Đáp án thi chọn Đội Tuyển thi Quốc Gia của trường PTNK năm học 2015 – 2016

Ngày thứ 1

Bài 1. Cho tập hợp
$$
A=\{n \in \mathbb{N} \mid 1 \leq n \leq 2015,(n, 2016)=1\}
$$
Hỏi có bao nhiêu số nguyên $a \in A$ sao cho tồn tại số nguyên b mà $a+2016 b$ là số chính phương?

Bài 2. Cho $a, b, c, d$ là các số thực thỏa mãn điều kiện
$$
a^{2} \leq 1, a^{2}+b^{2} \leq 5, a^{2}+b^{2}+c^{2} \leq 14, a^{2}+b^{2}+c^{2}+d^{2} \leq 30
$$
1. Chúng minh rằng $a+b+c+d \leq 10$.
2. Chứng minh rằng $a d+b c \leq 10$.

Bài 3. Tìm tất cả các hàm số $f: \mathbb{R} \rightarrow \mathbb{R}$ thỏa mãn điều kiện
$$
f(x-2 f(y))=5 f(x)-4 x-2 f(y)
$$
với mọi $x, y \in \mathbb{R}$.

Bài 4. Cho đường tròn $k$ và các điểm $B, C$ thuộc đường tròn, không phải là đường kính; I là trung điểm $B C$. Điểm $A$ di động trên cung lớn $B C$ của $k$. Gọi $i_{1}$ là đường tròn qua $I$ và tiếp xúc với $A B$ tại $B ; i_{2}$ là đường tròn qua $I$ và tiếp xúc với $A C$ tại $C$. Các đường tròn $i_{1}, i_{2}$ cắt nhau tại $D$ (khác $I$ ).
1. Chứng minh rằng đường tròn ngoại tiếp tam giác AID luôn đi qua một điểm cố định.
2. Gọi $K$ là trung điểm $A D$, $E$ là tâm đường tròn qua $K$ và tiếp xúc với $A B$ tại $A, F$ là tâm đường tròn qua $K$ và tiếp xúc với AC tại $A$. Chứng minh rằng góc EAF có số đo không đổi.

Ngày thứ 2

Bài 5. Dãy số $\left(x_{n}\right)$ được xác định bởi công thức $x_{n}=\frac{1}{n \cos \frac{1}{n}}$ với mọi $n \geq 1$. Tính giới hạn sau
$$\lim \frac{x_{1}+x_{3}+x_{5}+\cdots+x_{2 n-1}}{x_{2}+x_{4}+x_{6}+s+x_{2 n}}$$

Bài 6. Tim các giá trị của $b$ sao cho tồn tại a để hệ phương trình sau có nghiệm $(x, y)$
$$
\left\{\begin{array}{l}
(x-1)^{2}+(y+1)^{2}=b \\y=x^{2}+(2 a+1) x+a^{2}
\end{array}\right.
$$

Bài 7. Cho n là số nguyên dương, $n \geq 2$ và $X={1,2,3, \ldots, n}$. Gọi $A_{1}, A_{2}, \ldots, A_{m}$ và $B_{1}, B_{2}, \ldots, B_{m}$ là hai dãy các tập con khác rỗng của $X$ thỏa mãn điều kiện: Với mỗi $i, j \in{1,2,3, \ldots, n}, A_{i} \cap B_{j}=\varnothing$ nếu và chỉ nếu $i=j$.
1. Chúng minh rằng với mỗi hoán vị $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ của $X$, có không quá một cặp tập hợp $\left(A_{i}, B_{i}\right)$ với $i=1,2,3, \ldots, n$ sao cho nếu $x_{k} \in A_{i}$ và $x_{l} \in B_{i}$ thì $k<l$.
2. Gọi $a_{i}, b_{i}$ lần lượt là số phần tử của tập hợp $A_{i}, B_{i}$ với $i=1,2,3, \ldots, m$. Chúng minh rằng
$$
\sum_{i=1}^{m} \frac{1}{C_{a_{i}+b_{i}}^{a_{i}}} \leq 1
$$

Bài 8. Cho tam giác $A B C$ nhọn nội tiếp đường tròn tâm $O$. Đường tròn tâm $I$ đi qua $B$, $C$ lần lượt cắt các tia $B A$, CA tại $E, F$.
1. Giả sử các tia $B F, C E$ cắt nhau tại $D$ và $T$ là tâm đường tròn $(A E F)$. Chứng minh rằng $O T$ || ID.
2. Trên BF, CE lần lượt lấy các điểm $G, H$ sao cho $A G \perp C E, A H \perp B F$. Các đường tròn $(A B F),(A C E)$ cắt $B C$ tai $M, N$ (khác $B, C)$ và cắt EF tại $P, Q$ (khác $E, F)$. Gọi $K$ là giao điểm của $M P, N Q$. Chứng minh rằng DK vuông góc với GH.

