b) Lấy $(1) + 2 \times (2)$, ta có phương trình $y^2 = 5x^2 \Leftrightarrow \left[ \begin{array}{l} y=x\sqrt{5} \\ y=-x\sqrt{5} \end{array}\right. $
Với $y=x\sqrt{5}$, thế vào $(1)$ ta có $x^2 – 2\sqrt{5}x^2 = 1-2\sqrt{5} \Leftrightarrow \left[ \begin{array}{l} x=1 \Rightarrow y=\sqrt{5} \\ x=-1 \Rightarrow y=-\sqrt{5} \end{array}\right. $
Với $y=-x\sqrt{5}$, thế vào $(1)$ ta có $x^2 + 2\sqrt{5}x^2 = 1-2\sqrt{5} \Leftrightarrow x^2 = \dfrac{1-2\sqrt{5}}{1+2\sqrt{5}}$ (VN)
Bài 4. Tổng kết học kì $2$, trường trung học cơ sở $N$ có $60$ học sinh không đạt học sinh giỏi, trong đó có $6$ em từng đạt học sinh giỏi học kì $1$, số học sinh giỏi của học kì $2$ bằng $\dfrac{40}{37}$ số học sinh giỏi của học kì $1$ và có $8 \% $ số học sinh của trường không đạt học sinh giỏi học kì $1$ nhưng đạt học sinh giỏi học kì $2$. Tìm số học sinh giỏi học kì $2$ của trường biết rằng số học sinh của trường không thay đổi trong suốt năm học.
Giải
Gọi $x$ là số học sinh giỏi học kỳ $2$ của trường ($x$ nguyên dương).
Số học sinh của trường là $x + 60$ (học sinh)
Số học sinh giỏi của học kì $1$ là $\dfrac{37}{40}x$ (học sinh)
Ta có phương trình $\dfrac{8}{100}(x+60) -6= x-\dfrac{37}{40}x \Leftrightarrow x=240$.
Bài 5. Cho hình thang $ABCD$ ($AB // CD$) nội tiếp đường tròn $(C)$ tâm $O$, bán kính $R$ và có $\angle{DAB}=105^\circ$, $\angle{ACD}=30^\circ$.
a) Tính $\dfrac{DB}{DC}$ và tính $AB$ theo $R$.
b) Tiếp tuyến của $(C)$ tại $B$ cắt các đường thẳng $DO$, $DA$ lần lượt tại $M$, $N$. Tính $\dfrac{MN}{MD}$.
c) Gọi $E$ là trung điểm của $AB$, tia $DE$ cắt $MN$ tại $F$. Tính $\dfrac{BF}{BC}$.
Giải
a) Ta có $\angle{DAB}+ \angle{BCD}=180^\circ \Rightarrow \angle{BCD}=75^\circ $ $(1)$ $\Rightarrow \angle{ABC}= 105^\circ $
Từ $(1)$ và $(2)$ ta có $\angle{DBC} = \angle{DCB}$ ($=75^\circ $), nên $\triangle DCB$ cân tại $D$, suy ra $\dfrac{DB}{DC}=1$
Ta có $\angle{ACB}=75^\circ -30^\circ =45^\circ \Rightarrow \angle{AOB}=2\angle{ACB} =90^\circ $, tam giác $AOB$ vuông cân tại $O$ nên $AB = AO\sqrt{2}=R\sqrt{2}$
b) Ta có $\angle{AOD}=2\angle{ACD}=60^\circ \Rightarrow \Delta OAD$ đều $\Rightarrow \angle{ODA}=60^\circ $ hay $\angle{NDM}=60^\circ $
$\triangle DBC$ cân, nên $DO$ vừa là trung trực của $BC$ vừa là phân giác góc $\angle{BDC}$