Chứng minh ba điểm thẳng hàng – Phương pháp góc bù

Để chứng minh 3 điểm thẳng hàng có nhiều phương pháp chứng minh, trong bài viết này tôi trình bày phương pháp sử dụng góc bằng nhau hoặc góc bù.

Giả sử cần chứng minh $A, B, C$ theo thứ tự thẳng hàng.

  • Nếu có tia $Bx$ nằm giữa hai tia $BA, BC$ thì $A, B, C$ thẳng hàng khi và chỉ khi $$\angle ABx + \angle CBx = 180^\circ$$
  • Nếu có tia $Ax$ sao cho $AB, AC$ cùng phía đối với $Ax$ thì $A, B, C $ thẳng hàng khi và chỉ khi $$\angle xAB = xAC$$

Tùy theo trường hợp ta sử dụng phương pháp phù hợp để giải quyết bài toán. Mỗi phương pháp đều có thể mạnh riêng và những áp dụng riêng. Ta xét vài ví dụ để thấy rõ hơn nhé.

Ví dụ 1. (Định lý Simson)  Cho tam giác $ABC$ nội tiếp đường tròn $(O)$. $P$ là điểm thuộc $(O)$. Gọi $D, E, F$ lần lượt là hình chiếu của $P$ trên các đường thẳng $BC, AC, AB$. Chứng minh rằng $D, E, F$ thẳng hàng. 

Gợi ý

Ta xét trường hợp các điểm như hình vẽ, các trường hợp khác làm tương tự.

Ta có các tứ giác $ABPC, PDBF, PDEC$ nội tiếp.

Cách 1. Sử dụng góc bù, ta chứng minh $\angle FDP + \angle EDP = 180^\circ$.

  • Do $PDBF$ nội tiếp nên $\angle FDP = \angle FBP$. (1)
  • Do $ABPC$ nội tiếp nên $\angle FBP = \angle ACP$. (2)
  • Do $PDEC$ nội tiếp nên $\angle ACP  + \angle EDP = 180^\circ$. (2)
  • Từ (1), (2), (3) ta có $\angle FDP + \angle EDP =  180^\circ$ nên $D, E, F$ thẳng hàng.

Cách 2. Sử dụng tia trùng, ta chứng minh $\angle PFD = \angle PDE$.

  • Do tứ giác $PDBF$ nội tiếp nên $\angle PFD = \angle PBC$. (1)
  • Và tứ giác $AFPE$ nội tiếp nên $\angle PFE = \angle PAC$. (2)
  • Tứ giác $ABPC$ nội tiếp nên $\angle PBC = \angle PAC$. (3)
  • Từ (1), (2) và (3) ta có $\angle PFD = \angle PFE$. Suy ra $F, D, E$ thẳng hàng.

Hai cách trên là gần như tương đương nhau, tùy thuộc và hình vẽ để sử dụng cách nào cho thuận lợi và lời giải ngắn gọn hơn.

Ta xét tiếp định lý sau:

Ví dụ 2. (Đường thẳng Steiner) Cho tam giác $ABC$ nội tiếp đường tròn $(O)$, $P$ là một điểm thuộc đường tròn. Gọi $D, E$ là điểm đối xứng của $P$ qua $AB, AC$. Chứng minh rằng đường thẳng $DE$ qua trực tâm $H$ của tam giác $ABC$.

Gợi ý

Gọi $K, L$ là giao điểm của $BH, CH$ với $(ABC)$. Ta chứng minh được $K, L$ lần lượt là điểm đối xứng của $H$ qua $AC, AB$.

  • Xét phép đối xứng trục đường thẳng $AB$ thì  ta có $\angle AHD = \angle ALP$.
  • Xét phép đối xứng trục là đường thẳng $AC$ thì $\angle AHE = \angle AKP$.
  • Mà $\angle ALP + \angle AKP = 180^\circ$ nên $\angle AHD + \angle AHE = 180^\circ$.
  • Suy ra $D, H, E$ thẳng hàng.

Ví dụ 3. Cho tam giác $ABC$ có $O$ là tâm đường tròn ngoại tiếp. Đường tròn thay đổi qua $A, O$ cắt các cạnh $AB, AC$ lần lượt tại $D, E$.