Giải

Bài 1.

Cho $n$ là số nguyên dương lớn hơn 1 , ta quy ước gọi một số nguyên dương a được gọi là thặng dư chính phương theo modulo $n$ nếu $(a, n)=1$ và tồn tại số nguyên $x$ sao cho $a \equiv x^{2}(\bmod n)$. Trong bài này, dể dơn giản, ta quy ước xét các thặng dư chính phưong nhỏ hơn $n$.
Đặt $s(n)$ là số các số nhỏ hơn $n$ và là thặng dư chính phương theo modulo n. Ta sễ chứng minh hai bổ dề dưới đây:
Bổ đề 1: Cho $p$ là số nguyên tố và $k$ là số nguyên dưong. Khi đó:
1. Nếu $p=2$ thì $s\left(2^{k}\right)=2^{\max (k-3,0)}$.
2. Nếu $p>2$ thì $s\left(p^{k}\right)=\frac{p^{k}-p^{k-1}}{2}$.
Bổ đề $2: s(n)$ là hàm nhân tính.
Thật vậy,
Trước hết, ta biết rằng $s(p)=\frac{p-1}{2}$ với $p$ là số nguyên tố lẻ. Ta sẽ tính $s\left(p^{k}\right)$ với $k \in \mathbb{Z}^{+}$.
Xét một thặng dư chính phương $a$ của $p$, khi đó tồn tại $x$ sao cho
$$
a \equiv x^{2}(\bmod p)
$$
Dặt $a=x^{2}+p q$ thì hiển nhiên
$$
a \equiv x^{2}+p q\left(\bmod p^{k}\right) \Leftrightarrow a-p q \equiv x^{2}\left(\bmod p^{k}\right)
$$
và khi đó, ta có $p^{k-1}$ cách chọn $q$ để các số $a-p q$ là các thặng dư chính phưong $\bmod p^{k}$.
Suy ra
$$
s\left(p^{k}\right)=p^{k-1} s(p)=\frac{p^{k}-p^{k-1}}{2}
$$
Xét số nguyên tố $p=2$, với $k=1,2,3$, dể dàng kiểm tra được $s\left(2^{k}\right)=1$.
Ta xét $k \geq 4$, tưong tự trên, ờ bước chọn $q$, ta chỉ có 2 cách nên $s\left(2^{k}\right)=$ $2 s\left(2^{k-1}\right)$. Từ đó bằng quy nạp, ta có được
$$
s\left(2^{k}\right)=2^{k-3}, k \geq 4
$$
Tiếp theo, xét hai số $a, b$ nguyên dương và $(a, b)=1 .$ Gọi $A$ là tập họp các thặng dư chính phương theo modulo $a b$ và $B$ là tập hợp các số là thặng dư chính phưong chung của $a, b$.
Nếu $x \in A$ thì tổn tại $y$ sao cho $x \equiv y^{2}(\bmod a b)$. Rō ràng khi đó,
$$
x \equiv y^{2} \quad(\bmod a), x \equiv y^{2} \quad(\bmod b)
$$

