ĐỀ THI THỬ VÀO LỚP 10 TRUNG TÂM STAR EDUCATION TOÁN CHUYÊN – 2020

Bài 1. (1,5 điểm )

a) Cho $f(x)=x^{2}-a x+a^{2}-4$, trong đó $a$ là tham số. Tìm giá trị của $a$, sao cho phương trình $f(x)=0$ có hai nghiệm thực $x_{1}$ và $x_{2}$ sao cho $\left|x_{1}^{3}-x_{2}^{3}\right| \leq 4$.

b) Giải phương trình: $\frac{1+3 \sqrt{x}}{4 x+\sqrt{2+x}}-1=0$.

Bài 2. (1,5 điểm ) Cho $x, y>0$ thỏa mãn $2 y>x$ và $11(\sqrt{x}+\sqrt{y})+4 \sqrt{x y}=26$

a) Tìm giá trị nhỏ nhất của biểu thức: $T=11(x+y)+\frac{1}{x}+\frac{1}{y}+2021$

b) Chứng minh rằng: $\frac{1}{x^{3}(2 y-x)}+x^{2}+y^{2} \geq 3$

Bài 3. (1,0 điểm) Cho hàm số bậc hai $f(x)=a x^{2}+b x+c,(a \neq 0)$. Biết rằng phương trình $f(x)=x$ vô nghiệm. Chứng minh rằng phương trình $f(f(x))=x$ cũng vô nghiệm.

Bài 4. $\left(1,5\right.$ điểm) Cho $x, y \in N$ thỏa mãn: $3^{x}+171=y^{2}$.

a) Chứng minh rằng: $x: 2$.

b) Tìm các cặp số $x, y$ thỏa mãn phương trình.

Bài 5. (3,0 điểm) Cho đường tròn $(O)$ và điểm $P$ nằm ngoài đường tròn. Vẽ các tiếp tuyến $P A, P B$ đến $(O)$ với $A, B$ là các tiếp điểm. $C$ là điểm trên cung nhỏ $A B$, tiếp tuyến tại $C$ cắt $P A, P B$ và $P O$ lần lượt tại $D, E, F$.

a) Gọi $H$ là giao điểm của đường tròn ngoại tiếp tam giác $P D E$ và $P O$, kéo dài $H C$ cắt đường tròn $P D E$ tại điểm $G$. Chứng minh rằng tứ giác $P F C G$ nội tiếp.

b) Gọi $I$ là tâm đường tròn nội tiếp tam giác $\triangle P D E$. Chứng minh rằng tứ giác $D O E I$ nội tiếp.

c) Chứng minh rằng $H$ là tâm đường tròn ngoại tiếp tam giác $\triangle D O E$.

d) Chứng minh rằng đường tròn ngoại tiếp các tam giác $P A B, P D E$ và $P C F$ cùng đi qua một điểm khác $P$.

Bài 6. (1,5 điểm) Trên mặt phẳng cho 17 điểm, trong đó không có ba điểm nào thẳng hàng. Qua hai điểm bất kì ta vẽ được một đoạn thẳng và trên đoạn thẳng đó ghi một số nguyên dương (các số ghi trên các đoạn thẳng khác nhau là các số nguyên dương khác nhau). Ta tô màu mỗi đoạn thẳng bằng một trong ba màu: đỏ, xanh và vàng.

a) Chứng minh rằng tồn tại một tam giác có ba cạnh cùng màu.

b) Chứng minh rằng tồn tại một tam giác có các cạnh là các đoạn thẳng đã vẽ và tổng các số ghi trên các cạnh của tam giác đó là hợp số.

