Đáp án toán PTNK 2015

Bài 1. (Toán chung) Hình bình hành $ABCD$ có $ \angle ADC =60^0$ và tam giác $ACD$ nhọn. Đường tròn tâm $O$ ngoại tiếp tam giác $ACD$ cắt cạnh $AB$ tại $E$ ($E \ne A$), $AC$ cắt $DE$ tại $I$.
a. Chứng minh tam giác $BCE$ đều và $OI \bot CD$.
b. Gọi $K$ là trung điểm $BD$, $KO$ cắt $DC$ tại $M$. Chứng minh $A$, $D$, $M$, $I$ cùng thuộc một đường tròn.
c. Gọi $J$ là tâm đường tròn ngoại tiếp tam giác $ABC$. Tính $\dfrac{OJ}{DE}$.

Gợi ý

Bài 2. (Toán chuyên) Cho tam giác $ABC (AB < AC)$ có các góc nhọn, nội tiếp trong đường tròn tâm $O$. Gọi $M$ là trung điểm của cạnh $BC$, $E$ là điểm chính giữa của cung nhỏ $BC$, $F$ là điểm đối xứng của $E$ qua $M$.
a. Chứng minh $EB^2 = EF.EO$.
b. Gọi $D$ là giao điểm của $AE$ và $BC$. Chứng minh các điểm $A, D, O, F$ cùng thuộc một đường tròn.
c. Gọi $I$ là tâm đường tròn nội tiếp tam giác $ABC$ và $P$ là điểm thay đổi trên đường tròn ngoại tiếp tam giác $IBC$ sao cho $P, O, F$ không thẳng hàng. Chứng minh rằng tiếp tuyến tại $P$ của đường tròn ngoại tiếp tam giác $POF$ đi qua một điểm cố định.

Gợi ý

a.

  • Ta có $E$ là điểm chính giữa cung BC, suy ra $EB = EC$ và $OE \bot BC$ nên $M, O, E$ thẳng hàng.
  • Vẽ đường kính $EK$. Ta có $EM.EK = EB^2$.
  • Mặt khác $EF = 2EM, EO = \dfrac{1}{2}EK$. Do đó $EF.EO = EM.EK = EB^2$. (1)

b.

  • Ta có $\angle EBC = \angle EAC = \angle EAB$. Suy ra $\Delta EAB \sim \Delta EBD$. Suy ra $EB^2 + ED.EA$ (2).
  • Từ (1) và (2) ta có: $EA.ED = EO.EFF$. Suy ra tứ giác $OFDA$ nội tiếp.

c.

  • Ta có $\angle EIB = \angle EAB + \angle ABI = \dfrac{1}{2}(\angle A + \angle B) = \angle EBC + \angle CBI = \angle EBI$, suy ra $EB = EI = EC$. Vậy $E$ là tâm đường tròn ngoại tiếp tam giác $BIC$. Do đó $EP = EB$. Ta có $EP^2 = EB^2 = EO.EF$.
  • Suy ra $\Delta EPF \sim \angle EOP$. Suy ra $\angle EPF = \angle FOP$.
  • Hơn nữa, do $O,F$ cùng phía đối với $E$ nên $PO, PF$ cùng phía đối với $PE$.
  • Vẽ tia tiếp tuyến $Px$($PF, PO$ cùng phía đối với $Px$)của đường tròn ngoại tiếp tam giác $POF$. Khi đó $\angle xPF = \angle FOP = \angle EPx$. Suy ra $Px$ và $PE$ trùng nhau. Vậy $Px$ luôn qua điểm $E$ cố định.

 

Leave a Reply

Your email address will not be published. Required fields are marked *