(chú ý rằng nếu $x>a$, ta có thể chọn $x^{\prime}$ sao cho $x^{\prime}<a$ và $x \equiv x^{\prime}(\bmod a)$; tương tự với $b$ ). Do đó, $x \in B$, tức là $x \in A \Rightarrow x \in B$ nên $|A| \leq|B|$.
Tiếp theo, xét $x \in B$. Khi đó tồn tại $r, s$ sao cho $x \equiv r^{2}(\bmod a), x \equiv s^{2}$ $(\bmod b)$. Theo định lý thặng dư Trung Hoa, tổn tại số nguyên $z$ sao cho
$$
z \equiv r(\bmod a), z \equiv s(\bmod b)
$$
Khi đó
$$
x \equiv z^{2} \quad(\bmod a), x \equiv z^{2} \quad(\bmod b)
$$
nên
$$
x-z^{2}: a b \text { hay } x \equiv z^{2}(\bmod a b)
$$
Do đó: $x \in A$, tức là $x \in B \Rightarrow x \in A$ nên $|A| \geq|B|$.
Từ đây ta có
$$
|A|=|B| \text { hay } s(a) s(b)=s(a b)
$$
Vậy $s(n)$ là hàm nhân tính.
Các bổ đề đều được chứng minh.
Trở lại bài toán, ta thấy rằng
$$
2016=2^{5} \cdot 3^{2} \cdot 7
$$
Rō ràng bài toán yêu cầu đếm số thặng dư chính phương theo modulo 2016. Theo bổ dề 2 thì
$$
s(2016)=s\left(2^{5}\right) s\left(3^{2}\right) s(7)
$$
Theo bổ đề 1 thì
$$
s\left(2^{5}\right)=2^{2}=4, s\left(3^{2}\right)=\frac{3^{2}-3}{2}=3, s(7)=\frac{7-1}{2}=3
$$
Do đó, số các số $a$ cần tìm là $4 \cdot 3 \cdot 3=36$.

Bài 2.

1) Dự đoán dấu bằng xảy ra khi $a=1, b=2, c=3, d=4$ nên ta có các đánh giá sau
$$
\left\{\begin{array}{l}
a^{2}+1 \geq 2 a \\
b^{2}+4 \geq 4 b \\
c^{2}+9 \geq 6 c \\
d^{2}+16 \geq 8 d
\end{array}\right.
$$
Do đó, ta có
$$
\begin{aligned}
&24(a+b+c+d) \leq 3\left(d^{2}+16\right)+4\left(c^{2}+9\right)+6\left(b^{2}+4\right)+12\left(a^{2}+1\right) \\
&=3 d^{2}+4 c^{2}+6 b^{2}+12 a^{2}+120 \\
&=3\left(a^{2}+b^{2}+c^{2}+d^{2}\right)+\left(a^{2}+b^{2}+c^{2}\right)+2\left(a^{2}+b^{2}\right)+6 a^{2}+120 \\
&\leq 3 \cdot 30+14+2 \cdot 5+6 \cdot 1+120=240
\end{aligned}
$$
Suy ra $a+b+c+d \leq 10$.
2) Ta có:
$$
16 a^{2}+d^{2} \geq 8 a d \text { và } 9 b^{2}+4 c^{2} \geq 12 b c
$$
Từ đó suy ra
$$
\begin{aligned}
&24(a d+b c) \leq 3\left(16 a^{2}+d^{2}\right)+2\left(9 b^{2}+4 c^{2}\right) \\
&=3\left(a^{2}+b^{2}+c^{2}+d^{2}\right)+5\left(a^{2}+b^{2}+c^{2}\right)+10\left(a^{2}+b^{2}\right)+30 a^{2} \\
&\leq 3 \cdot 30+5 \cdot 14+10 \cdot 5+30 \cdot 1=240
\end{aligned}
$$
Suy ra $a d+b c \leq 10$.

Bài 3.

Goi $(*)$ là điều kiện đề bài cho. Trong $(*)$, thay $x=y=0$, ta có
$$
f(-2 f(0))=3 f(0)
$$
Đặt $f(0)=a$ thì $f(-2 a)=3 a$. Trong $(*)$, thay $x=0$ và $y=-2 a$, ta có
$$
f(-2 f(-2 a))=5 a-2 f(-2 a) \Leftrightarrow f(-6 a)=-a
$$

Trong $(*)$, thay $x=-2 a, y=-6 a$, ta có
$$
\begin{aligned}
&f(-2 a-2 f(-6 a))=5 f(-2 a)-4 x-2 f(-6 a) \\
&\Leftrightarrow f(0)=15 a+8 a+2 a \\
&\Leftrightarrow a=25 a \\
&\Leftrightarrow a=0
\end{aligned}
$$
Do đó $f(0)=0$.
Trong $(*)$, thay $y=0$, ta có
$$
f(x)=5 f(x)-4 x \Leftrightarrow f(x)=x
$$
Thử lại ta thấy thỏa.
Vậy hàm số cần tìm chính là
$$
f(x)=x, \forall x \in \mathbb{R}
$$

Bài 4.

