Bài toán. (PoP 1.1) Cho đường tròn $(O)$. $A, B$ là hai điểm cố định đối xứng nhau qua $O$, $M$ là điểm chuyển động trên $(O)$. $MA, MB$ giao với $(O)$ tại $P$ và $Q$. Chứng minh rằng $\dfrac{{\overline {AM} }}{{\overline {AP} }} + \dfrac{{\overline {BM} }}{{\overline {BQ} }}$ nhận giá trị không đổi.
Các loại góc trong đường tròn.
Định nghĩa. Góc ở tâm là góc có đỉnh trùng với tâm đường tròn.
Cung nằm bên trong góc được gọi là cung bị chắn.
Định nghĩa. Số đo cung nhỏ bằng số đo góc ở tâm chắn cung đó. Số đo cung lớn bằng $360^\circ$ trừ số đo cung nhỏ.
Tính chất.
- Số đo đường tròn bằng $360^\circ$. Số đo nửa cung tròn bằng $180^\circ$.
- Nếu $C$ là một điểm thuộc cung AB thì $\text{sđ} \text{cung} AB = \text{sđ} \text{cung} AC + \text{sđ} \text{cung} CB$.
Định nghĩa. So sánh hai cung.
- Hai cung được gọi là bằng nhau nếu có số đo bằng nhau.
- Trong hai cung, cung nào có số đo lớn hơn là cung lớn hơn.
Định nghĩa. Góc nội tiếp là góc có đỉnh nằm trên đường tròn, hai cạnh chứa hai dây cung của đường tròn đó. Cung nằm bên trong góc được gọi là cung bị chắn.
Định nghĩa. Trong đường tròn (O) cho dây cung $AB$. Tiếp tuyến tại $A$ là $xy$. Khi đó góc $\angle xAB$ được gọi là góc tạo bởi tia tiếp tuyến $Ax$ và dây cung $AB$. Tương tự góc $\angle yAB$ là góc tạo bởi tia tiếp tuyến $Ay$ và dây cung $AB$.
Tính chất. Tính chất góc nội tiếp.
- Số đo góc nội tiếp bằng nửa số đo cung bị chắn.
- Số đo góc nội tiếp bằng nửa số đo góc ở tâm cùng chắn cung đó.
- Số đo hai góc nội tiếp cùng chắn một cung hoặc chắn hai cung bằng nhau thì bằng nhau.
- Góc nội tiếp chắn nửa đường tròn là góc vuông.
- Số đo góc tạo bởi tia tiếp tuyến và dây cung bằng nửa số đo cung bị chắn và bằng góc nội tiếp cùng chắn cung đó.
Ta có: $\angle AOB = 2\angle ACB$ và $\angle ADB = \angle ACB = \angle BAx$
Ví dụ 1. Tính $x$ trong các hình sau.
Ví dụ 2. Tính $x$ trong hình vẽ.
Bài tập.
- Tính các góc có trong hình vẽ.
- Tính các góc trong hình vẽ.
- Chứng minh $\alpha + \beta = 90$
Định lý Menelaus
Định lý Menelaus. Cho tam giác $ABC$ và ba điểm $A’,B’,C’ $trên các đường thẳng chứa các cạnh $BC,CA,AB$ sao cho: hoặc cả ba điểm $A’,B’,C’ $ đều nằm trên phần kéo dài của ba cạnh, hoặc một trong ba điểm đó nằm trên phần kéo dài của một cạnh còn hai điểm kia nằm trên hai cạnh của tam giác. Điều kiện cần và đủ để $A’,B’,C’ $ thẳng hàng là ta có hệ thức:
\begin{align}
\dfrac{AB’}{B’C} . \dfrac{CA’}{A’B} . \dfrac{BC’}{C’A} =1
\end{align}
Chú ý : Hệ thức (a) trong định lí Menelaus cũng là hệ thức trong định lí Ceva; nhưng do sự khác nhau trong giả thiết về vị trí của các điểm $A’,B’, C’$ mà ta có ba điểm thẳng hàng hay ba đường thẳng đồng quy (song song).
Ví dụ 1. Cho tam giác $ABC$, có $M, N$ là các điểm thuộc cạnh $AB, AC$ sao cho $AM = MB, AN = 2NC$. $MN$ cắt đường thẳng $BC$ tại $P$. Chứng minh $CP = CB$.