  1. Chứng hình chiếu của $O$ trên $DE$ thuộc một đường thẳng cố định.
  2. Chứng minh rằng trực tâm của tam giác $ODE$ thuộc đường thẳng $BC$.
Gợi ý

Gọi  $H$ là hình chiếu của $O$ trên $DE$.

  1. Gọi $M, N$ là trung điểm của $AB, AC$. Ta có $OM \bot AD, ON \bot AC$. Theo ví dụ 1, ta có $H$ thuộc $MN$ cố định.
  2. Gọi $K$ là trực tâm của tam giác $ODE$.
  • Ta có $\angle OKD = \angle OED = \angle OAD = \angle OBD$. Suy ra $ODBK$ nội tiếp.
  • Tương tự thì $OECK$ nội tiếp.
  • Khi đó $\angle OKD = \angle ODA = \angle OEC$, và $\angle OEC + \angle OKC = 180^\circ$ nên $\angle OKD + \angle OKC = 180^\circ$, suy ra $B, K, C$ thẳng hàng.

Bài tập.

1.Cho tam giác $ABC$, đường tròn tâm $I$ nội tiếp tam giác tiếp xúc với các cạnh $AB, AC$ tại $D, E$. Gọi $H$ là hình chiếu vuông góc của $C$ trên $BI$. Chứng minh $D, E, H$ thẳng hàng.

Gợi ý
  • Tứ giác $EHCI$ nội tiếp nên $\angle {HEC}=\angle {HEC}$
    Mặt khác, $\angle {HIC}=\angle {IBC}+\angle {ICB}=\frac{1}{2}\cdot (\angle {ABC}+\angle {ACB})=\frac{180^\circ – \angle{BAC}}{2}(1)$
  • $\triangle{ADE}$ cân tại $A$ nên $\angle{AED}=\frac{180^\circ-\angle{BAC}}{2}(2)$
  • Từ $(1)$ và $(2)$ kết hợp với $A,E,C$ thẳng hàng, ta có $\angle{AED}=\angle{HEC}$ ở vị trí đối đỉnh nên $D,E,H$ thẳng hàng.

2. Cho tam giác $ABC$ nội tiếp đường tròn $(O)$. Các đường cao $BD, CE$ cắt nhau tại $H$. Đường tròn đường kính $AH$ cắt $(O)$ tại $P$ khác $A$.

a. Gọi $M$ là trung điểm $BC$. Chứng minh $P, H, M$ thẳng hàng.

b. Cho $AP$ cắt $BC$ tại $Q$. Chứng minh $Q, D, E$ thẳng hàng.

Gợi ý
  • a) Dựng đường kính $AT$ của $(O)$
    Tứ giác $BHCT$ là hình bình hành nên $H,M,T$ thẳng hàng.
  • $\angle{APH}=90^\circ$ và $\angle{APT}=90^\circ$ nên $P,H,T$ thẳng hàng. Từ đó suy ra 4 điểm $P,H,M,T$ thẳng hàng.
    b)
  • $ADEP$ nội tiếp nên $\angle{QPE}=\angle{ADE}=\angle{ABC} \Rightarrow PQBE$ nội tiếp.$\Rightarrow \angle{QPB}=\angle{QEB}$
  • Mà $\angle{QPB}=\angle{ACB}=\angle{AED}$ nên $\angle{QEB}=\angle{AED}$, kết hợp với $A,E,B$ thẳng hàng, chúng ở vị trí đối đỉnh nên $Q,E,D$ thẳng hàng.

3.  Cho hình chữ nhật $ABCD$. Gọi $H$ là hình chiếu của $A$ trên $BD$, $M,N$ lần lượt là trung điểm $BH$ và $CD$.

a. Chứng minh $\angle AMN  = 90^\circ$.

b. Gọi $P,Q, R$ lần lượt là trung điểm của $DH, MN, BC$. Chứng minh $P, Q, R$ thẳng hàng.

