle HAC}{\sin \angle HAB}=\frac{\sin\angle KAB}{\sin \angle KAC}$$
Từ đó sử dụng công thức cộng cho mẫu thức và biến đổi thì:
$$\tan\angle HAC=\tan\angle KAB$$
Dẫn đến $\angle HAC=\angle KAB$. Cuối cùng, ta sẽ chứng minh $TB=TC$.
Gọi $U,V$ lần lượt là trung điểm của các đoạn $AK,AH$. Ta có:
$$UB=\dfrac{AK}{2}=VT,UT=\dfrac{AH}{2}=VC.$$
Đồng thời, ta cũng có:
$$\angle BUT=\angle BUA-\angle AUT=\angle AVC-\angle AVT=\angle TVC$$
Do đó $\Delta BUT=\Delta TVC$ (c.g.c), vậy nên $TB=TC$.

Bài 5. 

(a) Ta cần tìm $\Delta_n$ nhỏ nhất để phương trình $15m^2 – a^2 = \Delta_n$ có nghiệm nguyên dương. Nhận thấy $15 – 3^2 = 6$ nên $\min \Delta_n\le 6$. Ta chứng minh rằng phương trình trên không có nghiệm nguyên dương với $\Delta_n < 6$. \medskip

Ta có $3\mid a^2 + \Delta_n$. Suy ra $3\mid \Delta_n $ hoặc $3\mid \Delta_n+1$. Mặt khác $5\mid a^2 + \Delta_n$ nên $\Delta_n$ chia $5$ chỉ có thể dư $0,1$ hoặc $4$. \medskip

Từ đó nếu tồn tại $n$ để $\Delta_n< 6$ thỏa mãn bài toán thì $\Delta_n = 5$. Giả sử rằng tồn tại $n$ như thế, ta có $15m^2-a^2=5$ hay $5\mid a$. Đặt $a=5s$ $(s\in \mathbb N^*)$, ta có:
$$3m^2 – 5s^2 = 1.$$
Từ đó thì $$3(m^2+s^2)\equiv 1 \pmod{8} \text{ hay } m^2+s^2\equiv 3 \pmod{8}.$$
Điều này vô lý do $m^2$ chia $8$ dư $0,1,4$. Vậy $\Delta_n$ nhỏ nhất là $6.$ \medskip

(b) Ta có $$5(4p+3)q^2-a^2=\Delta_d.$$ Do $a^2$ chia $5$ dư $0,1,4$ nên $\Delta_d$ chia $5$ dư $0,1,4$. Giả sử rằng có bộ số để $\Delta_d<5$. Xét các khả năng sau:

Nếu $\Delta_d=0$ thì $5(4p+3)q^2=a^2$. Xét bộ số $(q,a)$ với $q+a$ nhỏ nhất. Từ phương trình trên, ta có $a^2+q^2\equiv 0$ (mod $4$) hay $a\equiv q\equiv 0$ (mod $2$).\medskip

Đặt $a=2a_1$ và $q=2q_1$ với $a_1,q_1\in \mathbb N^*$ thì bộ số $(q_1,a_1)$ cũng thoả mãn điều kiện $5(4p+3)q_1^2=a_1^2$. Hơn nữa $q_1+a_1<q+a$, mâu thuẫn.
Nếu $\Delta_d = 1$, ta có $a^2 + 1 = 5(4p+3)q^2$. Do $5(4p+3)\equiv 3$ (mod $4$) nên số này tồn tại một ước nguyên tố $r\equiv 3$ (mod $4$).\\
Do đó $a^2+1\equiv 0$ (mod $r$) hay $r\mid 1$, vô lý.
Nếu $\Delta_d = 4$, chứng minh tương tự, ta cũng có điều mâu thuẫn.

Vậy ta phải có $\Delta_d \ge 5$.

Bài 6.

(a) Với $T(1,4,6,7)$, ta có $x \leq 1$ nên $x =1$. Khi đó ta có $2\le y \le 4$ hay $y\in \{2,3,4\}$. Xét các khả năng sau:

Nếu $y = 2$ thì $3\leq z \leq 6$. Với mỗi giá trị của $z$, ta có thể thu được $7-z$ giá trị của $t$ nên ta có 10 bộ số.
Nếu $y=3$, tương tự ta có $6$ bộ số.
Nếu $y= 4$, tương tự ta có $3$ bộ số.