Ví dụ 2. Chứng minh rằng trong một tam giác, chân các đường phân giác trong của hai góc và chân của đường phân giác ngoài của góc thứ ba là điểm thẳng hàng.
Ví dụ 3. Cho tam giác $ABC$ nội tiếp đường tròn $(O)$, tiếp tuyến tại $A$ của $(O)$ cắt đường thẳng $BC$ tại $D$, tiếp tuyến tại $B$ cắt $AC$ tại $E$, tiếp tuyến tại $C$ cắt $AB$ tại $F$. Chứng minh rằng $D, E, F$ thẳng hàng.
Bài tập.
- Cho tam giác $ABC$, trên các cạnh $BC, AC$ lấy các điểm $M,N$ thỏa $BM = 2CM, CN = 3CA$, đường thẳng $MN$ cắt đường thẳng $AB$ tại $P$. Tính $\dfrac{PA}{PB}$.
- Chứng minh rằng chân 3 đường phân giác ngoài của một tam giác thì thẳng hàng.
- Cho tam giác $ABC$, đường tròn nội tiếp tam giác tiếp xúc với các cạnh $BC, AC, AB$ tại $D, E, F$. Đường thẳng $EF$ cắt $BC$ tại $P$. Chứng minh $\dfrac{PB}{PC} = \dfrac{DB}{DC}$.
- Cho một tứ giác $ABCD$ ngoại tiếp một đường tròn tại các điểm $M,N,P,Q$ theo thứ tự trên các cạnh $AB,BC,CD,DA$. Chứng minh rằng $PN, QM$ và đường chéo $BD$ đồng quy.
- Trên trung tuyến $AD$ của một tam giác $ABC$, cho một điểm $K$ sao cho $AK = 3KD$; $BK$ cắt $AC$ tại $P$. Tính tỉ số diện tích của tam giác $ABP$ và $BCP$.
- Cho một tam giác $ABC$, một điểm $K$ trên $AB$ sao cho $\dfrac{AK}{KB}$=$\dfrac{1}{2}$, một điểm $L$ trên $BC$ sao cho $\dfrac{CL}{LB}$=$\dfrac{2}{1}$. Gọi $Q$ là giao điểm của các đường thẳng $AL$ và $CK$. Tìm diện tích tam giác $ABC$ nếu biết diện tích của tam giác $BQC$ bằng 1 (đơn vị diện tích).
- (*) Cho tam giác $ABC$, đường tròn tâm $I$ nội tiếp tam giác tiếp xúc với các cạnh $BC, AC, AB$ lần lượt tại $D, E, F$. Chứng minh rằng tâm đường tròn ngoại tiếp các tam giác $IAD, IBE, ICF$ thẳng hàng.
- (*) Cho tứ giác $ABCD$. Các đường thẳng $AD, BC$ cắt nhau tại $P$, $AB, CD$ cắt nhau tại $Q$; $AC, BD$ cắt nhau tại $I$, $PI$ cắt $BC$ tại $K$. Chứng minh $\dfrac{QC}{QD} = \dfrac{KC}{KD}$.
- (*) (Đường thẳng Gauss) Cho tứ giác $ABCD$. Các đường thẳng $AD, BC$ cắt nhau tại $P$, $AB, CD$ cắt nhau tại $Q$. Chứng minh trung điểm các đoạn thẳng $AC, BD, PQ$ thẳng hàng.
Vị trí tương đối hai đường tròn
Định lý. Cho đường tròn $(O;R)$ và đường tròn $(O’;R’)$. Đặt $d = OO’$. Khi đó ta có các trường hợp sau:
- $d > R+R’$ thì ta nói hai đường tròn ngoài nhau. (Không có điểm chung)
- $d = R + R’$ ta nói hai đường tròn tiếp xúc ngoài. (Có một điểm chung)
- $|R-R’| < d < R + R’$ ta có hai đường tròn cắt nhau. (Có hai điểm chung)
- $d = |R-R’|$ ta nói hai đường tròn tiếp xúc trong. (Có một điểm chung)
- $d < |R-R’|$ ta nói hai đường tròn chứa nhau. (Không có điểm chung)
Ví dụ 1. Cho đường tròn $(O;R)$ và $(O’;R’)$ cắt nhau tại $A, B$. Chứng minh $OO’$ là trung trực của $AB$ và tính $AB$ theo $R, R’$ biết $\angle OAO’ = 90^\circ$.
