Bài 1. Đặt $t=a+b+c$ ta có $a(1-a) \geq 0, b(1-b) \geq 0, c(1-c) \geq$, suy ra $a+b+c \geq$ $a^2+b^2+c^2=1$, và $(a+b+c)^2 \leq 3\left(a^2+b^2+c^2\right)=3$, suy ra $a+b+c \leq \sqrt{3}$ Ta có $1=(a+b+c)^2-2(a b+b c+a c) \Rightarrow a b+b c+c a=\frac{t^2-1}{2}$.
Do đó $P=\frac{t^2-1}{2}-2 t=\frac{1}{2} t^2-2 t-\frac{1}{2}$ với $1 \leq t \leq \sqrt{3}$.
Khảo sát hàm bậc hai trong đoạn ta có $\max P=-2$ khi $t=1$ và $\min P=1-2 \sqrt{3}$.
Vậy $\max P=-2$ khi $a=1, b=c=0$ và min $P=1-2 \sqrt{3}$ khi $a=b=c=\frac{1}{\sqrt{3}}$.
Bài 2. Do đó $f$ là đơn ánh, $\operatorname{Im} f$ là một tập con có $2 k+1$ phần tử của $A$, mặt khác $f(k+1)$ là giá trị lớn nhất nên $\operatorname{Im} f$ có giá trị lớn nhất khác $2 n-2$.
Ta đếm số tập con có $2 k+1$ phần tử của $A$ mà phần tử lớn nhất khác $2 n-2$. Số tập con có $2 k+1$ của $A$ là $C_{2 n}^{2 k+1}$, số tập con có $2 k+1$ mà có phần tử lớn nhất $2 n-2$ là bằng với số tập con có $2 k$ phần tử của ${1,2, \cdots 2 k-3}$, là $C_{2 n-3}^{2 k}$.
Do đó theo nguyên lí bù trừ số tập con có $2 k+1$ của tập $A$ mà phần tử lớn nhất khác $2 n-2$ là $\left(C_{2 n}^{2 k+1}-C_{2 n-3}^{2 k}\right)$.
Tiếp theo ta đếm số đơn ánh từ ${1,2, \cdots, 2 k+1}$ tới $A^{\prime}=\left\{a_1, a_2, \cdots, a_{2 k+1}\right\}$ thỏa đề bài, ta có $f(k+1)=a_{2 k+1}$, nên số đơn ánh bằng số cách chọn $k$ phần tử từ $A^{\prime}$ nên bằng $C_{2 k}^k$.
Vậy số đơn ánh thỏa đề bài $C_{2 k}^k\left(C_{2 n}^{2 k+1}-C_{2 n-3}^{2 k}\right)$
Bài 3. Ta có $a(n)=\frac{n(n+1)}{2}, b(n)=\frac{n(n+1)(2 n+1)}{6}$
Khi đó $P(n)=2(n+1) a(n)+3 b(n)-1=\frac{n(n+1)(4 n+3)}{2}-1$.
Giả sử $P(n)$ là số chính phương ta có $n(n+1)(4 n+3)=2\left(x^2+1\right)$, ta có $n(n+1)(4 n+3)$ luôn có ước nguyên tố dạng $p=4 k+3$, suy ra $p \mid 2\left(x^2+1\right)$ suy ra $p|x, p| 1$, vô lí! Vậy không tồn tại $n$ để $P(n)$ là số chính phương.
Bài 4.
Ta tính được $\angle A=\frac{5 \pi}{8}, \angle B=\frac{\pi}{4}, \angle C=\frac{\pi}{8}$. Vẽ đường cao $A N, N$ thuộc $B C$.
Ta có $\frac{B N}{N C}=\frac{A N}{N C}=\frac{\sin C}{\cos C}$ và $\frac{A D}{C D}=\frac{A B}{B C}=\frac{\sin C}{\sin 5 C}, \sin 5 C=\cos C$, suy ra $\frac{B N}{N C}=\frac{A D}{C D}$, do đó $A N, B D, C M$ đồng quy tại $I$ và $D N | A B$.
Ta có $\angle B A N=\angle A N D=\angle A C K=2 \angle A C K$, suy ra $A C K$ cân và $N$ là trung điểm $A K$, từ đó tam giác $A B K$ vuông cân.
Khi đó $\angle F N K=\angle A C K=45^{\circ}=\angle A K B$ và $\angle A N M=45^{\circ}$, do đó $M, N, F$ thẳng hàng và $M F | B K$.