Vậy có tất cả $19$ bộ số trong $T(1,4,6,7)$. \medskip

(b) Đặt các tập hợp sau:
$$\begin{cases}
T_1 = \{(1, y, z, t)\mid 3\le y \le b, y<z\le c, z<t \leq d \}\\\\
T_2 = \{(1, 2, z, t)\mid 4\le z \le c, z<t\le d \}\\\\
T_3 = \{(1, 2, 3, t)\mid 5\le t \le d \}
\end{cases}.$$
Ta có $d_3 = |T_3| = d – 4$ và
$$d_2=\sum_{z=4}^{c}(d-z)=(c-3)d+\frac{(c+4)(c-3)}{2}.$$
Tiếp theo ta tính $d_1=|T_1|$. Vì $b \ge 4$ nên $y \ge 3$. Xét các khả năng sau

Nếu $y=3$ thì $T(1,3,z,t)=d_2$.
Nếu $y=4$ thì $T(1,4,z,t)=\sum_{z=5}^{c} (d-z)=(c-4)d-\dfrac{(c+5)(c-4)}{2}$. \medskip

Từ đó $d_1\ge d_2+(c-4)d-\dfrac{(c+5)(c-4)}{2}$. Do đó, kết hợp với việc tính được giá trị của $d_2$, khi cộng theo vế thì $d_1+d_3 – 2d_2 \ge 0.$

Vậy $d_1\ge 2d_2-d_3$. Đẳng thức xảy ra khi và chỉ khi $b=4$.

Ngoài lời giải khá “đại số” phía trên, có một lời giải khác cho ý sau của bài toán sử dụng song ánh:

Điểm mấu chốt là phân rã $T_1,T_2,T_3$ thành các nhóm thích hợp và thiết lập được đơn ánh giữa chúng. Với các tập $T_1,T_2,T_3$ định nghĩa như trên, ta viết $T_1$ thành $A\cup B\cup C$ có giao đôi một khác rỗng, trong đó
$$\begin{cases}
A = \{(1, 3, 4, t)\mid 5\le t \le d \}\\\\
B = \{(1, 3, z, t)\mid 5\le z \le c, z<t\le d \}\\\\
C = \{(1, y, z, t)\mid 4\le y\le b, y<z\le c, z<t \le d \}
\end{cases}.$$
Dễ kiểm chứng rằng có song ánh từ $A$ vào $T_3$ nên $|A|=|T_3|=d_3$.
Xét $D=\{(1, 4, z, t)\mid 5\le z \le c, z<t\le d \}$. Dễ kiểm chứng rằng $D\subset C$ và có song ánh từ $D$ vào $B$ nên $|D|=|B|$.
Ta có $A\cup B=\{(1, 3, z, t)\mid 4\le z \le c, z<t\le d \}$. Dễ kiểm chứng rằng có song ánh từ $A\cup B$ vào $T_2$ nên $|A\cup B|=|T_2|=d_2$. Chú ý rằng $A\cap B=\varnothing$ nên $|A|+|B|=d_2$ hay $|B|=d_2-d_3$. Từ đó ta có:
$$d_1=|A|+|B|+|C|\ge |A|+|B|+|D|=d_3+2|B|$$
Vậy $d_1\ge d_3+2(d_2-d_3)=2d_2-d_3$. Đẳng thức xảy ra khi và chỉ khi $b=4$.

Bài 7.

Trước hết ta chứng minh bổ đề sau: Xét một tập con $S$ bất kỳ của tập các máy tính $X$, khi đó tồn tại $1$ máy tính của hệ thống kết nối trực tiếp với ít nhất $30\%$ máy tính của $S$. \medskip

Thật vậy, xét các cặp $(s, x)$ với $s\in S,x\in X$ và $(s,x)$ kết nối trực tiếp với nhau. Khi đó, nếu tính theo $s$ thì số cặp như vậy sẽ không ít hơn $\dfrac{3}{10}|S||X|$. Do đó nếu tính theo $x$ thì sẽ phải tồn tại máy tính $x$ kết nối trực tiếp với ít nhất $\dfrac{3}{10}|S|$. \medskip