1) Gọi $O$ là tâm của đường tròn $k$. Không mât tính tống quát, giả sử tia $\Lambda D$ nằm giữa hai tia $A O, A B$, các trường hợp còn lại tương tự.
Ta có:
$$
\angle I D B=\angle A B C, \angle I D C=\angle A C B
$$
nên
$$
\angle B A C+\angle B D C=\angle B A C+\angle A B C+\angle A C B=180^{\circ}
$$

Do đó, tứ giác $A B D C$ nội tiếp hay $D \in(O)$. Ta thấy
$$
\begin{aligned}
&\angle D A O+\angle O I D \\
&=\angle B A C-(\angle D A B+\angle O A C)+360^{\circ}-\left(90^{\circ}+\angle D I C\right) \\
&=\angle B A C-\left(\angle I C D+90^{\circ}-\angle A B C\right)+270^{\circ}-\angle D I C \\
&=\angle B A C+\angle A B C-(\angle I C D+\angle D I C)+180^{\circ} \\
&=\left(180^{\circ}-\angle A C B\right)-\left(180^{\circ}-\angle I D C\right)+180^{\circ} \\
&=\angle I D C-\angle A C B+180^{\circ}=180^{\circ}
\end{aligned}
$$

Do đó, AOID nội tiếp hay đường tròn $(A I D)$ di qua $O$ cố định.
2) Ta có:
$$
\angle E A C=90^{\circ}-\angle B A C, \angle F A B=90^{\circ}-\angle B A C
$$
nên
$$
\angle E A F=180^{\circ}-2 \angle B A C+\angle B A C=180^{\circ}-\angle B A C
$$
Do đó, góc $\angle E A F$ có số đo không đổi.

Bài 5.

Trước hết, ta chứng minh bổ đề sau:
Giá trị của biểu thức
$$
\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}
$$
tiến tới vô cực khi $n \rightarrow+\infty$. Thật vậy,
Xét hàm số $f(x)=\ln (1+x)-x$ với $x>0$. Ta có
$$
f^{\prime}(x)=\frac{1}{1+x}-1<0
$$
nên đây là hàm nghịch biến, suy ra $f(x)<f(0)=0$ hay $\ln (1+x)<$ $x, \forall x>0$. Thay $x$ bởi $\frac{1}{n}$, ta được
$$
\ln \left(1+\frac{1}{n}\right)<\frac{1}{n} \Leftrightarrow \frac{1}{n}>\ln (1+n)-\ln n
$$
Do đó,
$$
\frac{1}{1}+\frac{1}{2}+\frac{1}{3}++\frac{1}{n}>\ln 2-\ln 1+\ln 3-\ln 2+\cdots+\ln (n+1)-\ln n=\ln (n+1)
$$
Vì $\ln (n+1) \rightarrow+\infty$ khi $n \rightarrow+\infty$ nên
$$
\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n} \rightarrow+\infty
$$
Trở lại bài toán, đặt
$$
y_{n}=\frac{x_{1}+x_{3}+x_{5}+\cdots+x_{2 n-1}}{x_{2}+x_{4}+x_{6}+\cdots+x_{2 n}}
$$
với $n \geq 1$. Ta thấy vì $\frac{1}{n} \in\left(0 ; \frac{\pi}{2}\right)$ nên $\cos \frac{1}{n}>0$, suy ra
$$
x_{n}=\frac{1}{n \cos \frac{1}{n}}>0, n \geq 1
$$