Gợi ý

 

  • a) Dễ thấy $\triangle{AHB} \backsim \triangle{ADC}(g.g)$ và $M, N$ lần lượt là trung điểm của $HB,CD$ nên $\triangle{AHM}\backsim \triangle{ADN} \Rightarrow \angle{AND}=\angle{AMD}\Rightarrow$ Tứ giác $ADNM$ nội tiếp $\Rightarrow \angle{AMN}=90^\circ$
  • b) Ta có $PM=PH+HM=\dfrac{DH}{2}+\frac{BH}{2}=\dfrac{BD}{2}$
  • Kết hợp với $NR$ là đường trung bình của $\triangle{BCD}$ nên:
  • $\left\{ \begin{array}{l} N{\rm{R}}\parallel PM\\ NR = PM\left( { = \dfrac{{BD}}{2}} \right) \end{array} \right. \Rightarrow PNRM$ là hình bình hành.
  • Mà $Q$ là trung điểm của $MN$ nên $Q$ cũng là trung điểm của $PR$ hay $P,R,Q$ thẳng hàng.

4. Cho tam giác $ABC$ nội tiếp đường tròn $(O)$. Gọi $D$ là điểm đối xứng của $B$ qua $AC$ và $E$ là điểm đối xứng của $C$ qua $AB$. Đường tròn ngoại tiếp tam giác $ABD$ và đường tròn ngoại tiếp tam giác $ACE$ cắt nhau tại điểm $F$ khác $A$.

a. Chứng minh $F, B, E$ thẳng hàng và $F, C, D$ thẳng hàng.

b. Chứng minh $AF$ đi qua tâm đường tròn ngoại tiếp tam giác $ABC$.

Gợi ý
  • a) Dễ thấy $\triangle{AHB} \backsim \triangle{ADC}(g.g)$ và $M, N$ lần lượt là trung điểm của $HB,CD$ nên $\triangle{AHM}\backsim \triangle{ADN} \Rightarrow \angle{AND}=\angle{AMD}\Rightarrow$ Tứ giác $ADNM$ nội tiếp $\Rightarrow \angle{AMN}=90^\circ$
  • b) Ta có $PM=PH+HM=\frac{DH}{2}+\frac{BH}{2}=\dfrac{BD}{2}$
  • Kết hợp với $NR$ là đường trung bình của $\triangle{BCD}$ nên:$\left\{ \begin{array}{l} N{\rm{R}}\parallel PM\\ NR = PM\left( { = \dfrac{{BD}}{2}} \right) \end{array} \right. \Rightarrow PNRM$ là hình bình hành.
  • Mà $Q$ là trung điểm của $MN$ nên $Q$ cũng là trung điểm của $PR$ hay $P,R,Q$ thẳng hàng.

5. Cho đường tròn $(O)$ và đường thẳng $d$ nằm ngoài đường tròn, gọi $H$ là hình chiếu vuông góc của $O$ trên $d$. $A, B$ là hai điểm thuộc $d$ đối xứng qua $H$. Từ $A$ vẽ tiếp tuyến $AD$ đến $(O)$ sao cho $D$ khác phía $H$ đối với $AO$; từ $B$ vẽ tiếp tuyến $BE$ đến $(O)$ sao cho $E$ cùng phía $H$ đối với $BO$. Chứng minh $D, E, H$ thẳng hàng.

Gợi ý

 

  • Ta có các tứ giác $BHEO, ODAH$ nội tiếp.
  • $\triangle{OAB}$ cân tại $O$, $\triangle{ODE}$ cân tại $O$.
    $\triangle{OEB}=\triangle{ODA}(ch-cgv) \Rightarrow \angle{OBE}=\angle{OAD}$
  • $\left\{ \begin{array}{l} \angle{OBE} = \angle{OHE} \\ \angle{OAD} = \angle{OHD} \\ \angle{OBE} = \angle{OAD} \end{array} \right. \Rightarrow \angle{OHE} = \angle{OHD} $
  • Nên hai tia $HE, HD$ trùng nhau hay $H,E,D$ thẳng hàng.