Quay trở lại bài toán, \medskip

Giả sử hệ thống có $n$ máy tính. Xét máy tính $A$ bất kỳ. Gọi $S$ là tập hợp các máy tính không kết nối trực tiếp với $A$. Nếu $S=\varnothing$ thì kết quả bài toán là hiển nhiên. Nếu $S\ne \varnothing$ thì theo bổ đề, tồn tại máy tính $B$ kết nối trực tiếp với ít nhất $30\%$ máy tính trong $S$. Ta chứng minh hai máy tính $A$ và $B$ thỏa mãn yêu cầu bài toán. \medskip

Thật vậy, giả sử $A$ kết nối trực tiếp với $k$ máy tính khác. Khi đó, theo cách chọn, $A$ và $B$ sẽ kết nối trực tiếp với ít nhất
$$k + 0,3(n-k) = 0,7k + 0,3n \ge 0,7\cdot 0,3n + 0,3n = 0,51n.$$
Từ đây ta có được kết luận của bài toán.

Bài 8.

(a) Ta sẽ chứng minh rằng $AD\perp BC$. Gọi $X$ là điểm đồng quy của $EF,MN,BC$. Do $AE,AF$ tiếp xúc với $(I)$ nên $EF$ là đường đối cực của $A$ đối với $(I)$. Ta có $X\in EF$ nên theo định lý La Hire, điểm $A$ sẽ nằm trên đường đối cực của $X$ đối với đường tròn $(I)$. \medskip

Lại có $P$ là giao điểm của $EN,FM$ nên $P$ nằm trên đường đối cực của $X$ đối với $(I)$. Vì thế nên $AP$ là đường đối cực của $X$ đối với $(I)$ hay $AP\perp BC$. Do đó $$\angle ADI=\angle AEI=\angle AFI=90^\circ.$$
Vậy $A,D,E,F$ cùng thuộc một đường tròn.

(b) Gọi $S$ là giao điểm của $BN,CM$. Xét hai tam giác $PEF,SBC$ có $PE$ cắt $SB$ tại $N$, $PF$ cắt $SC$ tại $M$, $EF$ cắt $BC$ tại $X$ và $X,M,N$ thẳng hàng. Theo định lý Desargues thì $PS,EB,FC$ đồng quy. Mặt khác $EB$ cắt $FC$ tại $A$ nên $A,P,S$ thẳng hàng, dẫn đến $S\in AD$. \medskip

Tiếp theo ta sẽ chứng minh rằng $\angle BAK=\angle CAH$. Áp dụng định lý Ceva dạng lượng giác cho tam giác $ABC$ với:

Các đường thẳng $AD,BH,CK$ đồng quy:
$$\frac{\sin\angle DAB}{\sin \angle DAC}\cdot \frac{\sin\angle HBC}{\sin \angle HBA}\cdot \frac{\sin\angle KCA}{\sin \angle KCB}=1$$
Các đường thẳng $AH,BH,CH$ đồng quy:
$$\frac{\sin\angle HAB}{\sin \angle HAC}\cdot \frac{\sin\angle HBC}{\sin \angle HBA}\cdot \frac{\sin\angle HCA}{\sin \angle HCB}=1$$
Các đường thẳng $AK,BK,CK$ đồng quy:
$$\frac{\sin\angle KAB}{\sin \angle KAC}\cdot \frac{\sin\angle KBC}{\sin \angle KBA}\cdot \frac{\sin\angle KCA}{\sin \angle KCB}=1$$

Chú ý rằng do các góc vuông và góc bù nhau nên ta có
$$\frac{\sin\angle HAC}{\sin \angle HAB}=\frac{\sin\angle KAB}{\sin \angle KAC}$$
Từ đó sử dụng công thức cộng cho mẫu thức và biến đổi thì:
$$\tan\angle HAC=\tan\angle KAB$$
Dẫn đến $\angle HAC=\angle KAB$. Cuối cùng, ta sẽ chứng minh $TB=TC$.

Gọi $U,V$ lần lượt là trung điểm của các đoạn $AK,AH$. Ta có:
$$UB=\dfrac{AK}{2}=VT,UT=\dfrac{AH}{2}=VC.$$
Đồng thời, ta cũng có:
$$\angle BUT=\angle BUA-\angle AUT=\angle AVC-\angle AVT=\angle TVC$$
Do đó $\Delta BUT=\Delta TVC$ (c.g.c), vậy nên $TB=TC$.

Leave a Reply

Your email address will not be published. Required fields are marked *