Đáp án toán PTNK 2014

Bài 1. (Toán chung) Cho hình vuông $ABCD$ có $AB=2a$, $AC$ cắt $BD$ tại $I$. Gọi $T$ là đường tròn ngoại tiếp tam giác $CID$, $BE$ tiếp xúc với $T$ tại $E$ ($E$ khác $C$). $DE$ cắt $AB$ tại $F$.
a. Chứng minh tam giác $ABE$ cân. Tính $AF$ theo $a$.
b. $BE$ cắt $AD$ tại $P$. Chứng minh đường tròn ngoại tiếp tam giác $ABP$ tiếp xúc với
$CD$. Tính $\dfrac{AP}{PD}$
c. $AE$ cắt $T$ tại $M$ ($M$ khác $E$). Tính $AM$ theo $a$.

Gợi ý

a.

  • Gọi $T$ là trung điểm của $CD$, tam giác $CID$ vuông cân tại $I$ nên $T$ là tâm đường tròn ngoại tiếp tam giác $CID$.
  • Ta có $BE$ và $BC$ là hai tiếp tuyến của $T$ nên $BE = BC$, mà $BC = BA$ nên $BE = BA$ hay tam giác $ABE$ cân tại $B$.
  • Ta có $\angle{DEC}=90^0$, suy ra $DF \bot CE$ mà $CE \bot BT$ (t/c hai tiếp tuyến cắt nhau), suy ra $DF //BT$ mà $BF // DT $ nên $BFDT$ là hình bình hành, suy ra $BF = DT = a$. Suy ra $AF = a$

b.

  • Ta có $PE$, $PD$ là tiếp tuyến của $(T)$ nên $PD = PE$. Khi đó $BP = EB + EP = AB+PD=BC+PD$.
  • Gọi $K$ là trung điểm của $BP$, tam giác $APB$ vuông nên $K$ là tâm đường tròn ngoại tiếp tam giác $ABP$ và bán kính đường tròn bằng $\dfrac{1}{2} PB$.
  • Tứ giác $DPBC$ là hình thang vuông có $KT$ là đường trung bình, suy ra $KT = \dfrac{1}{2} (DP + BC) = \dfrac{1}{2} PB$ và $KT//PD$, suy ra $KT \bot CD$.
  • Do đó khoảng cách từ $K$ đến $CD$ bằng bán kính của $(K)$ nên $CD$ tiếp xúc với đường tròn ngoại tiếp tam giác $APB$.
  • Ta có $TP$ và $TB$ là phân giác của $\angle{ETD}$ và $\angle{ETC}$ nên $\angle{BTP}$ vuông. Khi đó $EP. EB=TE^2$, suy ra $EP = \dfrac{TE^2}{BE} =\dfrac{a^2}{2a}=\dfrac{1}{2}a$ Khi đó $PD = PE =\dfrac{1}{2}a$, suy ra $PA =\dfrac{3}{2}a$. Suy ra $\dfrac{AP}{DP}=3$

c.

  • Tứ giác $AEIF$ có $\angle{IEF}=\angle{DCI}=45^0=\angle{IAF}$, suy ra tứ giác $AEIF$ nội tiếp, do đó $\angle{IEA}=\angle{IFA}=90^0$ và $EM$ là phân giác $\angle{CED}$. Khi đó $IM$ là đường kính và $M$ là điểm chính giữa cung $CD$ của $T$. Suy ra $\angle{ICM}=90^0$, $CM=CI=a\sqrt{2}$.
  • Khi đó $AM^2 = AC^2 + CM^2 = 8a^2 +2a^2 =10a^2 \Rightarrow AM = a\sqrt{10}$.

Bài 2. (Toán chuyên) Cho tam giác $ABC$ vuông tại $A$ với các đường phân giác trong $BM, CN$. Chứng minh bất đẳng thức $\dfrac{(MC+MA)(NB+NA)}{MA.NA} \geq 3 + 2\sqrt{2}$.