Xét hàm số $f(t)=\frac{t}{\cos t}$ với $t \in\left(0 ; \frac{\pi}{2}\right)$ thì $f^{\prime}(t)=\frac{\cos t+t \sin t}{\cos ^{2} t}>0$ nên đây là hàm đồng biến. Chú ý rằng $x_{n}=f^{2}\left(\frac{1}{n}\right)$, mà $\frac{1}{n}$ là dãy giảm nên $x_{n}$ cũng là dãy giảm.
Suy ra $x_{1}>x_{2}, x_{3}>x_{4}, \ldots, x_{2 n-1}>x_{2 n}$ nên $y_{n}>1$
Ngoài ra, ta cũng có $x_{3}<x_{2}, x_{5}<x_{4}, \ldots, x_{2 n-1}<x_{2 n-2}$ nên
$$
\begin{aligned}
y_{n}<& \frac{x_{1}+\left(x_{2}+x_{4}+\cdots+x_{2 n-2}\right)}{x_{2}+x_{4}+\cdots+x_{2 n}}=\\
& 1-\frac{x_{1}-x_{2 n}}{x_{2}+x_{4}+\cdots+x_{2 n}}<1-\frac{x_{1}}{x_{2}+x_{4}+\cdots+x_{2 n}}
\end{aligned}
$$
Dễ thấy rằng
$$
x_{2}+x_{4}+\cdots+x_{2 n}=\sum_{i=1}^{n} \frac{1}{2 i \cos \frac{1}{2 i}} \geq \sum_{i=1}^{n} \frac{1}{2 i}=\frac{1}{2} \sum_{i=1}^{n} \frac{1}{i}
$$
Theo bổ đề trên thì $\sum_{i=1}^{n} \frac{1}{i}$ tiến tới vô cực nên
$$
\lim \left(x_{2}+x_{4}+\cdots+x_{2 n}\right)=+\infty
$$
Do dó
$$
\lim \left(1-\frac{x_{1}}{x_{2}+x_{4}+\cdots+x_{2 n}}\right)=1-0=1
$$
Theo nguyên lý kẹp, ta có $\lim x_{n}=1$.

Bài 6.

Đặt $X=x-1, Y=y+1$, thay vào, ta có
$$
\begin{aligned}
&\left\{\begin{array}{l}
X^{2}+Y^{2}=b \\
Y-1=(X+1)^{2}+(2 a+1)(X+1)+a^{2}
\end{array}\right. \\
&\Leftrightarrow\left\{\begin{array}{l}
X^{2}+Y^{2}=b \\
Y=X^{2}+(2 a+3) X+a^{2}+2 a+3
\end{array}\right.
\end{aligned}
$$
Ta đưa về tìm điều kiện của $b$ để tồn tại $a$ mà hệ trên có nghiệm $(X, Y)$. Do
$$
Y-(X+2)=X^{2}+2(a+1) X+(a+1)^{2}=(X+a+1)^{2} \geq 0
$$

nên $Y \geq X+2$. Suy ra $Y-X \geq 2>0$, tức là $(X-Y)^{2} \geq 4$. Ta có
$$
b=X^{2}+Y^{2}=\frac{(X-Y)^{2}+(X+Y)^{2}}{2} \geq \frac{(Y-X)^{2}}{2} \geq 2
$$
Mặt khác, với $b \geq 2$, nếu chọn $X=-(a+1)$ thì có $Y=X+2=1-a$. Khi đó, ta có
$$
X^{2}+Y^{2}=(a+1)^{2}+(a-1)^{2}=2\left(a^{2}+1\right)=b
$$
Như thế, với $a$ thỏa mãn $2\left(a^{2}+1\right)=b$ thì hệ có nghiệm là
$$
(X, Y)=(-a-1,1-a)
$$
Dễ dàng thấy rằng do $b \geq 2$ nên luôn tồn tại $a$ như thế.
Vậy các giá trị cần tìm của $b$ là $b \geq 2$.

Bài 7.

1) Giả sử ngược lại, tồn tại 2 cặp $\left(A_{i}, B_{i}\right)$ và $\left(A_{j}, B_{j}\right)$ thỏa mãn điểu kiện đề bài đã cho.
Vì $i \neq j$ nên theo giả thiết,
$$
\left|A_{i} \cap B_{j}\right| \geq 1,\left|A_{j} \cap B_{i}\right| \geq 1
$$
Đặt $x_{r} \in A_{i} \cap B_{j}, x_{s} \in A_{j} \cap B_{i}$ với $1 \leq r, s \leq n$ thì:
– Do $x_{r} \in B_{j}$ nên với mọi $x_{k} \in A_{j}$, ta đều có $k<r$.
– Do $x_{r} \in A_{i}$ nên với mọi $x_{k} \in B_{i}$, ta đều có $k>r$.

