Đề thi thử vào lớp chuyên toán Star Education năm 2021 – Lần 2

Thời gian làm bài 150 phút.

Bài 1. (2,0 diểm)
a) Tìm $m$ để phương trình $\frac{x^{2}-(3 m+1) x+2 m^{2}+2 m}{x}=0$ có hai nghiệm $x_{1}, x_{2}$ phân biệt thỏa $\left(\sqrt{x_{1}-m}+\sqrt{x_{2}-m}\right)^{4}=(2 m-1)^{2}$
b) Giải hệ phương trình $\left\{\begin{array}{l}\sqrt{x^{2}-y}=z-1 \\ \sqrt{y^{2}-z}=x-1 \\ \sqrt{z^{2}-x}=y-1\end{array}\right.$
Bài 2. (1,5 diểm) Cho các số $x, y, z$ nguyên dương thỏa $x>y>z$.
a) Cho $(x ; y ; z)$ thỏa $y z+x(x+y+z)=2021$.
Tìm giá trị nhỏ nhất của biểu thức $A=(x-y)^{2}+(x-z)^{2}+(y-z)^{2}$
b) Chứng minh rằng nếu $y$ không nhỏ hơn trung bình cộng của $x$ và $z$ thì
$$
(x+y+z)(x y+y z+x z-2) \geq 9 x y z
$$
Bài 3. (2,0 diềm) Cho $x, y$ là các số nguyên không đồng thời bằng 0 sao cho $x^{3}+y$ và $x+y^{3}$ chia hết cho $x^{2}+y^{2}$.
a) Tìm $x, y$ nếu $x y=0$.
b) Chứng minh rằng $x y \neq 0$ thì $x, y$ là nguyên tố cùng nhau.
c) Tìm tất cả cặp số nguyên $(x, y)$ thỏa đề bài.
Bài 4. (3,0 diểm) Cho tam giác $A B C$ nhọn, có trực tâm $H ; A H$ cắt $B C$ tại $D$. Trên tia đối tia $D H$ lấy điểm $M$. Đường tròn ngoại tiếp tam giác $M B H$ cắt $A B$ tại $E$ cắt $B C$ tại $K$; đường tròn ngoại tiếp tam giác $M C H$ cắt $A C$ tại $F$ và $B C$ tại $L$.
a) Chứng minh $B E F C$ nội tiếp và $\angle E M A=\angle F M A$.
b) $M E$ cắt $C H$ tại $P, M F$ cắt $B H$ tại $Q$. Chứng minh $P Q$ vuông góc $O A$ với $O$ là tâm đường tròn ngoại tiếp tam giác $A B C$.
c) $H K$ cắt $A C$ tại $U, H L$ cắt $A B$ tại $V$. Chứng minh $U V$ luôn song song với một đường thẳng cố định khi $M$ thay đổi.

Bài 5. (1,5 diểm) Trong một hội nghị Toán quốc tế có n người, mỗi người trong họ có thể nói được nhiều nhất 3 ngôn ngữ. Trong 3 người bất kì thì luôn có 2 người có thể nói chung một ngôn ngữ.
a) Cho $n \geq 9$, chứng minh răng cố một ngôn ngữ được nói bởi ít nhất 3 người.
b) Nếu $n=8$, diều kết luận của câu a) còn đúng không? Tại sao?

Đáp án có sau một tuần

 

Leave a Reply

Your email address will not be published. Required fields are marked *