Gợi ý
  • Áp dụng tính chất đường phân giác ta có:
    $\dfrac{MC}{MA} = \dfrac{BC}{AB}$, suy ra $\dfrac{MC+MA}{MA} = 1 + \dfrac{BC}{AB}$.
  • $\dfrac{NB}{NA} = \dfrac{BC}{AC}$, suy ra $\dfrac{BN+NA}{NA} = 1+ \dfrac{BC}{AC}$.
  • Suy ra:\\ $\dfrac{(MC+MA)(NB+NA)}{MA.NA} = \left(1+\dfrac{BC}{AB}\right)\left(1+\dfrac{BC}{AC}\right) = 1 + \dfrac{BC^2}{AB.AC}+ \dfrac{BC}{AB}+ \dfrac{BC}{AC}$.
  • Ta có $BC^2 = AB^2 + AC^2 \geq 2.AB.AC$, suy ra $\dfrac{BCC^2}{AB.AC} \geq 2$.
  • Và $\dfrac{BA}{AC} +\dfrac{BC}{AC} \geq \sqrt{\dfrac{BC.BC}{AB.AC}} \geq 2\sqrt{2}$.
  • Do đó $\dfrac{(MC+MA)(NB+NA)}{MA.NA} \geq 3 + 2\sqrt{2}$.

Bài 3. (Toán chuyên) Cho điểm C thay đổi trên nửa đường tròn đường kính $AB = 2R$ ($C \neq A, C \neq B$). Gọi $H$ là hình chiếu vuông góc của $C$ lên $AB$; $I$ và $J$ lần lượt là tâm đường tròn nội tiếp các
tam giác $ACH$ và $BCH$. Các đường thẳng $CI, CJ$ cắt $AB$ tại $M, N$.
a. Chứng minh $AN = AC, BM = BC$.
b. Chứng minh 4 điểm $M, N, I, J$ cùng nằm trên một đường tròn và các đường thẳng
$MJ, NI$ và $CH$ đồng quy.
c. Tìm giá trị lớn nhất của MN và giá trị lớn nhất của diện tích tam giác $CMN$ theo $R$.

Gợi ý

a.

  • Ta có $\angle HCB = \angle CAB$ (cùng phụ với $\angle ABC$) và $\angle HCA = \angle CBA$ (cùng phụ với $\angle BAC)$.
  • Ta có $\angle CAN =\angle NAC + \angle ABC = \angle HAN + \angle ACB = \angle CAN$. Suy ra tam giác $CAN$ cân tại $A$ hay $AN = AC$. Chứng minh tương tự ta có $BM = BC$.

b.

  • Tam giác $CAN$ cân tại $A$ có $AI$ là phân giác nên cũng là trung trực, suy ra $IC = IN$, suy ra $\angle INC = \angle ICN = \angle ICH + \angle NCH = \dfrac{1}{2} \angle ACH + \dfrac{1}{2} \angle BCH = 45^o$.
  • Tương tự thì $\angle JMC = 45^o$.
  • Tứ giác $MIJN$ có $\angle JMC = \angle INC = 45^o$ nên là tứ giác nội tiếp, hay $M, N, I, J$ cùng thuộc một đường tròn.
  • Tam giác $INC$ cân có $\angle ICN = 45^o$ nên $\angle CIN = 90^o$, suy ra $CI \bot CM$.
  • Chứng minh tương tự $MJ \bot CN$.
  • Tam giác $CMN$ có $CH, MJ, NI$ là các đường cao nên đồng quy.

c.

  • Đặt $AC = b, BC = a$. Ta có $a^2 + b^2 = BC^2 = 4R^2$.
  • Ta có $AN = AC = b, BM = BC = a$. \\$AM + BN = BC + MN$, suy ra $MN = a+b-BC = a+b-2R$.
  • Ta có $(a+b)^2 \leq 2(a^2+b^2) = 8R^2$. Suy ra $a+b \leq 2 \sqrt{2}R$, suy ra $a+b-2R \leq 2R(\sqrt{2}-1)$.
  • Đẳng thức xảy ra khi $a=b=R\sqrt{2}$.
  • Vậy giá trị lớn nhất của $MN$ bằng $2R(\sqrt{2}-1)$ khi $C$ là điểm chính giữa đường tròn.
    Khi đó $S_{CMN} = \dfrac{1}{2}CH.MN \leq R^2(\sqrt{2}-1)$.
  • Đẳng thức xảy ra khi $C$ là điểm chính giữa đường tròn.

Leave a Reply

Your email address will not be published. Required fields are marked *