Lời giải của nhóm các bạn NGUYỄN TĂNG VU, LÊ PHÚC LỮ, NGUYỄN TIẾN HOÀNG
Bài 1.
Với mọi $x \in \mathbb{R}$, ta có
\[{x^4} + 1 – \frac{2}{9}{\left( {{x^2} – x + 1} \right)^2} = \frac{1}{9}{\left( {x + 1} \right)^2}\left( {7{x^2} – 10x + 7} \right) \geq 0. \]
Vì thế nên ta có
\[ P \ge \frac{2}{9}\frac{{{{\left( {{a^2} – a + 1} \right)}^2} + {{\left( {{b^2} – b + 1} \right)}^2}}}{{\left( {{a^2} – a + 1} \right)\left( {{b^2} – b + 1} \right)}} = \frac{2}{9}\left( {\frac{{{a^2} – a + 1}}{{{b^2} – b + 1}} + \frac{{{b^2} – b + 1}}{{{a^2} – a + 1}}} \right) \ge \frac{4}{9}. \]
Suy ra giá trị nhỏ nhất của $P$ là $\dfrac{4}{9}$, đạt được khi $a=b=-1.$
Bài 2.
Giả sử $f$ là một hàm thỏa mãn các yêu cầu của bài toán.
Đặt $f(1)=a>0$, trong phương trình đề cho, thay $x=y=1$ ta có $f(a^2)=a^3$. \medskip
Từ đó, tiếp tục lần lượt thay $x$ bởi $a^2$, $y$ bởi $1$ và $x$ bởi $1$, $y$ bởi $c^2$ vào phương trình ấy, ta thu được
\[ a^7 = f(a^6) = a^5. \]
Chú ý $a>0$ nên ta có $a=1$, tức $f(1)=1$. Thay $x$ bởi $1$ vào phương trình đề cho, ta có
\[ f\left( {f{{\left( y \right)}^2}} \right) = f\left( y \right), \text{ với mọi } y \in \mathbb{Q^+}. \]
Lại thay $y$ bởi $1$ vào phương trình đề cho, ta có
\[ f{\left( x \right)^2} = f\left( {{x^2}} \right), \text{ với mọi } x \in \mathbb{Q^+}. \]
Suy ra
\[ f\left( x \right) = f\left( {f{{\left( x \right)}^2}} \right) = f{\left( {f\left( x \right)} \right)^2} = \ldots = {f^{n + 1}}{\left( x \right)^{{2^n}}}, \text{ với mọi } x \in \mathbb{Q^+}, \]
trong đó $f^{n+1}(x)$ là $n+1$ lần tác động $f$ vào $x$. Từ đó, nếu tồn tại $q \in \mathbb{Q^+}$ sao cho tồn tại $p \in \mathbb{P}$ thỏa mãn $v_p(f(q)) \ne 0$ thì ta có
\[ {v_p}\left( {f\left( q \right)} \right) = {v_p}\left( {{f^{n + 1}}{{\left( q \right)}^{{2^n}}}} \right) = {2^n}{v_p}\left( {{f^{n + 1}}\left( q \right)} \right) \ne 0. \]
Trong đẳng thức trên, cho $n \to + \infty$ ta thấy điều vô lý. Suy ra $v_p(f(q)) = 0$ với mọi $q \in \mathbb{Q^+}$, $p \in \mathbb{P}$, hay $f(x) \equiv 1.$ \medskip
Thử lại, ta kết luận $f(x) \equiv 1$ là hàm duy nhất thỏa mãn yêu cầu bài toán.
\end{giai}
Bài 3.
Với $k$ nguyên dương, ta xét $k+1$ số hạng của dãy là $x_1$, $x_2$, \dots, $x_{k+1}$. Ta có $x_1=1 \leq k$, gọi $q$ là số lớn nhất thỏa mãn $x_q \leq k$ thì ta có $q<k+1$ và
\[ 1 \leq x_1 < x_1 < \dots < x_q \leq k < x_{q+1}<\dots<x_{k+1}<2k. \]
Nếu tồn tại $1 \leq j < i \leq k+1 $ sao cho $x_i – x_j = k$ thì ta có ngay điều cần chứng minh. Ngược lại, ta có các số $$x_1+k,x_2+k, \dots x_q+k, x_{q+1}, \dots, x_{k+1}$$ là $k+1$ số nguyên đôi một phân biệt, tất cả đều lớn hơn $k$ nhưng lại không vượt quá $2k$, vô lí! \medskip
Từ đó suy ra với mọi $k$ nguyên dương,luôn tồn tại các số nguyên $i>j$ sao cho $x_i-x_j = k.$
Bài 4.
Ta có $OB=OD$, $MB=MD$ nên dễ thấy $OM$ là phân giác ngoài của góc $AMD$, mà $OA=OD$ nên suy ra $O \in \left(AMD\right).$
Gọi $N’$ là giao điểm khác $A$ của $\left(AMD\right)$ và $AC$. Ta chứng minh $N$ trùng $N’$. \medskip
Thật vậy, ta có $\overrightarrow{AM}=\dfrac{1}{3}\overrightarrow{AB}$ nên $\angle{AMO}$ tù, do đó nếu $N’$ nằm ngoài tia $AC$ thì $N’$ nằm khác phía $O$ so với $AM$ nên $$\angle{AMO}=\angle{AN’O}=\angle{CAO}-\angle{AON’}<\angle{CAO}<90^\circ,$$ vô lý. Suy ra $N’$ nằm trên tia $AC$, kéo theo $AO$ là phân giác trong góc $MAN’$ nên $OM=ON’$, mà $OA=OD$ nên $MN’$ song song $AD$, suy ra $N$ trùng $N’$. \medskip
Từ đó, dễ thấy $AMND$ là hình thang cân nên $AN=MD=MB$, hơn nữa $N$ nằm trên tia $AC$ nên ta thu được $$\overrightarrow{AN}=\dfrac{2}{3}\overrightarrow{AC}.$$ Ta có điều cần chứng minh.