Ví dụ 2. Cho đoạn thẳng $AB$ và điểm $C$ thuộc đoạn $AB$. $D, E$ là hai điểm thuộc đường đường tròn $(A;AC)$. $DC, EC$ cắt đường tròn $(B;BC)$ tại $F$ và $G$.
- Chứng minh $(A;AC)$ và $(B;BC)$ tiếp xúc nhau.
- Chứng minh $AD$ song song với $BF$.
- Chứng minh $DE$ song song với $FG$.
Ví dụ 3. Cho đường tròn tâm $A$ và đường tròn tâm $B$ cắt nhau tại $C$ và $D$. Một đường thẳng qua $C$ cắt $(A)$ tại $E$ và cắt $(B)$ tại $F$. Gọi $P, Q$ là điểm đối xứng của $C$ qua $A$ và $B$.
- Chứng minh $P, D, Q$ thẳng hàng.
- Gọi $M$ là trung điểm $PQ$. Chứng minh tam giác $MEF$ cân.
Bài tập.
[1] Cho đoạn thẳng $AB = 5cm$. Đường tròn tâm $A$ bán kính $3cm$ và đường tròn tâm $B$ bán kính $4cm$ cắt nhau tại $C$ và $D$.a.Chứng minh $AC, AD$ là tiếp tuyến của đường tròn $(B)$.
b.Tính độ dài đoạn $CD$.
c.Đường thẳng $AB$ cắt $CD$ tại $H$ và cắt $(B)$ tại $M, N$. Chứng minh $AM.AN = AH.AB$.
a.Giải thích rõ vị trí tương đối của 2 đường tròn $(O)$ và $(I)$.
b.$B$ là điểm bất kì trên $(O)$ ($B$ không nằm trên đường thẳng $AO$) $AB$ cắt $(I)$ tại $C$.Chứng tỏ $C$ là trung điểm của $AB$ và $IC ||OB$.
c. $CI$ cắt $(I)$ tại $D$, $AD$ cắt $(O)$ tại $E$. Chứng tỏ $B, O, E$ thẳng hàng.
d. Chứng tỏ 3 đường thẳng $AO, BD$ và $CE$ đồng qui tại một điểm. Điểm này là điểm đặc biệt gì của tam giác $ABE$.
Tính chất hai tiếp tuyến cắt nhau
Định lý. Nếu hai tiếp tuyến của một đường tròn cắt nhau tại một điểm thì:
- Điểm đó cách đều hai tiếp điểm.
- Tia kẻ từ điểm đố qua tâm đường tròn là tia phân giác của góc tạo bởi hai tiếp tuyến.
- Tia kẻ từ tâm đi qua điểm đó là tia phân giác của góc tạo bởi hai bán kính đi qua các tiếp điểm.
Ví dụ 1. Cho đường tròn $O$ bán kính $R$ và điểm $A$ nằm ngoài đường tròn. Từ $A$ vẽ các tiếp tuyến $AB, AC$ đến $O$ với $B, C$ là các tiếp điểm. Gọi $H$ là giao điểm của $OA$ và $BC$. Chứng minh rằng :
- Bốn điểm $O, A, B, C$ cùng thuộc một đường tròn.
- $OA$ là đường trung trực của $BC$.
- $OH.OA = R^2$.
Ví dụ 2. Cho đường tròn tâm $O$ đường kính $AB=2R$. $d_1$ là tiếp tuyến tại $A$ và $d_2$ là tiếp tuyến tại $B$. $C$ là một điểm thuộc đường tròn $(O)$, tiếp tuyến tại $C$ cắt $d_1$ và $d_2$ lần lượt tại $D, E$.
1. Chứng minh $DE = AD + BE$.
2. Chứng minh $\angle DOE = 90^\circ$ và $CD\cdot CE = R^2$.
Bài tập.
1.Cho đường tròn tâm $O$ bán kính $R$. Dây cung $AB = R\sqrt{3}$. Tiếp tuyến tại $A$ và $B$ cắt nhau tại $P$. $OP$ cắt $AB$ tại $K$.
a. Chứng minh $OK \bot AB$. Tính $OK$.
b.Tính $PA, PB$. Chứng minh tam giác $PAB$ đều.