 

Bài tập cực trị

Đề bài. Cho tam giác nhọn $ABC$ nội tiếp $(O)$. Tia $AO$ cắt $(OBC)$ tại $D$, tia $BO$ cắt $(OCA)$ tại $E$, tia $CO$ cắt $(OAB)$ tại $F$. Chứng minh

\[ OD.OE.OF \ge 8R^3 \]

Gợi ý

Gọi $I,J,K$ lần lượt là giao điểm của $AO$, $BO$, $CO$ với các cạnh $BC$, $CA$, $AB$ của tam giác $ABC$. Sử dụng tam giác đồng dạng ta chứng minh được

\[ OD.OI = OE.OJ = OF.OK= R^2 \]

Do đó điều cần chứng minh tương đương với

\[ 8 OI.OJ.OK \le R^3 \]

Đặt $OI = x, OJ – y, OK = z$. Từ $O$ kẻ các đường vuông góc xuống 3 cạnh, đồng thời kẻ 3 đường cao của tam giác $ABC$. Kết hợp Thales cùng tỷ số diện tích ta có được

\[ \frac{x}{x + R} + \frac{y}{y + R} + \frac{z}{z + R} = 1 \]

Quy đồng mẫu và rút gọn ta có

\[ R(xy + yz + zx) + 2xyz = R^3 \]

Đặt $t = \sqrt[3]{xyz}$ và sử dụng bất đẳng thức AM-GM: $xy + yz + zx \ge 3t^2$, thay vào trong biểu thức trên ta được

\[ R^3 \le 3Rt^2 + 2t^3 \]

tương đương với

\[ (2t – R)(t+R)^2 <= 0 \]

Ta có được $t \le R/2$. Từ đó suy ra điều cần chứng minh.

Đẳng thức xảy ra khi tam giác $x=y=z$, tức khi tâm $O$ cách đều 3 cạnh, tam giác $ABC$ là tam giác đều.

Nhận xét

  • Trường hợp $ABC$ là tam giác tù, ta vẫn có $ OD.OI = OE.OJ = OF.OK= R^2 $. Tuy nhiên $OI$, $OJ$, $OK$ có thể lớn nhỏ tùy ý [geogebra], nên bất đẳng thức không còn đúng.

Tứ giác nội tiếp (Cơ bản)

Định nghĩa. Tứ giác có 4 đỉnh cùng thuộc một đường tròn được gọi là tứ giác nội tiếp.

Dấu hiệu nhận biết tứ giác nội tiếp. Một tứ giác là tứ giác nội tiếp khi và chỉ khi:

  1. Tổng hai góc đối bằng $180^o$.
  2. Góc ngoài bằng góc đối trong.
  3. Hai đỉnh kề cùng nhìn một cạnh dưới hai góc bằng nhau.

Ví dụ 1. Tính $x$ và $y$ trong các hình sau.

Gợi ý

a. Ta có tứ giác có tổng hai góc đối bằng $180^\circ$ nên

  • $x-21 + x + 15 = 180$
  • $x = 93$.

b. Tứ giác nội tiếp góc ngoài bằng góc đối trong nên

  • $x = 80$
  • $y = 120$.

Ví dụ 2.  Cho ngũ giác $ABCDE$ nội tiếp đường tròn đường kính $BD$ tâm $O$ với các số đo như hình vẽ, $AE||BD$, $EF$ là tia đối của $EA$.

  1. Tính $\angle BCD$.
  2. Chứng minh $CB = CD$.
  3. Tính $DEF$.
Gợi ý
  1. $\angle BCD$ góc nội tiếp nửa đường tròn nên $\angle BCD = 90^\circ$.
  2. $\angle BAC = \angle CDB  = 45^\circ$, suy ra $\angle CBD = 180^\circ – \angle BCD – \angle BDC = 45^\circ$. Suy ra $CBD$ cân tại $C$, hay $CB = CD$.
  3. Ta có $ABDE$ nội tiếp, suy ra $\angle DEF = \angle ABD$.

Mà $AE||BD$, suy ra $\angle ABD + \angle BAE = 180^\circ$, suy ra $\angle ABD = 180^\circ – \angle BAD = 65^\circ$.

Suy ra $\angle DEF = \angle ABD = 65^\circ$.

Bài tập.

  1. Tính các góc chưa biết trong các hình sau.

  1. Tính số đo các góc chưa biết.

  2. Chứng minh góc giữa tia tiếp tuyến và dây cung bằng góc nội tiếp cùng chắc cung đó theo 2 bước.

a. Vẽ đường kính $AX$. Chứng minh $\angle CAX +\angle CXA = 90^\circ$.

b. Chứng minh $\angle CAT = \angle CBA$.

  1. Tính $\alpha + \beta + \gamma$.

Đường thẳng qua điểm cố định. VMO 2014.