LỜI GIẢI

 

Bài 1. a) Để phương trình có hai nghiệm thực $x_{1}$ và $x_{2}$ thì $\Delta=a^{2}-4\left(a^{2}-4\right)=16-3 a^{2} \geq 0$. Theo định lý Vietè ta có: $\left\{\begin{array}{l}x_{1}+x_{2}=a \\ x_{1} x_{2}=a^{2}-4\end{array}\right.$, do đó:

$\left|x_{1}^{3}-x_{2}^{3}\right|=\left|x_{1}-x_{2}\right|\left[\left(x_{1}+x_{2}\right)^{2}-x_{1} x_{2}\right]=\left|x_{1}-x_{2}\right|\left[a^{2}-a^{2}+4\right]=4\left|x_{1}-x_{2}\right| \leq 4$

Lại có:

$0 \leq\left|x_{1}-x_{2}\right|=\sqrt{\left(x_{1}+x_{2}\right)^{2}-4 x_{1} x_{2}}=\sqrt{a^{2}-4\left(a^{2}-4\right)}=\sqrt{16-3 a^{2}} \leq 1$

Vì vậy, ta có: $a \in\left[-\frac{4 \sqrt{3}}{3},-\sqrt{5}\right] \cup\left[\sqrt{5} ; \frac{4 \sqrt{3}}{3}\right]$.

b) $Đ K: x \geq 0$. Phương trình đã cho tương đương:

$1+3 \sqrt{x}-4 x-\sqrt{2+x}=0 $

$\Leftrightarrow 3 \sqrt{x}-\sqrt{2+x}=4 x-1 $

$\Leftrightarrow(8 x-2)=(4 x-1)(3 \sqrt{x}+\sqrt{2+x}) $

$\Leftrightarrow(4 x-1)[(3 \sqrt{x}+\sqrt{2+x})-2]=0 $

$\Leftrightarrow\left[\begin{array}{l}4 x-1=0 \\3 \sqrt{x}+\sqrt{2+x}=2\end{array}\right.$

Từ đó ta tính được hai nghiệm của phương trình là: $S=[\frac{1}{4} ; \frac{7-3 \sqrt{5}}{8}]$.

Bài 2. Áp dụng bất đẳng thức Cauchy ta có:

$11\left(\frac{x+y+2}{2}\right)+2(x+y) \geq 11 \sqrt{2(x+y)}+2(x+y) \geq 11(\sqrt{x}+\sqrt{y})+4 \sqrt{x y}=26$

Do đó: $\frac{15}{2}(x+y) \geq 15 \Leftrightarrow x+y \geq 2$

a) Áp dụng bất đẳng thức Cauchy ta có:

$T=11(x+y)+\frac{1}{x}+\frac{1}{y}+2021 \geq 11(x+y)+\frac{4}{x+y}+2021 $

$=(x+y)+\frac{4}{x+y}+10(x+y)+2021 $

$\geq 2 \sqrt{(x+y) \cdot \frac{4}{(x+y)}}+10.2+2021=2045$

b) Áp dụng bất đẳng thức Cauchy ta có:

$\frac{1}{x^{3}(2 y-x)}+x^{2}+y^{2}=\frac{1}{x^{2}\left(2 x y-x^{2}\right)}+x^{2}+y^{2} \geq \frac{1}{x^{2}\left(2 x y-x^{2}\right)}+2 x y $

$=\frac{1}{x^{2}\left(2 x y-x^{2}\right)}+x^{2}+\left(2 x y-x^{2}\right) \geq 3 \sqrt[3]{\frac{1}{x^{2}\left(2 x y-x^{2}\right)} \cdot x^{2} \cdot\left(2 x y-x^{2}\right)}=3$

Bài 3. Do phương trình $f(x)=x \Leftrightarrow a x^{2}+b x+c=x \Leftrightarrow a x^{2}+(b-1) x+c=0,(a \neq 0)$ vô nghiệm nên ta có:

$\Delta=(b-1)^{2}-4 a c<0 \Leftrightarrow(b-1)^{2}<4 a c$

Giả sử phương trình: $f(f(x))=x$ có nghiệm, gọi nghiệm đó là $x_{0}$, ta có:

$f\left(f\left(x_{0}\right)\right)=x_{0} \Leftrightarrow f\left(f\left(x_{0}\right)\right)-f\left(x_{0}\right)+\left[f\left(x_{0}\right)-x_{0}\right]=0 $