2. Cho tam giác $ABC$ vuông tại $A$, đường cao $AH$. Gọi $D, E$ là hình chiếu vuông góc của $H$ trên $AB, AC$.
a.Chứng minh 4 điểm $A, D, H, E$ cùng thuộc đường tròn. Xác định tâm $I$ của đường tròn.
b.Chứng minh $BC$ là tiếp tuyến của $(I)$.
c.Gọi $M, N$ lần lượt là trung điểm $BH, CH$. Chứng minh rằng $DE$ là tiếp tuyến của đường tròn đường kính $MN$.
3. Cho nửa đường tròn tâm O đường kính $AB = 2R$. Trên tiếp tuyến tại $A$ của nửa đường tròn lấy điểm $D$ sao cho $\angle ABD = 30^\circ$, $BD$ cắt $(O)$ tại $C$. Từ $D$ vẽ tiếp tuyến $DE$ đến $(O)$.
a.Tính $BD, AC$.
b. Tính $DE$.
c.Gọi $F$ là trung điểm của $AD$. Chứng minh $CF$ là tiếp tuyến của $(O)$.
d.Gọi $M$ là giao điểm của $OD$ và $AE$, chứng minh $FM \bot OE$.
4. Cho nửa đường tròn tâm $O$ đường kính $AB$, $C$ là một điểm thuộc nửa đường tròn sao cho $AC = R$. Gọi $D$ là điểm đối xứng của $O$ qua $C$.
a. Chứng minh rằng $DA$ là tiếp tuyến của $(O)$.
b. Từ $D$ vẽ tiếp tuyến $DE$ đến $(O)$ ($E$ khác $A$). Tính $DE$ và chứng minh tam giác $ADE$ đều.
c. Tứ giác $OACE$ là hình gì? Tại sao?
d.$DB$ cắt $(O)$ tại $F$. Tính $DF$. Chứng minh $\angle DBE =\angle DEF$.
5. Cho đường tròn tâm $O$, điểm $E$ nằm ngoài đường tròn. Kẻ các tiếp tuyến $EM, EN$ với đường tròn ($M, N$ là các tiếp điểm).
a.Chứng minh $OE$ vuông góc với $MN$.
b.Vẽ đường kính $NB$ của đường tròn $(O)$. Biết $OE \bot MN$ tại $H$. Chứng minh tứ giác $OBMH$ là hình thang.
c. Biết $OM = 2, OE = 4$. Tính độ dài các cạnh của tam giác $EMN$.
d.Tính diện tích tam giác $EMN$.
Tiếp tuyến của đường tròn.
Định nghĩa. Đường thẳng $a$ là tiếp tuyến của $(O)$ nếu $a$ và $(O)$ có một điểm chung.
Phương pháp chứng minh tiếp tuyến. Để chứng minh đường thẳng $a$ là tiếp tuyến của đường tròn $(O)$ ta có thể làm theo các cách sau:
Cách 1: Vẽ $OH \bot $a$. Chứng minh $OH$ bằng bán kính.
Cách 2: Nếu $a$ và $(O)$ có điểm chung là $H$. Chứng minh $OH \bot a$.
Ví dụ 1. Cho tam giác $ABC$ vuông tại $A$, đường cao $AH$. Gọi $D, E$ là hình chiếu vuông góc của $H$ trên $AB, AC$.
- Chứng minh 4 điểm $A, D, H, E$ cùng thuộc đường tròn. Xác định tâm $I$ của đường tròn.
- Chứng minh $BC$ là tiếp tuyến của $(I)$.
- Chứng minh $DE$ là tiếp tuyến của đường tròn đường kính $HC$.
Ví dụ 2. Cho hình thang vuông $ABCD$ có $\angle A = \angle D = 90^\circ, CD = AD =2a, AB = a$. Đường tròn tâm $I$ đường kính $CD$ cắt cạnh $BC$ tại điểm $E$ khác $C$. Chứng minh $AE$ là tiếp tuyến của $(I)$.
Bài tập.
1.Cho tam giác $ABC$ nhọn, các đường cao $BE, CE$ cắt nhau tại $H$. Gọi $M$ là trung điểm cạnh $BC$. Chứng minh $MD, ME$ là tiếp tuyến của đường tròn ngoại tiếp tam giác $ADE$.