Bài toán. (PoP1.12) (VMO 2014) Cho tam giác nhọn $ABC$ nội tiếp đường tròn $(O)$, trong đó $B, C$ cố định và $A$ thay đổi trên $(O)$. Trên các tia $AB$ và $AC$ lần lượt lấy các điểm $M$ và $N$ sao cho $MA = MC$ và $NA = NB$. Các đường tròn ngoại tiếp các tam giác $AMN$ và $ABC$ cắt nhau tại $P$ ($P \neq A$). Đường thẳng $MN$ cắt đường thẳng $BC$ tại $Q$.

  1. Chứng minh rằng ba điểm $A, P, Q$ thẳng hàng.
  2. Gọi $D$ là trung điểm của $BC$. Các đường tròn có tâm là $M, N$ và cùng đi qua $A$ cắt nhau tại $K$ ($K \neq A$). Đường thẳng qua $A$ vuông góc với $AK$ cắt $BC$ tại $E$. Đường tròn ngoại tiếp tam giác $ADE$ cắt $(O)$ tại $F (F \neq A)$. Chứng minh rằng đường thẳng $AF$ đi qua một điểm cố định.
Gợi ý

1.

  • Ta có $MA = MC$ và $NA = NB$ nên tam giác $MAC$ cân tại $M$ và tam giác $NAB$ cân tại $N$.
  • Do đó $\angle BMC = \angle BAC + \angle MAC = 2\angle BAC = \angle BOC$ hay tứ giác $BMOC$ nội tiếp.
  • Tương tự thì tứ giác $BONC$ nội tiếp nên $BMNC$ nội tiếp.
  • Khi đó $QM.QN = QB.QC$, lại có $APMN, APBC$ nội tiếp nên $A, P, Q$ thẳng hàng.

2.

  • Tam giác $AMN$ có $OM \bot AN, ON \bot AM$ nên $AO \bot MN$. Mặt khác $AK \bot MN$ nên $A, O, K$ thẳng hàng.
  • Ta có $\angle OAE = \angle ODE = 90^o$ nên $AODE$ nội tiếp, do đó $\angle OAE = \angle OFE = 90^o$. Hơn nữa $OA = OF$ nên $A, F$ đối xứng qua $OE$.
  • Giả sử $OE$ cắt $AF$ tại $H$ thì $EH.EO = EA^2= EB.EC$ nên $BHOC$ nội tiếp, lại có $\angle OHA = 90^o$ nên $AH$ đi qua $G$ là điểm chính giữa cung $BC$ không chứa $O$ của đường tròn ngoại tiếp tam giác $OBC$.
  • Vậy $AF$ luôn đi qua điểm $G$ cố định.

Ba đường thẳng đồng quy.

Bài toán. (PoP 1.11) Cho tam giác $ABC$ nhọn. Đường tròn đường kính $AB$ cắt đường cao $CD$ tại hai điểm $M$ và $N$, $M$ nằm ngoài tam giác; đường tròn đường kính $AC$ cắt đường cao $BE$ tại hai điểm $P$ và $Q$, $Q$ nằm ngoài tam giác.

  1. Chứng minh 4 điểm $M, N, P, Q$ cùng thuộc một đường tròn.
  2. Chứng minh $MP, NQ$ và $BC$ đồng quy.
Gợi ý

1.

  • Gọi $H$ là trực tâm tam giác $ABC$ và $AF$ là đường cao thì $HM.HN = HA.HF = HP.HQ$, suy ra $M, N, P, Q$ cùng thuộc đường tròn.

2.

  • Ta có $AN^2 = AH.AF = AE.AC = AQ^2$, tương tự $AM = AP$. Suy ra $A$ là tâm của $(MNPQ)$.
  • Gọi $V$ là giao điểm của $MP$ và $QN$.
  • Ta có $\angle PFN = \angle PFA +\angle AFN = \angle AQP + \angle AMN = 180^o – \angle BAC – \angle PAN$.
  • Mặt khác $\angle PVN = 180^o – \angle VMQ – \angle VQM = 180^o – \angle PMN – \angle PQN – \angle HMQ – \angle HQM = 180^o – \angle PAN – \angle BAC$.
  • Do đó $\angle PVN = \angle PFN$, suy ra $FVNP$ nội tiếp.
  • Khi đó $\angle VFN = \angle VPN = \angle MQN = \dfrac{1}{2} \angle MAN = \angle MAB = 90^o – \angle AMN = 90^o – \angle APN = 90^o – \angle AFN = \angle NFC$.
  • Do đó $F, K, C$ thẳng hàng.