$\Leftrightarrow a\left[f\left(x_{0}\right)\right]^{2}+b f\left(x_{0}\right)-a x_{0}^{2}-b x_{0}+\left[f\left(x_{0}\right)-x_{0}\right]=0 $

$\Leftrightarrow a\left[f\left(x_{0}\right)-x_{0}\right]\left[f\left(x_{0}\right)+x_{0}\right]+b\left[f\left(x_{0}\right)-x_{0}\right]+\left[f\left(x_{0}\right)-x_{0}\right]=0 $

$\Leftrightarrow\left[f\left(x_{0}\right)-x_{0}\right]\left[a\left(f\left(x_{0}\right)+x_{0}\right)+b+1\right]=0 $

$\Leftrightarrow a\left(f\left(x_{0}\right)+x_{0}\right)+b+1=0 $

$\Leftrightarrow a^{2} x_{0}^{2}+a(b+1) x_{0}+a c+b+1=0$

Do đó phương trình: $a^{2} x^{2}+a(b+1) x+a c+b+1=0$ có nghiệm nên ta có:

$\Delta=a^{2}(b+1)^{2}-4 a^{2}(a c+b+1) \geq 0$

Từ đó dẫn đến

$(b+1)^{2}-4(a c+b+1) \geq 0 \Leftrightarrow 4 a c \leq b^{2}-2 b-3$

Suy ra: $b^{2}-2 b-3>(b-1)^{2} \Leftrightarrow b^{2}-2 b-3>b^{2}-2 b+1 \Leftrightarrow-4>0$ (vô lí). Do đó ta có điều phải chứng minh.

Bài 4. a) Lần lượt xét $x=0,1,2,3$ đều không nhận được $x=1,2,3$ là nghiệm. Do đó ta xét $x \geq 4$ và $x, y$ là hai số nguyên dương.

Vế trái chia hết cho 9 nên vế phải chia hết cho 9 , đặt: $y=3 z,\left(z \in N^{*}\right)$, ta có phương trình: $3^{x-2}+19=z^{2}$.

Nhận xét: $3 \equiv-1(\bmod 4)$ nên $3^{n} \equiv 1(\bmod 4)$, nếu $n$ chẵn và $3^{n} \equiv-1(\bmod 4)$, nếu $n$ lẻ.

Giả sử: Nếu $x$ là số lẻ thì $3^{x-2}+19 \equiv 18 \equiv 2(\bmod 4)$. Do một số chính phương chia 4 chỉ dư 0 hoặc 1 (vô lí).

b) Do đó khi $x$ là số chẵn thì $3^{x-2}+19 \equiv 20 \equiv 0(\bmod 4)$, suy ra $z$ là số chẳn. Đặt: $x-2=2 k,\left(k \in N^{*}\right)$. Ta có phương trình:

$3^{2 k}+19=z^{2} \Leftrightarrow z^{2}-3^{2 k}=19 \Leftrightarrow\left(z-3^{k}\right)\left(z+3^{k}\right)=19 $

$\Leftrightarrow\left\{\begin{array}{l}z+3^{k}=19 \\ z-3^{k}=1\end{array} \Leftrightarrow\left\{\begin{array}{c}z=10 \\ 3^{k}=9\end{array} \Leftrightarrow\left\{\begin{array}{l}z=10 \\ k=2\end{array} \Leftrightarrow\left\{\begin{array}{l}x=6 \\ y=30\end{array}\right.\right.\right.\right.$

Thử lại với $x=6, y=30$ (nhận). Do đó nghiệm duy nhất của phương trình là $(x ; y)=(6 ; 30)$.