2. Cho tam giác $ABC$ vuông tại $A$, đường cao $AH$. Gọi $D, E$ là hình chiếu vuông góc của $H$ trên $AB, AC$.
a.Chứng minh 4 điểm $A, D, H, E$ cùng thuộc đường tròn. Xác định tâm $I$ của đường tròn. \item Chứng minh $BC$ là tiếp tuyến của $(I)$.
b. Gọi $M, N$ lần lượt là trung điểm $BH, CH$. Chứng minh rằng $DE$ là tiếp tuyến của đường tròn đường kính $MN$.
3. Cho đường tròn tâm $O$ đường kính $AB$, trên tiếp tuyến tại $A$ và $B$ lấy các điểm $D, E$ sao cho $D, E$ cùng phía đối với $AB$ và $AD.BE = \dfrac{1}{4}AB^2$. Chứng minh $DE$ là tiếp tuyến của $(O)$.
Vị trí tương đối giữa đường thẳng và đường tròn
Định lý. Cho đường tròn $(O;R)$ và đường thẳng $a$. Gọi $d$ là khoảng cách từ $O$ đến $a$.
- Nếu $d > R$, thì $a$ và $(O)$ không có điểm chung, ta nói $a$ ngoài $(O)$.
- Nếu $d = R$, thì $a$ và $(O)$ có 1 điểm chung, ta nói $a$ là tiếp tuyến của $(O)$. Điểm chung của $a$ và $(O)$ được gọi là tiếp điểm.
- Nếu $d < R$, thì $a$ và $(O)$ có 2 điểm chung, ta nói $a$ cắt $(O)$.
Ví dụ 1. Cho đường tròn $(O;6cm)$, điểm $A$ nằm ngoài đường tròn sao cho $OA = 10cm$. Một đường thẳng qua $A$ sao cho cắt $(O)$ tại $B, C$, với $B$ nằm gần $A$ hơn, biết khoảng cách từ $O$ đến $BC$ bằng $3cm$.
a. Tính $BC$.
b. Gọi $D$ là điểm đối xứng của $C$ qua $O$. Tính $AD$ lấy 2 chữ số thập phân.
Ví dụ 2. Cho đường tròn $(A;3cm)$ và điểm $B$ thuộc $(O)$. Trên tiếp tuyến tại $B$ của $(A)$ lấy $C$ sao cho $BC = 4cm$. Vẽ $BE \bot AC$ với $E$ thuộc $AC$
a. Tính $AC, BE$.
b. Trên tia đối tia $EB$ lấy $F$ sao cho $EF = 4cm$. Tính $CF$.
c. Xét vị trí tương đối của $CF$ và $(A)$.
Đường kính và dây cung
Định lý. Trong một đường tròn
- Đường kính vuông góc với dây cung không đi qua tâm thì đi qua trung điểm dây cung đó.
- Ngược lại, nếu đường kính đi qua trung điểm của dây cung thì vuông góc với dây cung đó.
Ví dụ 1. Tìm $x$ độ dài dây cung trong các hình sau:
Ví dụ 2. Cho đường tròn đường kính $AB = 10cm$ tâm $O$. Trên đoạn $OA$ lấy điểm $D$ sao cho $OD = 3cm$. Đường thẳng qua $D$ vuông góc $AB$ cắt $(O)$ tại $E, F$. Tính $\angle EBF$.
Bài tập.
1.Tính các yếu tố chưa biết trong các hình sau:
2. Tính $x$ trong hình sau:
3. Trong hình dưới đây cho $DF = 1cm, AE = 2\sqrt{3} cm$. Tính bán kính $x$ của đường tròn.
4. Cho đường tròn $(O;R)$ và điểm $I$ nằm trong đường tròn. $AB$ là dây cung thay đổi qua $I$.
a.Chứng minh rằng trung điểm $AB$ thuộc một đường cố định.
b.Chứng minh $IA.IB$ không đổi.