Từ đây suy ra
$$
A_{j} \subset\left\{x_{1}, x_{2}, \ldots, x_{r-1}\right\}, B_{i} \subset\left\{x_{r+1}, x_{r+2}, \ldots, x_{n}\right\}
$$
Điều này cho thấy $A_{j} \cap B_{i}=\varnothing$, mâu thuẫn với giả thiết.
Vậy tồn tại không quá 1 cặp $\left(A_{i}, B_{i}\right)$ thỏa mãn điều kiện đã cho.
2) Gọi $T$ là tập hợp các cách chọn hai dãy
$$
A_{1}, A_{2}, \ldots, A_{m} \text { và } B_{1}, B_{2}, \ldots, B_{m}
$$
thỏa mãn điều kiện là: với mỗi $i, j \in\{1,2,3, \ldots, n\}, A_{i} \cap B_{j}=\varnothing$ nếu và chỉ nếu $i=j$.
Gọi $T_{i} \subset T$ là các cách chọn sao cho sao cho cặp $\left(A_{i}, B_{i}\right)$ thỏa mãn điều kiện là: cặp $\left(A_{i}, B_{i}\right)$ với $i=1,2,3, \ldots, n$ sao cho nếu $x_{k} \in A_{i}$ và $x_{l} \in B_{i}$ thì $x_{k}<x_{l}$ (ở đây ta xét thứ tự ban đầu của các phần tử của $X$ ). (*)
Theo câu 1) thì $T_{i} \cap T_{j}=\varnothing$ với $i \neq j$ nên ta có
$$
\left|T_{1}\right|+\left|T_{2}\right|+\cdots+\left|T_{m}\right|=\left|T_{1} \cup T_{2} \cup \ldots \cup T_{m}\right| \leq T
$$
Tiếp theo, với $1 \leq i \leq m$, xét một tập hợp $S \subset X$ và $|S|=a_{i}+b_{i}$. Khi đó, tương ứng với $S$, có đúng 1 cách chọn $\left(A_{i}, B_{i}\right)$ thỏa mãn tính chất $(*)$ – tức là $A_{i}$ sẽ nhận $a_{i}$ số nhỏ nhất trong tập $S, B_{i}$ là lấy phần còn lại.
Trong khi đó, nếu không có điều kiện $(*)$, ta có thể chọn tùy ý $C_{a_{i}+b_{i}}^{a_{i}}$ phần tử trong $S$ và $A$ và số còn lại cho $B$.
Do đó, ta có
$$
\left|T_{i}\right|=\frac{|T|}{C_{a_{i}}^{a_{i}}+b_{i}}
$$
với $i=1,2, \ldots, m$. Từ đây suy ra
$$
\sum_{i=1}^{m} \frac{|T|}{C_{a_{i}+b_{i}}^{a_{i}}} \leq|T| \Leftrightarrow \sum_{i=1}^{m} \frac{1}{C_{a_{i}+b_{i}}^{a_{i}}} \leq 1
$$
Ta có đpcm.

Bài 8.

1) Giả sử $E F$ cắt $B C$ ở $L$ và $(T),(O)$ cắt nhau tại $J$ khác $A$. Suy ra $A J$ chính là trục đẳng phương của $(T),(O)$. Do đó $O T \perp A J$.
Khi đó,
$$
L B \cdot L C=L E \cdot L F
$$
nên $L$ thuộc trục đẳng phương của $(T),(O)$. Suy ra $A, J, L$ thẳng hàng. Theo định lý Brocard cho tứ giác $B E F C$ nội tiếp trong đường tròn $(I)$ thì $I$ chính là trực tâm của tam giác $A D L$.
Vì thế nên ID $\perp A L$, mà $O T \perp A J$ nên $I D \| O T$.

2) Dễ dàng thấy rằng $D$ là trực tâm của tam giác $A G H$ nên $A D \perp G H$. Ta sẽ chứng minh rằng $A, D, K$ thẳng hàng.

Ta có $D B \cdot D F=D E \cdot D C$ nên $D$ có cùng phương tích tới 2 đường tròn $(A B F),(A E C)$. Suy ra $A D$ chính là trục đẳng phương của 2 đường tròn này.

Bằng biến đổi các góc nội tiếp, ta thấy rằng
$$
\angle M P Q=\angle M B F=\angle C E F=\angle C N Q
$$
Suy ra $M N P Q$ nội tiếp, dẫn đến $K M \cdot K P=K N \cdot K Q$, tức là $K$ cũng có cùng phương tích tới 2 đường tròn $(A B F),(A E C)$.
Từ đó suy ra $A, D, K$ thẳng hàng. Do đó, $D K$ vuông góc với $G H$.

Leave a Reply

Your email address will not be published. Required fields are marked *