Trực tâm thuộc một đường cố định.

Bài toán. (PoP 1.10). Cho tam giác $ABC$ và điểm $D$ thay đổi trên cạnh $BC$. Đường tròn ngoại tiếp tam giác $ABD$ cắt $AC$ tại $E$, đường tròn ngoại tiếp tam giác $ACD$ cắt $AB$ tại $F$. Gọi $H$ là trực tâm.

  1. Đường tròn ngoại tiếp tam giác $AEF$ và đường tròn đường kính $AH$ cắt nhau tại điểm thứ hai là $P$. Chứng minh $AP$ đi qua trung điểm của $BC$.
  2. Chứng minh trực tâm tam giác $PEF$ thuộc một đường thẳng cố định.
Gợi ý
  1. Các đường cao $AN, BE, CL$ cắt nhau tại $H$. Gọi $AM$ là trung tuyến, $HP \bot AM$. Chứng minh $P \in (AEF)$.
    $\dfrac{PK}{PN} = \dfrac{AC}{AB}$.
    $BF.BA = BD.BC, BK.BA = BL.BC$, suy ra $KF.BA = DL.BC$.
    Tương tự $EN.AC = DL.BC$, suy ra $\dfrac{KF}{EN} = \dfrac{AC}{AB}$.
    Do đó tam giác $PKF$ và $PNE$ đồng dạng, suy ra $P \in (AEF)$.
  2. Gọi $X, Y$ là giao điểm của $(P;PA)$ với $AB, AC$. Chứng minh trực tâm tam giác $PEF$ thuộc $XY$.

Trục ba đường tròn là đường thẳng Euler

Bài toán. (PoP 1.9) Cho tam giác $ABC$ là tam giác nhọn, không cân nội tiếp đường tròn tâm O. Gọi $AD, BE, CF$ là ba đường phân giác trong của tam giác $ABC$. Gọi $L, M,N$ lần lượt là trung điểm của $AD, BE, CF$. Gọi $(O_1), (O_2), (O_3)$ lần lượt là các đường tròn đi qua $L$, tiếp xúc với $OA$ tại $A$; đi qua $M$, tiếp xúc với $OB$ tại $B$; đi qua $N$ tiếp xúc với $OC$ tại $C$. Chứng minh rằng $(O_1), (O_2), (O_3)$ có đúng hai điểm chung và đường thẳng nối hai điểm đó đi qua trọng tâm tam giác $ABC$.

Gợi ý

Gọi $AA_1, BB_1, CC_1$ là các đường cao của tam giác $ABC$. $A_2$ là giao điểm của $AO_1$ và $BC$.

  • Tam giác $A_2AD$ cân tại $A_2$ nên $A_2L \bot AL$. Và $O_1AL \backsim A_2AD$ nên $O_1$ là trung điểm của $AA_2$. Do đó $A_1$ thuộc đường tròn $(O_1)$ đường kính $AA_2$. Chứng minh tương tự thì $B_1, B_2 \in (O_2), C_1, C_2 \in (O_3)$.
  • Ta có $HA_1.HA = HB_1.HB$ và $OA, OB$ tiếp xúc với $(O_1), (O_2)$ và $OA = OB$ nên $HO$ là trục đẳng phương của $(O_1), (O_2)$.
  • Chứng minh tương tự thì $HO$ cũng là trục đẳng phương của các cặp đường tròn $(O_1), (O_3)$ và $(O_2), (O_3)$.
  • Do đó các đường tròn đi qua 2 điểm chung và đường thẳng qua 2 điểm chung là $HO$, và $HO$ qua $G$.

Ba đường thẳng đồng quy.

