$\Delta = m^2 + 8m^2 =9m^2$, suy ra phương trình có nghiệm $x=2m$, $x=-m$
TH1: $x_1=2m$, $x_2 = -m$ ta có $4m^2=7m^2 +2 $ (VN)
TH2: $x_1=-m$, $x_2 =2m$ ta có $9m^2 = 7m^2 +2 \Leftrightarrow m=1, m=-1$
c) Điều kiện $x \ge 3$, phương trình $x^2 -mx – 2m^2 =0$ luôn có nghiệm $x_1$, $x_2$ và $x_1x_2 = -2m^2 \le 0$ nên không thể có hai nghiệm đều dương. Suy ra phương trình $(1)$ có nhiều nhất là hai nghiệm.
Bài 2.
a) Giải phương trình $\sqrt{x+2}+\sqrt{5-2x}=1+\sqrt{6-x}$.
b) Giải hệ phương trình $\left\{\begin{array}{l} x^2+y^2=2y+1\\ xy=x+1 \end{array} \right.$
a) Rút gọn biểu thức $$R = \left(\dfrac{x-1}{\sqrt{x}-1}+\dfrac{\sqrt{x^3}-1}{1-x}\right):\left(\dfrac{(\sqrt{x}-1)^2+\sqrt{x}}{\sqrt{x}+1}\right)$$ với $x \geq 0, x \neq 1$.
b) Chứng minh $R < 1$.
Giải
a) $R = \left(\dfrac{x-1}{\sqrt{x}-1}+\dfrac{\sqrt{x^3}-1}{1-x}\right):\left(\dfrac{(\sqrt{x}-1)^2+\sqrt{x}}{\sqrt{x}+1}\right)$
b) $R<1 \Leftrightarrow \dfrac{\sqrt{x}}{x-\sqrt{x}+1}<1 \Leftrightarrow \sqrt{x}< x-\sqrt{x}+1 \Leftrightarrow \left( \sqrt{x}-1 \right) ^2 >0$ (đúng vì $x \ne 1$).
Bài 4. Một tổ mua nguyên vật liệu để thuyết trình tại lớp hết 72.000 đồng, cho phí được chia đều cho mỗi thành viên của tổ. Nếu tổ giảm bớt 2 người thì mỗi người phải đóng thêm 3000 đồng. Hỏi số người của tổ?
Giải
Gọi số tổ viên là $x$ $(x>2)$, số tiền mỗi tổ đóng lúc đầu là $y$. Ta có hệ phương trình:
Vậy 5 điểm $A$, $H$, $I$, $O$, $C$ cùng thuộc đường tròn.
Gọi $D$ là điểm chính giữa cung $AC$.
Ta có $OAD$ và $OCD$ đều, suy ra $DA = DC = DO$, hay $D$ là tâm đường tròn ngoại tiếp, và bán kính $DO =DA=\dfrac{AB}{\sqrt{2}}= \dfrac{a\sqrt{2}}{\sqrt{3}}$