5. Cho đường tròn tâm $O$ bán kính $R$ và $I$ là một điểm nằm trong đường tròn. Hai dây cung $AB$ và $CD$ thay đổi vuông góc với nhau tại $I$. Gọi $M, N$ lần lượt là trung điểm của $AB$ và $CD$.
a. Chứng minh $MN$ có độ dài không đổi.
b. Chứng minh $AB^2 + CD^2$ không đổi. Tìm giá trị lớn nhất diện tích tứ giác $ACBD$.
Sự xác định đường tròn
Định lý. Qua 3 điểm không thẳng hàng xác định được một đường tròn.
Chú ý. Tâm $O$ của đường tròn qua 3 đỉnh $A, B, C$ là giao điểm ba đường trung trực của các cạnh của tam giác $ABC$. Đường tròn qua 3 đỉnh của tam giác $ABC$ được gọi là đường tròn ngoại tiếp tam giác $ABC$, tam giác $ABC$ được gọi là tam giác nội tiếp đường trò $(O)$.}
Ví dụ 1. Cho tam giác $ABC$ vuông tại $A$, $AB = 6, BC = 10$. Xác định tâm và tính bán kính đường tròn ngoại tiếp tam giác $ABC$.
Ví dụ 2. Cho hình chữ nhận $ABCD$ có $\angle ABD = 60^\circ, AB = a$. Chứng minh 4 điểm $A, B, C, D$ cùng thuộc đường tròn, xác định tâm và tính bán kính của đường tròn.
Ví dụ 3. Cho tam giác $ABC$ có $AB = AC = 5cm, BC = 6cm$.
a. Tính bán kính đường tròn ngoại tiếp của tam giác $ABC$.
b. Vẽ đường kính $BD$. Tính $AD$ và $CD$. \item Chứng minh $\angle ADB = \angle ABC$.
Bài tập.
1. Tính bán kính đường tròn ngoại tiếp tam giác trong các trường hợp sau.
a. Tam giác đều cạnh a.
b. Tam giác vuông có các cạnh góc vuông là 6 và 8.
c. Tam giác cân có các cạnh là 12, 12, 10.
2. Cho tam giác $ABC$ nhọn, đường cao $AD$ với $AD = DC = 4, DB = 2$. Gọi $E, F$ chân đường vuông góc từ $D$ đến $AB, AC$.
a. Tính $AE, AF$. \item Tính bán kính đường tròn ngoại tiếp tam giác $AEF$.
b. Trung trực của $BC$ cắt $DF$ tại $O$. Chứng minh $O$ là tâm đường tròn ngoại tiếp tam giác $ABC$. Tính $OA$.
3. Cho nửa đường tròn tâm $O$ đường kính $AB = 2R$. $C$ là điểm thay đổi thuộc nửa đường tròn. Gọi $H$ là hình chiếu vuông góc vuông góc của $C$ trên $AB$. Gọi $D, E$ là hình chiếu vuông góc của $H$ trên các cạnh $AC, BC$. Gọi $I$ là giao điểm của $DE$ và $CH$.
a. Tìm vị trí của $C$ để $DE$ đạt giá trị lớn nhất.
b. Gọi $F$ là giao điểm của $OC$ và $DE$. Chứng minh 4 điểm $I, H, O,F$ cùng thuộc một đường tròn.
c. Đường thẳng qua $I$ vuông góc với $DE$ và đường thẳng qua $O$ vuông góc với $AB$ cắt nhau tại điểm $K$. Chứng minh $IK$ không đổi và 4 điểm $A, B, D, E$ cùng thuộc đường tròn tâm $K$.
Bảng lượng giác
Sử dụng bảng lượng giác cho các góc có số đi đặc biệt trên, ta có thể tích chính xác độ dài các cạnh.
Ví dụ 1. Cho tam giác $ABC$ vuông tại $A$ có $AB = 2cm, \angle ABC = 30^\circ$. Tính $AC, BC$.
Ví dụ 2. Cho tam giác $ABC$ có $AB = 1, AC = \sqrt{3}, BC = 2$. Tính số đo các góc của tam giác $ABC$.
Bài tập
- Tính chính xác các yếu tố chưa biết.
2. Cho tam giác $ABC$ có $\angle ABC = 60^\circ, \angle ACB = 45^\circ$, đường cao $AH = \sqrt{3}$.
a. Tính độ dài các cạnh của tam giác $ABC$.
b. Dựng đường cao $BK$. Tính $BK$ và $\sin \angle BAC$.