Bài toán. (PoP 1.8) Cho hai đường tròn $(C_1)$ và $(C_2)$ tiếp xúc ngoài với nhau tại tiếp điểm $M$. Gọi $AB$ là một tiếp tuyến chung của $()C1)$ và $(C_2)$ với $A, B$ phân biệt lần lượt là các tiếp điểm. Trên tia tiếp tuyến chung Mx của hai đường tròn ($Mx$ không cắt $AB$) lấy điểm $C$ khác $M$. Gọi $E$ và $F$ lần lượt là giao điểm thứ hai của $CA$ với $(C_1)$ và $CB$ với $(C_2)$. Chứng minh rằng tiếp tuyến của $(C_1)$ tại $E$, tiếp tuyến của $(C_2)$ tại $F$ và $Mx$ đồng quy.

Gợi ý

Gọi $G$ là giao điểm tiếp tuyến tại $E$ của $(C_1)$ và tại $F$ của $(C_2)$.

  •  Ta có $CE.CA = CF.CB$ nên $AEFB$ nội tiếp.
    $\angle GEA = \angle BAE = \angle CFE$, suy ra $GE$ cũng là tiếp tuyến tại $E$ của $(CEF)$.
  • Chứng minh tương tự thì $FG$ là tiếp tuyến tại $F$ của $(CEF)$.
    Suy ra $CG$ là đường đối trung của $CEF$.
  • Mặt khác $CM$ qua trung điểm $AB$ và $CEF \backsim CBA$ nên $CM$ cũng là đường đối trung của $CEF$.
  • Vậy $G \in CM$.

Đường thẳng qua tâm đường tròn ngoại tiếp. China 2010.

Bài toán. (PoP 1.7) (China 2010) Lấy $AB$ là dây cung của đường tròn tâm $O$, $M$ là điểm chính giữa cung $AB$ và $C$ là điểm nằm ngoài đường tròn $(O)$. Từ $C$ vẽ hai tiếp tuyến đến $(O)$ tại tiếp điểm $S, T$. Gọi $E$ là giao điểm của $MS$ và$ AB$, $F$ là giao điểm của $MT$ và $AB$. Từ $E, F$ vẽ các đường thẳng vuông góc với $AB$, cắt $OS$ và $OT$ lần lượt tại $X$ và $Y$. Một đường thẳng qua $C$ cắt $(O)$ tại $P$ và $Q$, $MP$ cắt $AB$ tại $R$. Chứng minh rằng $XY$ đi qua tâm đường tròn ngoại tiếp tam giác $PQR$.

Gợi ý
  • Chứng minh $XE = XS$.
  • Chứng minh $P, Q, U, R$ đồng viên, $Q, S, E, U$ đồng viên.
  • Chứng minh $MS.ME = MQ.MU = MP.MR$. Suy ra $M$ thuộc trục đẳng phương của $(PQR)$ và $(X)$. Và $CS^2 = CP.CQ$ nê $C$ cũng thuộc trục đẳng phương của hai đường tròn trên.
  • Do đó $MC \bot ZX$.
  • Cmtt thì $MC \bot ZY$, suy ra $Z, X, Y$ thẳng hàng.

Đường thẳng tiếp xúc đường tròn

Bài toán. (PoP1.6)  Cho tam giác $ABC$ nội tiếp đường tròn $(O)$ với góc $A$ nhọn. Gọi $D$ là điểm chính giữa của cung nhỏ $BC$ và $E, F$ lần lượt là trung điểm của $AC, AB$. Giả sử $DE, DF$ cắt lại với $(O)$ tại điểm thứ hai tương ứng là $Y$, $Z$. Đường tròn $(AEY)$ cắt $(AFZ)$ tại điểm thứ hai $M$. Gọi $N$ là trung điểm của $BC$ và đường tròn $(DNM)$ giao với $BC$ tại điểm thứ hai $X$. Chứng minh rằng $AX$ là tiếp tuyến của $(O)$.

Gợi ý

Gọi $L, K$ là giao điểm của $DZ, DY$ với $BC$.

  • Ta có $DL.DZ = DB^2 = DK.DY$, suy ra $LKYZ$ nội tiếp. Suy ra $EFZY$ nội tiếp.
  • Khi đó $AM, ZF, YE$ đồng quy tại $D$.
  • Chứng minh $E, M, F$ thẳng hàng.
  • Ta có $\angle XMD = \angle XND = 90^o$, suy ra $XM \bot AP$ và $AM = MP$ suy ra $XA = XP$.
  • Từ đó chứng minh được $AX$ là tiếp tuyến của $(O)$.