Bài 5. a) Ta có: $\angle D P H=\angle E P H$ (tính chất hai tiếp tuyến cắt nhau) nên $\angle D G H=\angle E G H$, do đó hai cung $H D$ và cung $H E$ bằng nhau. Từ đó:

$\angle H C F=\angle H G E+\angle D E G=\angle H P D+\angle D P G=\angle H P G $

Dẫn đến, tứ giác $C F P G$ nội tiếp.

b) Ta có: $\angle O D I+\angle O E I=90^{\circ}+90^{\circ}=180^{\circ}$ nên tứ giác $D O E I$ nội tiếp.

c) Xét đường tròn $(P D E)$, với $H$ là điểm chính giữa cung $D E$ và $I$ là tâm đường tròn nội tiếp tam giác $\triangle P D E$, tính chất quen thuộc $H D=H I=H E$, do đó ta có $H$ là tâm đường tròn ngoại tiếp tứ giác $D O E I$.

Từ đó, $H$ là tâm đường tròn ngoại tiếp tam giác $\triangle D O E$.

d) Từ câu c) ta có $H O=H D=H I-H E$, lại có $\triangle H D C \sim \triangle H G D(\mathrm{~g}-\mathrm{g})$ nên $H D^{2}=H C . H G$, do đó $H O^{2}=H C . H G$. Suy ra $\triangle H O C \backsim \triangle H G O(\mathrm{c}-\mathrm{g}-\mathrm{c})$ nên $\angle H G O=\angle H O C$.

Lại có, $\angle H G P=\angle H F C$ nên $\angle O G P=\angle H G O+\angle H G P=\angle H O C+\angle H F C=90^{\circ}$, suy ra $A, G, P, B, O$ cùng thuộc một đường tròn.

Bài 6. a) Gọi $A$ là một điểm đã cho, nối $A$ với 16 điểm còn lại được 16 đoạn thẳng và chúng được tô bởi ba màu, Theo nguyên lý Dirichlet tồn tại ít nhất 6 đoạn thẳng có cùng một màu. Giả sử đó là các đoạn thẳng $A B, A C, A D, A E, A F, A G$ có cùng màu đỏ. Xét các đoạn thẳng nối từng cặp điểm trong 6 điểm $B, C, D, E, F, G$. Xảy ra các trường hợp sau:

– Trường hợp 1. Tồn tại một đoạn thẳng có màu đỏ, chẳng hạn $B C$, thì tam giác $\triangle A B C$ có ba cạnh cùng là màu đỏ, khẳng định đúng.

– Trường hợp 2. Tất cả các đoạn thẳng nối $B, C, D, E, F, G$ chỉ có màu xanh hoặc vàng. Ta xét 5 đoạn $B C, B D, B E, B F, B G$ được tô bởi hai màu thì theo nguyên lý Dirichlet tồn tại ít nhất 3 đoạn thẳng có cùng một màu. Giả sử là $B C, B D, B E$ cùng có màu xanh.

  • Nếu trong ba đoạn thẳng $C D, C E, D E$ có một đoạn tô màu xanh, chẳng hạn là $C D$ thì tam giác $\triangle B C D$ có ba cạnh cùng màu xanh, khẳng định đúng.

  • Nếu trong ba đoạn thẳng $C D, C E, D E$ không có một đoạn nào màu xanh, thì tam giác $\triangle C D E$ có ba cạnh cùng màu vàng, khẳng định đúng.

Vậy tồn tại tam giác có ba cạnh cùng một màu.

b) Chia mỗi số nguyên dương ghi trên các đoạn thẳng cho 3 ta được các số dư là $0,1,2$. Ta tô màu đoạn thẳng ghi số dư $0,1,2$ theo thứ tự úng với màu đỏ, xanh, vàng. Theo kết quả trên tồn tại một tam giác có ba cạnh cùng một màu, tức là ba số đó có cùng số dư $r$, chẳng hạn là $3 k+r, 3 h+r, 3 m+r$. Lúc đó tổng ba số trên ba cạnh của tam giác đó bằng:

$3 k+r+3 h+r+3 m+r=3(k+h+m+r) \vdots 3$

mà $3 k+r+3 h+r+3 m+r>3$ do đó $3 k+r+3 h+r+3 m+r$ là hợp số.

 

 

 

 

 

 

 

 

 

 

Leave a Reply

Your email address will not be published. Required fields are marked *